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1 Introduction

Continuum solvation models are widely used to model quantum effects of molecules in liquid solutions.
One model is widely known as the polarizable continuum model (PCM), introduced in [26]. In this
model, the molecule under study (the solute) is located inside a cavity Ω, surrounded by a homogeneous
dielectric (the solvent). The solute-solvent interactions between the charge distributions which compose
the solute and the dielectric are reduced to those of electrostatic origin.

The two central components of the model are the cavity construction and the solution of the
electrostatic problem. The cavity is generally constructed as a set of interlocking spheres which leads
to the van der Waals surface (VWS) or the solvent accessible surface (SAS). A more elaborate but
also more accurate description employs the Connolly surface in order to faithfully represent the solvent
excluded surface (SES) by “rolling” a sphere representing a solvent molecule over the cavity [7, 8].

A convenient approach to resolve the electrostatic problem is provided by the reformulation as a
boundary integral equation [5], also known as the integral equation formalism (IEF-PCM). In this way
it is actually possible to apply the method to all cases where the Green’s function for the considered
environment is known. This has been done for liquid crystals (anisotropic permittivity) [6], ionic
solution (screened electrostatic potential) [5], sharp planar interfaces (image-charge approach) and
diffuse planar interfaces (numerical integration) [14].

Boundary integral equations are in general solved by the boundary element method (BEM). BEM is
a well established tool in PCM [5, 14, 37]. However, traditional discretizations lead to densely populated
and ill-conditioned system matrices. Both features pose serious obstructions to the efficient numerical
treatment of such problems. Modern methods for the rapid BEM solution reduce the complexity to
almost or even optimal rates. Prominent examples for such methods are the fast multipole method
[16], the panel clustering [18], H-matrices [17], or the wavelet Galerkin scheme [3, 10, 22]. A Galerkin
discretization with wavelet bases results in quasi-sparse matrices, i.e., the most matrix entries are
negligible and can be treated as zero. Therefore, we arrive at an algorithm which solves a given
boundary integral equation within discretization error accuracy, offered by the underlying Galerkin
method, at a computational expense that is proven to stay proportional to the number of unknowns
[10]. The method has been applied successfully to PCM in [39].

Nevertheless, the definition of the wavelets requires a parametric description of the surface by four-
sided patches [19, 21, 22]. This surface representation is in contrast to the usual approximation of
the surface by panels, e.g. [9, 24, 28, 29, 34]. In [20, 30, 32] an algorithm has been developed which
decomposes a VWS or SAS surface into four-sided patches generated by rational Bézier surfaces.
Whereas, in the present paper we will construct a parametric description of the molecule’s SES surface
by a set of globally continuous four-sided NURBS patches. Besides the more accurate modelling, SES
surfaces and thus the solutions of the boundary integral equation are smooth. Therefore, as supported
by the numerical experiments, a piecewise bilinear boundary element method is superior to the standard
approximation by piecewise constants.

This paper is organized as follows. In the next section, we give an introduction to IEF-PCM and
its wavelet based fast solution. We provide basic material from geometric modeling and formulate
the requirements to be fulfilled by the parametrization. In Sect. 3, we represent the SES surface by
trimmed surfaces. The decomposition of these trimmed surfaces into four-sided patches will be the
purpose of Sect. 4. Afterwards, in Sect. 5, we derive the representation of the patches in terms of
globally continuous NURBS surfaces. Finally, we present results of our implementation where the
molecular data come from real PDB files.

2 Preliminaries and problem formulation

2.1 Governing equation

In quantum chemical simulations we are seeking the electronic wave function Ψ : R3N → R (N denotes
the number of nuclei) such that the Schrödinger equation EΨ = HΨ holds. In case of molecules in
liquid solutions, the Hamilton operator splits into

H = Hvacuum +Hcorrection. (1)
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The correction term Hcorrection incorporates the solute-solvent interactions which are reduced to those
of electrostatic origin.

