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Abstract. As numerical techniques for solving PDE or integral equasibecome more sophis-
ticated, treatments of the generation of the geometrictsipbould also follow that numerical
advancement. This document describes the preparation bBf d&ta so that they can later be
applied to hierarchical BEM or FEM solvers.

For the BEM case, the geometric data are described by susfadech we want to decom-
pose into several curved foursided patches. We show thertesd of untrimmed and trimmed
surfaces. In particular, we provide prevention of smoothneos which are bad for diffeo-
morphism. Additionally, we consider the problem of chasazing whether a Coons map is a
diffeomorphism from the unit square onto a planar domaimngeited by four given curves. We
aim primarily at having not only theoretically correct catidns but also practically efficient
methods.

As for FEM geometric preparation, we need to decompose a 3D iswo a set of curved
tetrahedra. First, we describe some method of decompasatithout adding too many Steiner
points (additional points not belonging to the initial balary nodes of the boundary surface).
Then, we provide a methodology for efficiently checking dret tetrahedral transfinite inter-
polation is regular. That is done by a combination of degreg@uction technique and subdivi-
sion.

Along with the method description, we report also on sonmer@sting practical results from
real CAD data.
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Figure 1: The boundary dP; ¢ R? is the image of several curveﬁ. Apply ¢, to have the trimmed surfac.

1 INTRODUCTION

Traditionally, solving PDE and integral equations haverbdene on a very fine triangular or
tetrahedral mesh. Over the last periods, the use of higcalamethods has emerged and de-
veloped quickly. Hierarchical settings have been demateddrto be numerically very efficient
because they give rise to subdivision algorithms. Such i@attkical setting produces in gen-
eral good accuracy with low computational cast([2, 14]. Unfoately, their applications on
real geometric models cannot seem to have attained maiucitynpared to traditional mesh-
based approaches. We address here the problem of procE€gdindata for use in hierarchical
BEM and FEM. This document summarizes our earlier works 03/111,[12] about process-
ing CAD data for numerical applications and it supplemehésit with new results pertaining
to tetrahedral cases. The structure of this paper is asafelldt starts with a description of
the CAD inputs in Sectiohl2. Afterwards, we concentrate asnBEM treatment which con-
sists of decomposition and regularity in Section 3. We catgpthe BEM case by presenting
some practical results. As for FEM modeling, we considegieeration of curved tetrahedral
meshes in Sectidg 4. That will be followed by regularity fieation for a curved tetrahedron in
Sectiorb. Finally, we report on some CAD results from IGE&sffor FEM decomposition.

2 CAD REPRESENTATION AND PROBLEM FORMULATION

2.1 Description of the input CAD models

The initial CAD input is a solid? bounded by a closed surfatec R? that is the union of
M trimmed [1] parametric surfaces, - - -, S),; defined on the domair®;, - - -, D,; which

are multiply connected regions R2. The external and internal (when relevant) boundary
curves of each domai®; are supposed to be composite curves. That is, there areriatéva
smooth functionss/ defined onle/, f/] such tha’D; = J, Im(x]). We suppose further that
the parametric functions definirgy

P, Dy — S; (1)

are bijective, regular and smooth[11]. A graphical illasiton of this formulation can be found
in Fig.[d. Furthermore, we need that the bounding cum{we sufficiently smooth, regular and
without zero angles. More precisely, we assume that far, gllthe tangents satisiy{(r) # 0.
Additionally, in order to forbid cusps or zero angles inse#chD;, we suppose that if the
terminating point o' and the starting point 07> coincide, we must have

im A7 (t) # —A  lim X KP(H) YA>0. 2)

t—(fi1) t—(el?)
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Figure 2: (a)Matching condition with affine transformatidn (b)Regular Coons patch. (c)Undesired overspill
phenomenon.

2.2 Problem setting for BEM and FEM

For preparation of BEM geometry, our objective is to tesdelthe surfac&' into a collection
of four-sided patche§g;, i.e.,I' = U;I';, where the splitting is conformin@![6]. We need also
some regular (differentiable and the Jacobian matrix hasma rank) functionsy, such that
I'; = ~,([0,1]?). Additionally, we require global continuity meaning that ftwo adjacent
patchesl’; andT';, there is a bijective, affine mapping : [0,1]> — [0,1]? such that for all
x = 7,(s) on a common edge df; andT; it holds thaty,(s) = (v; o .A)(s). Thatis,y, and
~; coincide pointwise at common edges up to some reorienta®i@ctically, global continuity
means that the images by and~; of u-constant and-constant isolines match well at the
interface (Fig[Z2(&)). Unfortunately, we are not able tosedhe problem of global continuity
exactly and we could not find in the literature any method Wwizi@an do that. As a consequence,
we will only show how to solve that problem numerically withidoo much computational cost.

As for FEM geometric preparation, we intend to decomposesditie € into a set of curved
tetrahedrdl; which again form a conforming decomposition. We want alsértd functions
v, : A3, — T, which are regular. Additionally, we need a global contipuas follows.
Suppose that the curved tetrahe@yand’; share a curved triangular facefFor eachx € ¢, its
preimagesy; ' (x) and'yj_l(x) should have the same barycentric coordinates on theirctgpe
triangular face on the unit tetrahedrayi,,.

The results of the geometric operations can be graphidalstiated by Figll and Fig. 12
where the grids represent the imagesybyf a uniform grid on0, 1]% or A3 ;.