We shall consider a cavity Ω with boundary Γ := ∂Ω which represents the solute-solvent interface.
The solvent in the exterior of Ω is represented by a constant dielectric medium. The solute and thus the
support of the wave function Ψ is assumed to be contained inside the cavity. Therefore, the correction
term in (1) refers to the interaction energy between charges ρ, ρ′, located inside the cavity Ω. It is
given by

EI(ρ, ρ
′) =

∫

R3

u(x)ρ′(x)dx (2)

with the electrostatic potential u satisfying the following transmission problem:

−∆ui = ρ in Ω,

− div(ε∇ue) + εκ2ue = 0 in Ωc := R
3 \Ω,

ui = ue, 〈∇ui,n〉 = 〈ε∇ue,n〉 on Γ := ∂Ω, (3)

|ue(x)| = O
(
‖x‖−1

)
as ‖x‖ → ∞.

Herein, κ accounts for the ion screening and ε is the macroscopic dielectric constant of the solvent
outside Ω. In praxis, if ε is a scalar, the case of κ = 0 refers to standard PCM [26] while κ 6= 0 models
ionic solutions. An anisotropic dielectric matrix ε ∈ R3×3 and κ = 0 applies for liquid crystals [5].

2.2 Apparent surface charge

In order to compute the interaction energy (2), we shall introduce some boundary integral operators.
Associated with the interior of the cavity Ω, define the single and double layer operator of the Poisson
equation

(Viu)(x) =

∫

Γ

u(y)

4π‖x− y‖doy, (Kiu)(x) =

∫

Γ

〈n(y),x − y〉
4π‖x− y‖3 u(y)doy, x ∈ Γ

and the related Newton potential

Nρ(x) =

∫

Ω

ρ(y)

4π‖x− y‖dy, x ∈ R
3. (4)

For the exterior of the cavity, the corresponding operators associated with the linearized Poisson-
Boltzmann equation are

(Veu)(x) =

∫

Γ

u(y)e−κ‖x−y‖

4πε‖x− y‖ doy

(Keu)(x) =

∫

Γ

〈n(y),x − y〉(1 + κ‖x− y‖)e−κ‖x−y‖

4π‖x− y‖3 u(y)doy





x ∈ Γ.

In case of an anisotropic solvent there holds

(Veu)(x) =

∫

Γ

u(y)

4π
√
det(ε)‖x− y‖ε−1

doy

(Keu)(x) =

∫

Γ

〈n(y),x − y〉
4π‖x− y‖3ε−1

u(y)doy





x ∈ Γ,

where ‖x−y‖ε−1 :=
√
〈x− y, ε−1(x− y)〉. Notice that Vi/e : H

−1/2(Γ ) → H1/2(Γ ) is symmetric and

positive definite, whereas Ki/e : H
1/2(Γ ) → H1/2(Γ ) is compact, see [35].

Following [5], the sought interaction energy (2) can be expressed in terms of an apparent surface
charge σ ∈ H−1/2(Γ ).
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Theorem 1 The interaction energy between two charges ρ, ρ′ ∈ H−1(Ω) is given by

EI(ρ, ρ
′) =

∫

R3

∫

R3

ρ(x)ρ′(y)

4π‖x− y‖dxdy︸ ︷︷ ︸
exchange energy in the vacuum

+

∫

Γ

∫

R3

ρ′(x)σ(y)

4π‖x− y‖dxdoy︸ ︷︷ ︸
correction term: (σ,Nρ′ )L2(Γ )

,

where the apparent surface charge σ = V−1
i (ui − Nρ) ∈ H−1/2(Γ ) satisfies the boundary integral

equation
((1

2
−Ke

)
Vi + Ve

(1
2
+K⋆

i

))
σ =

(
VeV−1

i

(1
2
−Ki

)
−
(1
2
−Ke

))
Nρ on Γ . (5)

Proof. Using the Dirichlet-to-Neumann maps [35]

Vi
∂ui
∂n

=
(1
2
+Ki

)
ui −Nρ, Ve〈ε∇ue,n〉 =

(
Ke −

1

2

)
ue on Γ

together with the jump conditions (3) and resolving for σ := V−1
i (ui − Nρ) yields immediately (5).

The quantity σ is the sought apparent surface charge since

EI(ρ, ρ
′) =

∫

R3

Nρ(x)ρ
′(x)dx +

∫

R3

ρ′(x)(Viσ)(x)dx

=

∫

R3

Nρ(x)ρ
′(x)dx +

∫

R3

ρ′(x)
{
u(x)−Nρ(x)

}
dx =

∫

R3

ρ′(x)u(x)dx.

�

Remark 1 In case of original PCM, i.e., κ = 0 and ε being a scalar, it holds εVi = Ve and Ki = Ke.
Consequently, (5) can be simplified to a first kind integral equation

Viσ =
1

ε− 1
A−1Nρ −Nρ, A :=

ε− 1

2(ε+ 1)
−Ki, on Γ. (6)

Since Nρ is harmonic in Ωc, there holds

Vi
∂Nρ

∂n
=

(
Ki −

1

2

)
Nρ on Γ.

Thus, the above integral equation can be rewritten to the second kind integral equation

A⋆σ =
∂Nρ

∂n
on Γ . (7)

2.3 Wavelet BEM

The boundary integral equation (5) is in general numerically solved by the boundary element method
(BEM). Nevertheless, traditional discretizations will lead to very large linear systems with densely
populated and ill-conditioned matrices. This makes the computation very costly in both respects, the
computing time and memory requirements. We shall employ a discretization by wavelets which leads
to quasi-sparse matrices [3, 10].

The wavelet construction starts with a hierarchy of nested trial spaces

{0} := V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , Vj = span{ϕj,k : k ∈ △j}.

Instead of using only a single-scale j, a wavelet method is a multiscale method and keeps track of the
increment of information between two adjacent scales j and j + 1. Since Vj−1 ⊂ Vj one decomposes
Vj = Vj−1 ⊕Wj with some complementary space

Wj = span{ψj,k : k ∈ ∇j := ∆j \∆j−1},
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(a) (b) (c)

Fig. 1 (a) VWS surface, (b) SAS surface, (c) SES surface.

not necessarily orthogonal to Vj−1. Recursively one obtains the multiscale decomposition Vj =
⊕j

ℓ=0Wℓ

and thus the wavelet basis Ψj = {ψℓ,k}k∈∇ℓ, ℓ≤j . Here, we respectively use piecewise constant and bi-
linear wavelets with three and four vanishing moments as constructed in [21].

The boundary integral equation (5) is then discretized as follows. We make the ansatz

σ ≈ σΨj =
∑

ℓ<j

∑

k∈∇ℓ

σℓ,kψℓ,k

and introduce the system matrices

G = 〈Ψj , Ψj〉, Va = 〈VaΨj , Ψj〉, Ka = 〈KaΨj , Ψj〉, a = {i, e}.

Then, the boundary integral equation (5) corresponds to the linear system of equations

((1
2
I−KeG

−1
)
Vi +Ve

(1
2
I+G−1K⋆

i

))
σ =

(
VeV

−1
i

(1
2
G−Ki

)
−
(1
2
G−Ke

))
f

with f = 〈Nρ, Ψj〉 being the data vector.
The Galerkin matrices are quasi-sparse in wavelet coordinates. In fact, the number of significant

coefficients scales only linearly with the number of ansatz functions. Applying the matrix compression
strategy developed in [10] combined with an exponentially convergent hp–quadrature method [22], the
wavelet Galerkin scheme produces the approximate solution of (5) within linear complexity. Especially,
due to the norm equivalences of wavelet bases, scaling the wavelets with respect to the H−1/2(Γ )-norm
yields a well-conditioned system [11].