3 GEOMETRIC PROCESSING FOR BEM

3.1 Decomposition into four-sided patches

A complete detail of decomposing a 3D-model is beyond theeod this paper. Therefore,
we will summarize only the main steps and point out the ppaldifficulties [11]. First of all,
we approximate the curved boundaries{8f} by straight line segments separated by nodes
{X;} € R?asin Fig[3(d). In order to achieve that approximation whi&ing conforming
splitting in mind, we create planar polygonalizations{@;}}, which amount to doing the
following. For each trimmed surfa&:, we generate a polygaR® whose nodes'” are taken
from the curved boundary of the 2D domdm. We have to make sure that for two adjacent
different surface$; andS; sharing a curveC, if %(V;(f)) € C, then there must exist a vertex
v e PU) such that

P, (v)) =, (v)). (3)
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Figure 3: (a)Four-sided region. (b)Input 3D model. (c)Bolyal approximation.

Let us note that if we take too few vertices, the resulting/goh P) may have imperfec-
tions such that its edges do not form an admissible polygdhussrated in Fig[4(a). But if
the polygonal approximation is too fine, then it results iery many four-sided surfaces. As
a consequence, one has to split the curved edges adaptiligé/tvying to maintain relation
@) which involves some preimage computations. Let us esipbdhat only polygons having
anevennumber of boundary vertices can be decomposed into quidtala. It is not straight-
forward to convert odd faces into even ones inside a closddcguwith arbitrary genus. One
should assemble the adjacency graph which is used in thetiijklgorithm to search for the
shortest path joining two odd polygons in order that the neinds additional nodes to be in-
serted are not too many. We could theoretically prove thatilmmber of odd faces must be
even for a closed model and that the odd faces can be convert®dn ones pairwise.

Our main approach consists in splitting the 2D reginénto four-sided regiong), ; C R?
such thatD; = |J, Q. The four-sided patcheB,, are therefore the images hy, of the 2D
domainsy ;

Pr = ¢i(@k,z’)- (4)

As for the decomposition int@,, ;, we consider the polygoR® which we decompose into a
set of convex quadrilateradg ;. The four-sided domaing;, ; are obtained fromy, ; by replac-
ing the straight boundary edgesgf; by the corresponding curve portion B as illustrated

in Fig.[4{B) and Fig[ 4(¢$). In the decomposition of a polyge# into quadrilateralsg, ;, we
use only the preimages; ' (X;) of the nodes X} as boundary vertices. That is, we do not
use any additional boundary nodes in the course of the gogdiaion (usual term for "quadri-
lateral mesh” or "process of quadrilating”) process. Weehdeveloped in [11] an approach
that decomposes a polygon withboundary vertices intd(n) convex quadrilaterals. There
are two main difficulties in that process. First, convertimanconvex quadrilaterals into con-
vex ones requires many cases to be handled individuallyor8edinding cuts connecting an
internal boundary and the exterior boundary of a multiplgroected polygon is complicated.
The process of replacing a boundary edge with the correspgrdrve can generate three seri-
ous problems. First, it is possible that the curve intessantinternal edge causing a boundary
interference. The second problem is that some corners imrasfded region?),.; might be
smoothened out. Third, it is possible that the correspan@ioons patch is not regular]11]. In
those cases, we have to make a polygonal refinement. We hestepled a method for making
only a small local rectification while keeping the large pEfrthe quadrangulation. The things
about which one has to be careful is that it is not easy to tétese three problems and we
have to guarantee relatidd (3) when we insert new nodes.
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Figure 4: (a)lnadmissible polygonal approximation. @)onversion of a quadrangulati¢g } into subregions
having curved side§Qy. }.

3.2 Transfinite interpolation and subdivision

Let us consider four sufficiently smooth curvas3,~,d : R — R2. We are interested
in their restriction o0, 1] and we suppose that they fulfill tewmpatibility conditionst the
corners

a(0)=46(0), a(l)=p(0), ~(0)=461), ~(1)=p8(®1). (5)

We assume that besides those four common points in, theredtether intersection points.
We are interested in generating a parametric surédeev) defined onJ := [0, 1]? such that
the image ob by c coincides with the four curves. That is, we have foralt € [0, 1],

c(u,0) = a(u), c(u,1) =~(u) c(0,v) = d(v), c(l,v) = B(v). (6)

This transfinite interpolation problem can be solved by adirder Coons patch which is defined
in matrix form as

T

-1 0 c(u,0) c(u,l1) -1
c(u,v):=— | Fy(u) c(0,v) ¢(0,0) c(0,1) Fo(v) |, (7)
Fi(u) c(l,v) ¢(1,0) c(1,1) Fi(v)

whereF, and F; denote two arbitrary smooth functions satisfying [10]:
E(]) :5ij7 Z,j :O,l and Fo(t)+F1(t) - 1 VtE [0,1]

For most cases, a Coons patch is already regular. Howeven thie boundary curves become
too wavy, we observe overlapping isolines indicating tiat tnapping is not invertible as in
Fig.[2(c). Our next goal is to find an efficient method which gaickly verify if a Coons patch
is regular. In this document, we will treat only the case \eltee boundary curves are in Bézier
form [3]. For general curves, refer td [6]. Thus, we suppbse the boundary curves, 3, ~, 6
are expressed in terms of their respective control peint8,, v,,d; (i = 0,...,n) as follows

alt) =D B0, B =D BB, A=Y VBID, (1) =Y &B).

The polynomial blending functiof is also expressed in Bézier forf(t) = > | ¢ B'(t) =
1 — Fy(t). Furthermore, we suppose that the rangéphndF; is [0, 1] and we define

p = max{|F{(t)] : t € [0,1]}. (8)

5
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Figure 5: (a)Uniform subdivision. (b)Adaptive subdivisio(c)Restriction ofn{ to have boundary of a Coons
patch inside the domaiB;. (d)Two Coons maps match well at interface cu&véor chord length parametrization.