2.4 Molecular surfaces

Let {mk} be the nuclei positions of the molecule’s atoms and {rk} the related van der Waals radii [40].
Then, the van der Waals surface (VWS) corresponds to the boundary of a set of interlocking spheres

ΓV WS = ∂

( N⋃

k=1

B(mk, rk)

)
, B(mk, rk) :=

{
x ∈ R

3 : ‖mk − x‖ ≤ rk
}
, (8)

see Fig. 1(a). Whereas, the solvent accessible surface (SAS) coincides with the VWS surface except for

the scaling of the radii ΓSAS = ∂
(⋃N

k=1 B(mk, rk + ρ)
)
, where ρ is the probe radius associated with

the solvent, cf. Fig. 1(b).
We shall focus here on solvent excluding surfaces (SES), also known as Connolly surfaces [8]. They

are derived from the VWS model by rolling a spherical probe over the surface as illustrated in Fig. 1(c).
Throughout the paper, we shall make some assumptions concerning the nuclei positions mk, the radii
rk, and the probe radius ρ. For arbitrary atoms B(mk, rk) and B(mℓ, rℓ), we assume that one of the
following two conditions holds.
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mk

rk

P

mℓ

rℓ

ρ

ρ

a

(a)

mk

rk

mℓ

rℓ

P
(b)

Fig. 2 (a) The interaction is admissible if a > 2ρ, where the plane P is the radical axisof the Laguerre
decomposition, (b) Inadmissible toroidal self-intersection if a ≤ 2ρ.

(a) (b)

Fig. 3 SES surface of quinine with probe radius ρ = 1.2, represented by (a) a composition of trimmed toroidal
and spherical surfaces and (b) a globally continuous NURBS parametrization.

(C1) Either the by the probe radius ρ enlarged spheres B(mk, rk + ρ) and B(mℓ, rℓ + ρ) are completely
disjoint, i.e. ‖mk −mℓ‖ > rk + rℓ + 2ρ,

(C2) or we have Dk,ℓ := ‖mk −mℓ‖ ≤ rk + rℓ + 2ρ and additionally

a :=
1

Dk,ℓ

√
4D2

k,ℓ(rk + ρ)2 −
{
D2

k,ℓ − (rℓ + ρ)2 + (rk + ρ)2
}2

> 2ρ

(see Fig. 2(a) for an illustration of the latter relation). These assumptions exclude the situation
from Fig. 2(b) where the blending torus, being tangent to B(mk, rk) and B(mℓ, rℓ), admits a self-
intersection. If the assumptions (C1) or (C2) are violated but one still wants to treat the molecule, one
has to insert some dummy atoms between those atoms for which there is a toroidal self-intersection
[29].

Without loss of generality we assume throughout this paper that we have to deal with a single
(closed) surface. The SES surface of quinine is depicted in Fig. 3.

Remark 2 In chemical applications, the radius of the probe atom is usually chosen between 1.0 Å and
3.0 Å but for our method it can be any positive number. When the probe radius becomes very large,
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some of the initial atoms might be completely buried inside the whole surface as observed in Fig. 5(d).
When the probe radius approaches zero, then the SES surface tends to the Van der Waals surface, seen
in Fig. 5(a).

2.5 NURBS curves and surfaces

Since we intend to use NURBS as representation of the SES surface, let us introduce B-splines. Consider
a constant integer k ≥ 2 which specifies the smoothness of the spline and a knot sequence ζ0 ≤ ζ1 ≤
· · · ≤ ζn+k such that ζi+k 6= ζi. The B-spline basis functions [23] with respect to the knot sequence
{ζi}i satisfy

N1
i (t) :=

{
1, if t ∈ [ζi, ζi+1),

0, otherwise,
(9)

and for k = 2, 3, . . . the recurrence formula

Nk
i (t) :=

(
t− ζi

ζi+k−1 − ζi

)
Nk−1

i (t) +

(
ζi+k − t

ζi+k − ζi+1

)
Nk−1

i+1 (t). (10)

The B-spline is called clamped if the k initial and the final entries of the knot sequence coincide

ζ0 = ζ1 = · · · = ζk−1, ζn+1 = ζn+2 = · · · = ζn+k. (11)