In order to express the next result, we definas the minimum of the following expressions
overi,j =0,---,n

Aij = n2 det[aiﬂ — Oy, 5j+1 — 5]'], Bij = 'fL2 det[aiﬂ — Oy, ﬁjJrl — /Bj],
Cij = n? det[v, 11 — ;0541 — 85], Dij = n’ det[y;11 — Vi Bji1 — ﬁj]-
Introduce alsd := max{G1, G»} where

Gy = max{pl|(B; — 6;) + ¢i(vo — Yn + @ — ) + (g — o) ||}, (9)
Gy =max{p[(v; — i) + ¢i(vo — ¥n + an — @) + (a0 — o) |[}-

Theorem 3.1 [6] Let M be a constant such that

n)|oj(Vi1 — i + o — 1)+ (i — )| < M,

(10)
n||¢;(Bi1 — Bi +0; — 6ip1) +(6i1 — 05| < M,

foralli=0,...,n—1andj =0,...,n. If2MG + G* < 7 andt > 0, thenc is regular.
In order to employ the technique of adaptive subdivisiany$antroduce two notions. First, one

can show/([10] that a Bézier surfad€;;_, E;; B (u) B} (v) has as Jacobian a Bézier function
of degree2n with the next control coefficients:

Ipg 1= Z C(i, 5, k1) (TZ) (Z) (?)2757)

271 b p7q:O7"'72n7 (11)
itk=p (z-i—k) (]—f—l)
j+l=q
where
[ {1 7
Cli,j, k)i =—|-D(—1,7.k.1—1 1—— | D, 7.k 1-1
(odobd) o= [ 206 = 1= 1)+ (1= 2) D - 1)
l 1 ) ) 1 .
+|11-= _D(Z_17j7k7l>+ I—= D(Z7J7k7l)
n n n
and

D(i, j,k,1) == n*det[Ei11; — Eij, Eg i1 — Enl.

On the other hand, a Bézier surfagedefined ona, b] x [c, d] can be subdivided into four



Bézier surface$™, F2, F¢, FP which are respectively defined on

I = fa,(a+5)/2 x [e.c+d)/2, 1% =[a,(a+)/2] x [(c+d)/2.d],
¢ .= [(a4+0)/2,0] X [e,(c+d)/2], P = [(a+0)/2,b] x [(c+d)/2,d],

by using the following recursions. Suppose the control {sooh /' are F;, i, j = 0,...,n. We
definefori,7=0,...,n, k>1

F%.—=F; and FM:=05(FY + FY)
P[[;O F[] and P[[;k = 0.5(P"" i]+P?“ ) (12)
Qb = il ana Qlf —0s(Ql Y+ Q)

The control points of ™, F'Z, F¢ and F'” are respectively;; := PZ[]J}, B;; == P ¢y =
QY, D;; == Q). We have in particular

F(u,v) = F"(u,v) for (u,v)€ ", where r=A B C, D.

We can apply the same subdivision technique to each of thdtires4 Bézier surfaces. A
recursive application of that subdivision on the unit sgugenerates a uniform grid consisting
of o2 little squares as illustrated in Fig. 5(a).

Theorem 3.2 [B] Suppose that the Coons patehdefined witha, 3, 4, § is regular. Suppose
that its Jacobian functiod has been subdivided inte functionsJ* defined on

IV .= [(i —1)/o,i/o] x [(j — 1)/0,j]0], i,j=1,...,0, (13)

and with Bezier coefﬂuents]’q, p,q=0,...,2n. Then, for a sufficiently large all coefficients
Ji3 have the same sign.

Theorem 3.3 [§] Let c be a Coons patch that is not regular. Then, for sufficientiyéar (see
Theoreniz312), there must exist, j;1) and (i, j2) such that

Jil,j1 >0
J;Z,Jz <0 } Vp,q=0,...,2n. (14)

In practice, we do not need to subdivide the Jacobian unlfob@cause we can perform adap-
tive subdivision. We start from a single Jacobian functiariten in Bézier form defined on the
unit square. Then, we split it recursively by adaptivelyngdine former subdivision techniques.
Thatis, we subdivide only those Bézier functions that Ha&eier coefficients// with different
signs. The preceding two theorems serve as abortion conditor that recursion. An instance
of that adaptive subdivision process is illustrated in B@dn]. For more structured description
about that adaptive process referlto [6].

3.3 Global continuity

In order to obtain a mapping, from the unit squargo, 1]* to P, Cc R?, we need to find a
mappingx; ; from [0, 1]? to the planar four-sided domaidpy.; C R? of relation [3) and we take
the composition:

P = 1;(Qri) = ¥, 0 x1.4([0, 1%). (15)

7



Now, we will discuss about the construction of the mapping= x;; from [0, 1] to each

of the four-sided domain® := Q.; C R? by means of Coons maps. On account of the
decomposition algorithm of SectiénB.1, we note that thenblaniesa, 3, n, 6 of the Coons
maps are either straight lines or restrictions of the 2D ldamy curvess’. Since the Coons
patch [T) requires, 3, n, 4 to be defined ofD, 1], we use one of the next two representations:

wt) = Kltr+(1-1)s),  Yp=o B8

The first representation is used wheris a straight internal edge joining two interior poi&s
andB while the second one appliesyifis a restriction o] on somes, 7] C [e/, f/] as seen
in Fig.[5(c).