A Non-Uniform Rational B-Spline (NURBS) curve, having the control points di ∈ R3 and the
weights wi ∈ R>0 with respect to the above knot sequence, is a parametric curve of the form

X(t) =

∑n
i=0 widiN

k
i (t)∑n

i=0 wiNk
i (t)

, t ∈ [ζ0, ζn+k]. (12)

Condition (11) ensures that the first and last control point d0 and dn are interpolated. Likewise,
for a NURBS surface we need two clamped knot sequences {ζ1i }, {ζ2j } and associated control points

di,j ∈ R3 and weights wi,j ∈ R>0. A NURBS surface is then defined as

X(u, v) =

∑n
i=0

∑m
j=0 wi,jdi,jN

k1

i (u)Nk2

j (v)
∑n

i=0

∑m
j=0 wi,jN

k1

i (u)Nk2

j (v)
, (u, v) ∈ [ζ10 , ζ

1
n+k1

]× [ζ20 , ζ
2
m+k2

]. (13)

2.6 Problem setting

The objective of the current cavity generation is to find a set of globally continuous NURBS surfaces
which represents the SES surface. For each NURBS patch as in (13), we will assume that [ζ10 , ζ

1
n+k]×

[ζ20 , ζ
2
n+k] is the unit square � := [0, 1]2. That is, the SES surface Γ ⊂ R3 will be decomposed into a

finite number of patches

Γ =
M⋃

i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M, (14)

with γi : � → Γi being NURBS surfaces. The intersection of two different patches Γi and Γi′ is
supposed to be either ∅, or a common edge or vertex. Global continuity means that there exists a
bijective, affine mapping Ξ : � → � such that for all x = γi(s) on a common edge of Γi and Γi′ it
holds that γi(s) = (γi′ ◦ Ξ)(s). In other words, the NURBS functions γi and γi′ coincide pointwisely
at common edges up to orientation.

A boundary element mesh of level j, suitable for the wavelet Galerkin scheme, is then induced by
dyadic subdivisions of depth j of the unit square into 4j cubes Cj,k ⊂ �, where k = (k1, k2) with
0 ≤ k1, k2 < 2j. This generates 4jM boundary elements Γi,j,k := γi(Cj,k) ⊂ Γi, i = 1, . . . ,M . The
global continuity of the parametrization ensures that the collection of elements {Γi,j,k} on the level j
forms a regular mesh on Γ .
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An instance of such a geometric processing for quinine is shown in Fig. 3(b) where the mesh refers
to level 3. Observe that some patches live on the surface of several atoms. That is, one can merge some
parts from different trimmed surfaces in order to form one patch. As a consequence, the size and the
shape of the patches are in general very nice which is a geometric advantage of the SES surfaces over
the VWS/SAS surfaces. There, each patch belongs necessarily to a single atom since the interfaces
between the atoms are not smooth [20, 31].

3 Trimmed surfaces from nuclear coordinates

3.1 Laguerre decomposition

The SES surface is partly from the VWS surface ΓVWS and partly from the blending surfaces traced
by the probe atom. There exist only two types of blending surfaces, namely toroidal and spherical
ones. Toroidal ones are generated if the probe atom touches ΓV WS in two points, which is exactly the
case if the probe atom rolls over the interface of two atoms. If the probe atom touches ΓV WS in more
than to two points, then its position is fixed and describes thus a spherical blending surface. Hence,
in this section, we shall construct a boundary representation (B-Rep) of the SES surface by means of
trimmed spherical and toroidal surfaces. Our starting point is a cloud of points, representing the nuclei
positions, and associated radii.

First, let us introduce some nomenclature. For two spheres B1 := ∂B(m1, r1) and B2 := ∂B(m2, r2),
we define the power distance as

dpow(B1,B2) := ‖m1 −m2‖2 − r21 − r22 . (15)

This distance coincides with the usual Euclidean distance if points are supposed to be spheres of radius
zero. Two spheres are called orthogonal if we have dpow(B1,B2) = 0.