An arbitrary parametrization oﬂ does not guarantee the global continuity. Additionally, we
cannot modify the base surfacg¢s because they are given as input in the initial CAD storage.
Therefore, our objective is to replace the 2D curwésoy &/ so that their 3D images by,
agree pointwise as long as they are incident. Let us int@the length function

o= [ |

————2(f
m0)
This function is defined fronfe?, f/] to [0, L] whereL is the total length of the curve; o 7.
On account of the properties af and, that we met in Sectio 2, let us observe that

(16)

do. (17)

dX? _ d(zpiong)
) = | Lo )

- A0 Voeld, ) (18)

Hence, there is an inverse functioh:= (y/)~" and our approach is to replace the functign
by &7 := k] o ¢!. In [I0], we have shown that the use of the chord length [Shpetrization
gb{ ensures the matching condition at the interface curve ofddjacent Coons patches. To
that end, let us consider two adjacent four-sided patéhgsandP, ;. We will treat only the
non-obvious case where those two patches belong to two ectiedl trimmed surfac8; and
S;. In order to facilitate the presentation, we may supposethiey areS,, S,, P;, P, and we
omit the superscripts. In the sequel, we denote the comelpg length functions by, and
X2, the two Coons maps from relation{15) &y andx, such asP;, = 4, o x;([0, 1]?) and
Py = 1, 0 x5([0, 1]%) which share only one curved edge because of the conformimdjtaan.
Further, we denote by, f1] and[e,, f>] the intervals of definition of), o k; andip, o k5 which
have coinciding images upon whi¢h and?P, are incident:

(11 o k1)([e1, f1]) = (3 0 K2)([e2, fa]) =: C. (19)

That is, we reparametrize the 2D curvesrom which the boundary of the planar Coons maps
are obtained in order that the 3D curweso «, andi, o K, agree pointwise. In fact, by using
the chain rule and := (1, o k) ™! 0 1), o K1, We obtain

alt) = / %@Hd@: / Wwen} X(6)do.
B /Aj(tj W(")Hd":/e:w W(@' do = x2(A(t)).

8



Models Nb. trimmed surfaces Nb. patches Total runtimes

Fig.[6(@) 16 38 1.919 sec.
Fig.[6(Db) 26 90 6.588 sec.
Fig.[6(c) 243 727 44.232 sec.

Table 1: Number of initial surfaces, number of patches, ime$ for decomposition and evaluation

Hence, we obtain, ' o x; = \. Therefore, if we denote the total length By:= v (f1) =
x2(f2), we have

1y 0 Ra(t) = by 0 Ko 0 o(t) = 1P 0 K1 0 P1(t) = by 0 Ky (t) Vtelo, L] (20)

The former sections imply that we have to evaluate chordttengany times and accurately.
In [L0], we proposed a length computation algorithm with@xgntial speed.

We have applied the former methods to real CAD objects. Thi@li®AD models correspond-
ing to the mechanical parts which are found in[Hig.6 have lbesigned with a CAD system. In
Table[l, we gather the number of entities correspondingdartchanical parts. We see there
also the required time to generate the decomposition tegettth the evaluation to obtain the
gridpoints at level/ = 6.

4 CURVED DECOMPOSITION FOR FEM

In this section, we would like to describe the process of gpttiteg a tetrahedral mesh contain-
ing tetrahedra which might have curved edges and non-pfacas of a domaif2. Such a
generation will be performed in several steps. As a stagiag, we create a conforming curved
triangular mesh\1 of the boundary of). That can be obtained for examples by using a method
similar to that in Sectioh—3l1 but instead of quadranguletj@ne uses triangulations. Another
alternative is to create a curved quadrilateral boundarstnas in the BEM case and then one
inserts a diagonal edge inside each quadrilateral to obaintriangular patches. According to
our experience, that second method does not give qualitytse$senerating a curved triangu-
lar mesh directly from the CAD models gives better resultsteNthat we require also a global
continuity for the curved triangular boundary mest. That is obtained by using the method
from Sectior:3B.

4.1 Straight tetrahedral mesh

Consider the triangular mesW that is obtained from the curved mestit in which one replaces
every curved edge of M by a straight edge joining the two endpointsofThe next step now
consists in generating a tetrahedral mesh boundedfyNote that in two dimensions, it is
possible to decomposermnconvexpolygon directly into triangles. That can be theoretically
proved by using the 2-ear theorem][11]. That is, one can awapp off a triangle from the
polygon recursively until the polygon becomes empty. Unioately, that nice fact does not
generally hold in higher dimension. To treat a nonconveylpadironM in 3D, one needs a
constrainedetrahedralization as follows. First, one tetrahedralitee seftV of verticesx; of
the polyhedron\. Thus, one obtains a tetrahedralization of the convex fioWl.0At this point,
some faces of the polyhedrolf might be crossed by some tetrahedra. That is, there might
be some tetrahedra which are partly inside and partly omitsid polyhedronM. Therefore,
the second step consists in modifying the tetrahedratimagd that one recovers the faces of

9
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Figure 6: CAD decomposition for BEM.

the polyhedronM. At this step every tetrahedron is either inside or outsidegolyhedron.
Finally, the tetrahedra outside! are discarded. An illustration of those steps are depicted i
Fig.[d. Now, we will describe each of those steps briefly.

In order to generate a tetrahedral mesh of the convex hiMl,afne utilizes Delaunay tetra-
hedralization[[1]7] or any other methods. One of the mostistalays of generating a quality
tetrahedral mesh is using the parabolic lifting map

M(z,y,2) = (v,y,2 2>+ y* + 2°). (21)

This has a good property [17] that the image Ibyof a sphereS c R? centered atd and
with radiusr is contained in a hyperplarg is R*. In fact, II(S) is the intersection of the
paraboloid corresponding @ and the hyperplang(. Thus, a point) € R? is not inside the
sphereS as long adl(Q) is above (points to positive axis of fourth coordinate) thaterplane.
Computing the tetrahedralization  amounts to computing the boundary of the convex hull
C of x; = TI(x;) and projecting the lower part ¢f ontoR?. A software such as QHULL for
computing convex hulls ifk* is helpful in performing such a task.

Let us now see the recovery of the initial boundary to obtdetrahedral mesh of nonconvex
polyhedra. At this position, we suppose that we have a tethalization7 of the convex hull

10



(b)

Figure 8: (a) is an unconstrained tetrahedral mesh for ¢h)s @n unconstrained tetrahedral for (d).

of the triangular boundan{. Some tetrahedra &f might not respect the bounda. That
is, they are partly outside and partly inside the donfaifhat facial recovery is performed in
two steps. First, we need to recover the edges bf Afterwards, we recover the triangles of
M.

Suppose that we have a triangular ediiye, N,] of M which does not coincide with any of
the tetrahedral edges @f. Consider a tetrahedran= [q, b, ¢, d] which is traversed by the edge
[N1, N5]. Let us denote by, n, the part of( Ny, N] which overlaps withr. There are several
cases to consider in order that we have a tetrahedralizaticimthafn, n,] becomes an edge of
the tetrahedralization. Those cases are defined accowlimggthem; is located on a node, on
an edge or on a face of the tetrahedraas illustrated in Fid.19. The case where batrandn,
are on nodes of does not occur becauf¥;, N,| is not an edge of the tetrahedralization. Some
cases where the line segmént, ;] touches an edges of the closurerdbut [N, N>] does
not traverse the interior af are also treated similarly. For those five situations, thrabedron
7 is decomposed into several subtetrahedra as follows
Case ajnq, ns, ¢, d, [n1,n2, b, c], [n1,n2, a, b).

Case bia,nq,b,cl, [n1,b, ¢, nsl, [n1, ¢, d, nsl, [n1, b, d, nyl.

Case cing, ny,d, |, [no, n1, a, c], [ng, n1, a, d], [a, ¢, b,ns, [a, ¢, b,nsl, [a,d, b, ns).

Case diny, no, ¢, d], [n1,b, ¢, nyl.

Case efa, b, ns, d], [a,b, c,ns], [a, ¢, ng, d].

Suppose now that the above process has been applied to etetyedronr of 7 which is

11
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Figure 9: Some cases where a line segnientn.] traverses a tetrahedr@m b, ¢, d].

traversed by a certain edge of a boundary triangle. Thugspdks and edges of every triangle
of the boundaryM are among the nodes and edges of the tetrahedralizatidn blence, the
property of the resulting tetrahedral mesh from the previgtep is that if a trianglefrom M
and a tetrahedron from 7 intersect, then they intersect completely. That is, therg@ction

t N 7 is the same as the intersection betweeand the plané® passing through. In such a
situation, there are only two cases which may occur. In tisedase, one node oflies on one
sideP* of P and three other nodes are on the other $ide The second case occurs when two
nodes ofr are on one sid®* while the other two are on the other siffe.

For the former case, 1éD;, O,, O3] be the three nodes IR~ and let[];, I, I3] be the inter-
section ofr and the plané®. Such an indexation is illustrated in F[g. I0(a). In ordeattall
tetrahedra are either completely/ or completely inP~, one needs to refine as follows.

In P, the subtetrahedra af@,, I1, I, I3], [O1, Oa, I5, I3] and[O;, Oz, O3, I3]. The only new
tetrahedron on the other side is of coufse I, I3, AJ.

For the second case, let andb; be two nodes of in P*. The four intersections of the
edges ofr with the planeP are designated by, ns, n3, ny. Suppose also that; are given
in the ordering shown as in Fiff. I0(b). From those nodes, tteired local tetrahedra are
la1, by, ng, ngl, [n1,n3,n4, b1] andiny, na, ng, b1]. The same construction can be repeated to the
nodesu, andb, on the other sidé®—.

At this point, we have a tetrahedral mesh where a tetrahadreither completely inside or
completely outside the meski. To generate the nonconvex tetrahedralization, one needs t
discard the tetrahedra which are outside the methOne generates a connectivity gragh
whose nodes are represented by the tetrahedra. An edgecietwe nodes:; andn, of the
graphg is inserted if the corresponding two tetrahedra share agular face. One then selects
the connected component@ffor which the union of the corresponding tetrahedra are reale
by a triangular surface which coincides with the triangulaundary mesh\l. The above
process was only performed to recover the triangular baynai@sh M. After that recovery
process, one can improve the tetrahedral mebly using shifting and flipping operations [4, 8].