Let ∆ ⊂ Rd be a simplex which is a segment (resp. triangle, tetrahedron) if it is of dimension d = 1
(resp. d = 2, d = 3). Suppose that the vertices of∆ are the spheres Bi = ∂B(mi, ri), i = 0, 1, . . . , d. The
orthosphere of ∆ is defined as the smallest sphere b such that the orthogonality relation dpow(Bi, b) = 0
holds for all i = 0, 1, . . . , d. The center and the radius of an orthosphere are termed orthocenter and
orthoradius.

Consider a set of spheres Bi, i = 1, . . . , N , distributed in the space R3. The i-th Laguerre cell Zi is
composed of all points which are closer to the sphere Bi than to any other sphere Bj (j 6= i) relative
to the power distance, that is

Zi :=
{
x ∈ R

3 : dpow
(
B(x, 0),Bi

)
≤ dpow

(
B(x, 0),Bj

)
∀j 6= i

}
. (16)

The union of all Laguerre cells defines a non-overlapping domain decomposition of R3, i.e.,

R
3 =

N⋃

i=1

Zi, where Z◦
i ∩ Z◦

j = ∅ if i 6= j, (17)

called the Laguerre decomposition. Notice that the Laguerre decomposition coincides with the common
Voronoi decomposition if all radii are equal.

For two spheres Bi and Bj the radical axis is the set of points which are equidistant to Bi and Bj

relative to the power distance, cf. Fig. 2. According to (15), it is given by

R(Bi,Bj) =
{
x ∈ R

3 : 2〈x,mi −mj〉 = ‖mi‖2 − ‖mj‖2 + r2j − r2i
}
. (18)

Thus, a Laguerre cell is a possibly unbounded, convex polyhedron with faces from the radical axes.
Its direct computation via (16) or (18) is too expensive. Instead, for the centers mi = (xi, yi, zi), the
uplifting function m̃i := (xi, yi, zi, x

2
i + y2i + z2i + r2i ) ∈ R4 is employed. One generates the convex hull

H of the set of the four dimensional points {m̃i}. The orthogonal projection of the faces of H back
onto the space R3 generates a weighted Delaunay tetrahedral decomposition having the apices mi. The
Laguerre decomposition is obtained as the dual of the weighted Delaunay mesh, i.e., the orthocenters
of these tetrahedra are the apices of the Laguerre cells. We refer the reader to [12, 15].
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(a) (b) (c)

Fig. 4 (a) Circular arcs traced on atoms to form closed curves, (b) Spherical patch with composite circular
arc as boundary, (c) Spherical trimmed surface.

3.2 Surface tessellation

Having the Laguerre decomposition at hand, we are able to generate those parts of the SES surface
which coincide with ΓV WS , given by (8). For an arbitrary atom Bk = ∂B(mk, rk), we describe the way
of obtaining its spherical trimmed surfaces by considering its Laguerre cell Zk. For each neighboring
cell Zj , one computes two offset planes Pk and Pj by shifting the radical axis R(Bk,Bj) (cf. (18)) by
dk := Dk,jρ/(rk + ρ) and dj := Dk,jρ/(rj + ρ) towards the centers mk and mj, respectively. Two
circles Ck and Cj are traced on the spheres Bk and Bj by these planes.

On the sphere Bk, we collect all such circles C1
k, . . . , CM

k . The mutual intersections of the circles {Cq
k}

generate cut points which decompose the circles into circular arcs. We discard the circular arcs on Bk

which are either contained inside another atom or beyond a plane Pi. By organizing the remaining
circular arcs as illustrated in Fig. 4(a), we obtain several closed curves K1, . . . ,KR on the sphere Bk. We
need then to trim off the non-relevant spherical parts which are bounded by these curves. Afterwards,
we obtain on the sphere Bk one or several spherical trimmed surfaces. Each of them might be simply
or multiply connected.