4.2 Curved tetrahedral mesh

The purpose of this section is the deduction of the curvedhetiralizatior?” from the curved
triangulationM and the straight tetrahedralizati@n Thus, the process consists in converting
the straight tetrahedral mesh into a curvilinear one. Tis $tep in that convertion consists
of course in replacing the boundary trianglesZofoy the triangular faces aM. Thus, the
boundary edges df are defined to correspond to the boundary edgestokhile the internal
edges of7 are exactly the same as thoseZof Afterwards, we need to generate the internal
triangular faces off . Note that it is possible that some triangular faces coulesdrgplanar

12
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(a) (b) (€) (d)

Figure 10: (a)Three nodes of the tetrahedron are on one sélerse on the other of a cutting plane. (b)Two nodes
on each side of the cutting plane. (c)Tetrahedral transfinterpolation. (d) Triangular Bézier function far= 3.

although they are completely inside the dom@inThat occurs when some of their edges are
boundary edges which are curved. To that end, one uses migagfiterpolations to combine
three edges df . For instance, one can use the Coons map of three spatig@scurv
_ Now thatall curved edges and faces are set, we generatenthearvilinear tetrahedral mesh
7 in which we replace every straight tetrahedroof 7" by 7 that is obtained from by taking
the transfinite interpolation (see Sectlon 5.1) of the fauresponding curved triangular faces.
Due to that construction the global continuity introducedectiorl 2R follows because every
two adjacent tetrahedra have common triangular faces vyiskess the same parametrization.
At this stage, there might of course be some interferencelg@ms. Some curvilinear trian-
gular faces of one tetrahedronTnmight have an internal intersection. Some edges which are
certainly sharp from the tetrahedral mesimight be smoothened out ih after the convertion
process. These interference problems can be detectedray thei process which we describe
in section(b. Generally speaking, the existence of suchferences inccurs that the approxi-
mation of the curved triangular mesg¥ by the straight triangular mest in the vicinity of the
interference is too coarse. That is, they usually occur ttettte boundary. Below, we propose
an approach for circumventing that conflicting interfe@nc
_ We keep a graph which stores the adjacency information ofmihele tetrahedralization
7. Suppose that is a curvilinear tetrahedron &f such that the transfinite interpolation with
respect tor is not regular. The remedy is processed in two attempts.t, kirs search for
neighboring tetrahedra to by using the adjacency graph. We try then to apply some flgopin
operationsl]4] to them. Afterwards, we retry to check regtyaf the flipped tetrahedra. If that
process solves the problem then we stop. Otherwise, we @ibthe tetrahedra adjacent to
and insert a new node on each curved boundary edge betwegrtwaef them. The next step
consists in the local retetrahedralization of the grouing in replacing the old local tetrahedra
from the grouping by the new ones. By repeating the aboves stepcurved edge are getting
more and more straight and after sufficient application af girocess, all consisting tetrahedra
must become regular.

5 REGULARITY FOR TETRAHEDRAL INTERPOLATION

Let us first introduce some notations. Multi-indices will denoted by bold Greek lettets =
(a1, ,an) such asy; € Ny in which we havdal := 3" | o, We introduce the following
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definitions:
Q' i={a=(a1,...,am) ENJ' : |a] =n}. (22)

o e

o _ (atam) . o1 @ =
u® = (U, ooy ) m = uom,and O f = B Buon
m

[ (23)

5.1 Tetrahedral transfinite interpolation

Let us first introduce the notion of transfinite interpolatahere we consider the following
reference domains:

= {o=(s,t) eR?: s>0, t>0, s+t<1}, (24)
Ay = {u=(yv,w) ER*: u>0,v>0,w>0,ut+v+w<1} (25)

Suppose that we have four triangular surfaégs: A2, — R?* wherei = 1,---,4. A
transfinite interpolant is a functioK : A3, — R3 which verifies the following boundary
conditions:

X(u,v,0) =Fy(v,u) X(u, 0, w) = Fo(u,w)

X(0,v,w) = Fyg(w,v) X(u,v,1 —u—v) =Fz(v,1 —u—0). (26)

In order that these conditions can be fulfilled, it is necasgaassumeompatibility conditions
which are generalization &f 5 for tetrahedra. They cong$ts conditions at the edges of
A3 . and4 conditions at the corners df? ;. We consider also blending functiopswhich are
polynomlals defined or\?,;. Each one of them takes zero value at one sidApf and they
sum to unity. The complete form of tetrahedral transfiniterpolation is

X(u) = p3s(W)F4(u+w,v) + po(0)Fy(w, u + v) + p1(0)F1 (v, u + w)
+p2(W)F1 (v +w,u) + pa(u)F1(v, u) + ps(w)Fa(w, v) + ps(u)Fa(u, w)
+p1(0)F1(u~+ v, w) — pa(n)F2(0, w) + p1(0)F3(v, w) + p1(u)F3(0,0)

u)F3(0,0) — ps(0)Fy(l —v,0) — po(u)Fy(w, 1 —w) — py(u)Fy(0,v)

JF4(0,u + v+ w) + ps(u)Fy (u, v + w) — ps(0)F2(0,u + v + w)

)F3(0,w) — p2(W)F1(1 — w,u) — pr(w)F1(v, 1 — v) — ps(w)F1(0, u)

)Fa(

In practical hierarchical mesh generation, it is importhaat the transfinite mapping is regular
J(u,v,w) = det[X(u,v,w)] 0V (u,v,w) € Al (27)

5.2 Blossom and multivariate Bzier representation

Since we suppose that the triangular faggsare represented in Bézier form [15], we will
introduce the definition and certain properties of Bézrethis section. Consider @&simplex
(d = 2, 3) of definition A with apicest,,...;t4. By using the barycentric coordinatagu) of
each point1 € A, we define

n!
BA n

Gy (W) = m)\o(u)ﬁo - Ag(u)fe, (28)
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We have the identity3(;" . (u) = Ao(w)By () + -+ Aa(w)BG"", ) (w). For

the particular case where the simplex of definitians the unit simplex, the above definition

reduces to
n!

(1 —uy — - —ug)Pu 29
CRAE A ) Ut (29)
A Bézier function defined fon € A is given by
Y= > be. a8 s, (30)
[(Bo,..-,B4)|=n

.....

control points and the polynomials can be expressed withéheof the blossoming which we
recall briefly now. A functioriP is a polar form or a blossom function |15] if it imultiaffine
forall \, > 0 and), > 0 such that\, + )\, = 1, we haveP(uy, -, \,ué + \ul, -+ u,) =
ANP(ug, - ud, - u,) + NP(ug, -+ ,ub, -+ u,) andsymmetric for any permutationr
of {1,...,n}, we haveP(u;,uy, -+ ,u,) = P(urq), Ur), -, Uxm)). FOr each multivariate
polynomial f of degreen, there is a unique blossom functi@t{ f) such that we have the next

diagonal property:
P(f)(a,---,u) = f(u) Vu e R% (31)

The blossonP(Y) of the simplex Bézier functioly’ can be evaluated &ty,, - - - , u,,) with the
help of the next pyramid algorithm in whieh is the multi-index of2¢ having unity at thek-th
entry and zeros at all other entries.

Algorithm: Pyramid algorithm for multivariate blossom
1: Initialize b} := b, for all 6 € Q7
2. for(l=1,---,n)
3: by =30 A(w)bsl Vel
4
5

5+€k
enddo
DefineP(Y)(uy,--- ,u,) := by where 0=(0,---,0) € Qf

The blossom function of the simplex Bézier [n(30) and thetcd points are related with the
following relation

bB:P(Y)(to, 7t07t17"' 7t17"' 7td7"' 7td)' (32)
\a ~ S\ ~ / [N )
Bo B1 Ba

Above, we use tetrahedral transfinite interpolation as abioation of the triangular faces
which are Bézier functions. In_[16], one can find a methodepiresenting the blossom of a
product in terms of the blossom of each factor. By using tbgether with the pyramid al-

gorithm, one can represent the transfinite interpolatiothertetrahedron\? ;. as a tetrahedral

Bézier [3D).

5.3 Subdivision of tetrahedral Bezier

Now, we want to carry over the subdivision techniques fromBEM case to tetrahedra. Let
us first formulate the expression of a Bézier function iasacsmaller tetrahedron. L&t be a

15



(b) (© (d)

Figure 11: (a)Control net with its control points. (b)Umifio subdivision. (c)Adaptive subdivision. (d)Sign
distribution on the subdivided triangle.

Bézier function with respect t& = HULL{t,, ..., t3} as in [3D). Consider another tetrahedron
A = HULL{ty, ..., t3} such thatA C A. We want to expres¥ with respect taA such that

Y(u) =Y bsB5u) =Y bpBi(u) Yue A CA. (33)

Be) Be?

For each multi-inded = (5, ..., 33) € £22, in order to find the control poinﬂgﬁ with respect
to the new tetrahedron of definitiak, we apply the pyramid algorithm from Sectionl5.2 to

<W17"'7Wn) = (?07' o 7tg7?17' T 7?5117' T 7?37' T 7¥§> (34)

Bo B1 B3

by using the blossom of the original Bézier functi@nl(30heThew control pointgﬁ are then
obtained from the connection formul@]32). That is to say,hmaegﬁ = P(Y) (W1, ..., Wp).

In order to introduce the notion of recursive subdivisiaigypose that a Bézier function has
a tetrahedron of definitioh C R¢ where the apices atg. The subdivision scheme consists
in decomposing\ into several subtetrahedra as follows. First, a new nodaiisduced at the
middle of each edge @k. Then, one decomposes the parent tetrahedron into seubtatshe-
dra as illustrated in Fig. T1(b). The same subdivision pge@an be applied to each one of the
resulting subtetrahedra. By doing that repeatedly, letamote byw, the number of tetrahedra
after N subdivisions. That is, we have tetrahedsd" where the apices are denoted ty*

fork =1,2,...,wy. Additionally, we will denote the control point ti;gk That is, we have on
each tetrahedron™'* the following representation

YVE) = > bytBs (u). (35)

Beqd

The maximal length of the initial edges will be denoted/by= max,, ||t, — t,||. In our case
of tetrahedral transfinite interpolation, we suppose thatapices,; of the first tetrahedron of
definition are composed of the corners of the unit refereataliedrom\? ;, that isA := A3 ..
A tetrahedral mapping is regular if the determinant is ofstant sign. Throughout this paper,
we suppose it is positive. Additionally, although the detieyant is positive but very small, we
consider that as irregularity. As a consequence, the ragutiefinition in (Z1) can be replaced
by
J(u) = det[X(u,v,w)] > 4§ Vu=(u,v,w) € A (36)

ref»
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for some prescribed constant- 0. By using the above techniques, we will suppose thas
given as tetrahedral Bézier with scalar control poh@i’é

Theorem 5.1 Suppose that we have regularity and tijgtu) > ¢ > 0. Then, for sufficiently
many subdivisions, for akt € {1, ...,wy} and3 € Q% the Bezier control pointiﬁ”“ on each
subtetrahedron verify:

by = P(I)(T) + O max]e™ - £4)?). (37)

Thus, the expected number of subdivisions to ensure thevitgsof those Bzier coefficients
by is of the following order
Vo
N ~ {ng (7) (38)

where[z| denotes the smallest integer which is larger than

PROOF. Consider thek-th subtetrahedrom\™* on the N-th subdivision. For each multi-
index~y = (70, -+ 72) € QF, we defineq, := Y7 (y;/n)t}"". Consider the following two
sequences of the same length