Now, let us summarize the process of obtaining the blending surfaces which are of two types as seen
in Fig. 5. The first type appears when the probe atom exactly touches two atoms. Each face R(Bk,Bj)
of the Laguerre decomposition gives rise to one torus Tk,j which is never be a horn torus or a spindle
one because of the assumptions (C1) and (C2). It is a ring torus of the radius ρ. The torus Tk,j is
tangent upon Bk and Bj where the touch-curves are the circles Ck and Cj as defined above. Slicing the
torus Tk,j along the curves Ck and Cj gives rise to two toroidal components. To obtain the toroidal
surface T, we trim off the toroidal component which is away from the main axis of Tk,j .

The second type of blending surfaces are spherical surfaces which appear if the probe atom touches
at least three atoms. The radius of the blending sphere is ρ and the center is uniquely determined by
at least three adjacent spheres Bi, Bj and Bk. The boundary of each spherical blend is composed of
circular arcs which are intersections with adjacent toroidal surfaces.

The main focus in the implementation of the above algorithm should be spend on its robustness.
Depending on the position and the distribution of the atoms, it is possible that some circular arcs are
quite tiny, as seen in Fig. 4(a). On the one hand, this leads to very long and tight toroidal blending
surfaces. On the other hand, due to round-off errors, there might be gaps between the circular arcs
which need to be repaired.

3.3 Homogeneous coordinates

Homogeneous coordinates are a very useful tool because rational quantities become polynomial ones
which make problems linear instead of nonlinear. An element of the projective space E3 will be de-
noted as a column vector with four coordinates or as row vector whose elements are separated by
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(a) (b)

(c) (d)

Fig. 5 B-rep of streptomycin for different probe radii: (a) 0.025 Å, (b) 0.65 Å, (c) 1.5 Å, (d) 3.0 Å.

colons. A point with homogeneous coordinates [ω : x : y : z] corresponds to the Cartesian coordinates
(x/ω, y/ω, z/ω). Notice that the homogeneous coordinates [ω : x : y : z] and [λω : λx : λy : λz]
represent for any λ 6= 0 the same point in Cartesian coordinates.

In homogeneous coordinates, the NURBS curve (12) becomes a B-spline curve with coefficients
[ωi : ωidi,1 : ωidi,2 : ωidi,3], i.e.,

X(t) =
n∑

i=0

[ωi : ωidi,1 : ωidi,2 : ωidi,3]N
k
i (t).

Vice versa, the homogeneous B-spline curve X(t) =
∑n

i=0[αi : βi : γi : δi]N
k
i (t) corresponds uniquely

(except for scaling of enumerator and denominator) to a NURBS curve (12) with ωi := αi and
di := (βi/αi, γi/αi, δi/αi). Likewise, a NURBS surface X(·, ·) (13) which has the control points
di,j = (xi,j , yi,j , zi,j) and the weights ωi,j (for i = 0, 1, . . . , n and j = 0, 1, . . . ,m) can be represented
in homogeneous coordinates as

X(u, v) =
n∑

i=0

m∑

j=0

[ωi,j : ωi,jxi,j : ωi,jyi,j : ωi,jzi,j ]N
k1

i (u)Nk2

j (v).
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3.4 Stereographic projection

As seen in Subsect. 3.2, two instances can generate trimmed spherical patches. Namely, there are
patches which have the atoms as base surface and patches which have the probe atom as base surface.
In both cases, the boundaries of the spherical patches are circular arcs. To obtain a parametrization of
these patches, we will employ the stereographic projection σ [15]. To this end, we introduce the plane

P :=
{
[ω : x : y : 0] ∈ E

3 : ω 6= 0
}
=

{
(x, y, z) ∈ R

3 : z = 0
}

and the unit sphere

S
2 :=

{
[ω : x : y : z] ∈ E

3 : ω 6= 0, x2 + y2 + z2 = ω2
}
=

{
x ∈ R

3 : ‖x‖ = 1
}
.