T — (PéVk’ 7136\’7’3... 7132\’7’9,... 71;2’7’? (39)
Yo Va
T = (q‘77 e 7q‘7> (40)
~——

n

We apply a multi-variate Taylor expansion of second ordehéoblossonP (7 ):
P(I)(T) = PI)(T) + Y (T = T)?0uP(I)(T) + O (max 6 — ¢]4?).  (41)
|a|=1

Since the blossom is symmetric, the first partial derivatave the same such that for jall| = 1
we haved,P(J)(T) = K. Moreover, forja| = 1 we havea = (0, ...,0,1,0,...,0) where the
unity is at some-th entry. Thus, by using the notation from23), we héve”f)a = tf.V”‘;—qv.
As a consequence, the above Taylor expansion becomes

P(INT) = PI)T) + K Y267 = a)) + O(max|e)* — ¢74?).  42)

On the other hand, we have

3

3
; ! _ Vi ! Vi . N,
S - alh) = Y- e 3 L

=0 =0 jF#i
3 ~ 3 ~
— i =t —_ /T, = (.
2] - [ ] =0
i=0 gt =0 i

Thus, the sum with respect ta| = 1 in (@) vanishes and we obtain

P)T) = PIT)T) + O (max 64 = 6747) = P(I)(T) + O o mae s — &),
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We use the relatio {82) between the control points and tb&sbin in order to deduce
N,k 1 2
BYE 2 6+ 0(55h) 43)

The coefficientsh., are therefore positive for sufficiently many subdivisioridoreover, the
expected number of subdivisiov verifies2~Y  ~  /§/h.

[
The above method for tetrahedra gives rise to an adaptivahssion technique which is similar
to the one in Section3.2 and [6] (see also Figs.11(c]andjL1(d

5.4 Efficiency improvment and practical results

Let us now see the improvment of the efficiency of the formgoathm. When the degree
is large and we have many control points, the former methashibecome computationally
expensive. As a consequence, we want to show here a methedutfing the degree while
still achieving regularity check. In our next descriptiove will need the Jacobi polynomials
[9,[7]. Since they are defined ¢r1, +1] but we need results i, 1], we introduce the modified
Jacobi polynomials\*” (t) := P{*” (2t — 1) for ¢ € [0, 1]. In fact, we will need only Jacobi
polynomials for the ultraspherical case= 3 where we denot&®® := P{** and J\* =

J* - Additionally, we use only the case whete> (1 + v/2)/4 anda € N. We need a
norm for the polynomials on the unit tetrahedron. Considenation f which is a multivariate
polynomial of degree:

V1,72 .73 _ 3
f(x1, 29, x3) E byx] x)x] X = (21,22, x3) € Ary. (44)

lv[<n

Let us introduce for the polynomidlthe quantity

/1

A3 = Max [Ha - xi)kxf] | f(x)]. (45)

ref XEAB .
i=1

By using continuity argument, we can show ttfat|| s ~defines a norm on the polynomials
of A?.. In order to reduce the computational cost, we would like nhal ﬁwhich has the

ref*
same shape asbut which has a lower degree < n. Without loss of generality we suppose
m = n — 1. The definition of f will be done by using the Jacobi polynomial and the error

If — fHA?ef will be analyzed. Consider the casec N such thatt > [$ + 1]. Consider a
multivariate polynomialf € II,,(R?*) with boundedn-th derivatives such that for aty| = n,

we have:

omn o3
e
73! | Oz 03

0, f(x)] =

flzy, 29, 23)| < C Vx € Aref (46)

7" QTR

It is shown in [13] that there is a polynomiﬁle I1,,_1(R3) of the following form

3
Z cvﬂx% Z C,\/ZR% (xq)

ly|<n—1  j=1 lvl=n

3

2P I] @ =Ry (z)  (47)

q—
J Jj=q+1
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Figure 12: CAD decomposition for FEM

such that the error is given by

3
~ 1 Cokta 1+ o/ max{1,;
||f . f”Af’ef < K22n § : H2 2k+ +0.5( (/2%+2a{) }>’ (48)
Iy=n i=1 ”

where the constart’ depends only om. It is beyond this article to detail the proaf ]13] but
mainly we use the next idea. Since the leading coefficiertt@acobi ponnomidPéa) iSl, ==

¢ (q+j+2a)/2j, the polynomial/{*’ := Ji* /(241,) is monic. The resultis obtained from
Taylor expansion off at0 = (0,---,0). Note that in the previous analysis, the multivariate
function f from relation [44) is given in monomial basis but we need ltesao Bézier structure
as discussed in the former sections. That holds also foregesd reduced polynomidl In
order to obtain Bézier representation, one can represenidcobi polynomials in terms of
Bézier as discussed inl[9]:

@ =y s UG
Pt =) (1) TBZ- (t). (49)
1=0 t

Then, one needs only to transform that in the appropriatglsixrof definition as we described
in (33). Afterwards, the functiorf can be represented in Bézier of degfee— 1) by using
the pyramid algorithm of Sectidn.2. The Bézier contrdhﬁmoffcan be deduced from the
blossom and the pyramid algorithm by applying form{ld (32)13], we have presented some
numerical results about the estimated1d (48).

Finally, let us now present some practical results of thevalmoirved tetrahedral mesh gen-
eration. We have used the two models which are found i HigH&re the input CAD data are
obtained from IGES formats. The CAD models have respegtiMeand201 surfaces (trimmed
and untrimmed). The resulting hierarchical meshes haveentively 374 and 1451 coarse
curved tetrahedra. Our software is not yet optimal but fav tiee first model requires less than
2 minutes and the second one less tBaninutes for decomposition with points evaluation at
level 3. The computation has been performed on a machine with ppocésel Core2.16GHz
running Windows Vista.
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