Then, the stereographic projection σ : S2 → P maps the point (x, y, z) = [ω : ωx : ωy : ωz] ∈ S2 to

σ(x, y, z) =

(
x

1− z
,

y

1− z
, 0

)
=

[
ω(1− z) : ωx : ωy : 0

]
∈ P,

see [27]. The inverse τ := σ−1 : P → S2 is given by

τ(x, y, z) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

=
[
ω2(x2 + y2 + 1) : 2ω2x : 2ω2y : ω2(x2 + y2 − 1)

]
∈ S

2.

Suppose that the B-Spline curve X ⊂ S2 is given in homogeneous coordinates by

X(t) =

n∑

i=0

[ωi : ωixi : ωiyi : ωizi]N
k
i (t)

with zi 6= 1 for all i. Then, the stereographic projection maps X(t) onto

Y(t) = σ
(
X(t)

)
=




∑n
i=0(ωi − ωizi)N

k
i (t)∑n

i=0 ωixiN
k
i (t)∑n

i=0 ωiyiN
k
i (t)

0


 =




∑n
i=0 ω̃iN

k
i (t)∑n

i=0 ω̃ix̃iN
k
i (t)∑n

i=0 ω̃iỹiN
k
i (t)

0


 ∈ P

where ω̃i := ωi(1− zi) and b̃i := (x̃i, ỹi, 0) :=
(
xi/(1− zi), yi/(1− zi), 0

)
. In other words, the preimage

with respect to τ of the curve of X ⊂ S2 is the NURBS curve

Y(t) =

∑n
i=0 ω̃ib̃iN

k
i (t)∑n

i=0 ω̃iNk
i (t)

∈ P.

Consequently, circular arcs and likewise spherical patches can be represented exactly by NURBS curves
and patches.

3.5 Parametrizing the trimmed surfaces

As described in the previous subsections, we need to represent only two types of trimmed surfaces
S ⊂ ΓSES , namely spherical and toroidal ones. They are always bounded by incident circular arcs Cj
with j ∈ J , i.e.,

∂S =
⋃

j∈J

Cj.

In case of S being a spherical surface, say S ⊂ B with B being an atom of the molecule or the probe
atom, we shall exploit the stereographic projection σ to represent it as a parametric trimmed surface
defined on some planar domain. To this end, let us denote by σ the analogue of the stereographic
projection with respect to the underlying sphere B. According to Subsect. 3.4, by setting τ := σ−1,
we can compute the curves Ej = τ(Cj) ⊂ P for each circular arc Cj ⊂ B with j ∈ J . Denoting by D
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the planar trimmed domain bounded by ∂D =
⋃

j∈J Ej we thus have constructed the trimmed surface

[4, 23]
τ : D → S with S = τ

(
D
)
⊂ B.

Notice that the preimage by τ of a 3D circular arc is a 2D circular arc and thus representable exactly
by a NURBS curve. In Fig. 4(b) the parameter domain D is seen which yields via τ the trimmed
surface Fig. 4(c).

Similarly to above, we can define trimmed surfaces to represent the toroidal blending surfaces.
Their parametrization consists of a surface of revolution where the directrix is a circular arc. All in all,
we get the final B-rep in terms of trimmed surfaces:

ΓSES =

N⋃

i=1

Si with κi : Di → Si. (19)

4 Decomposition into four-sided domains

4.1 Initial triangulation

In this section, we describe the decomposition of the B-rep of the SES surface into large four-sided
subsurfaces. It is very difficult (if possible at all) to directly decompose the SES surface from its raw
representation (19). Instead, we generate a discretization M of the surface ΓSES first. A convenient
way of generating such a discretization is based on a triangulation which is constructed in accordance
with [33].

Consider a trimmed surface

κ : D → S with S = κ(D) ⊂ ΓSES .

An appropriate 2D triangulation of the parameter domain D is lifted to the parametric surface S by
computing the image of all nodes under κ. For sake of completeness we briefly introduce the approach
here. To this end, we will call an edge of a mesh in the parameter domain a 2D edge and an edge in
the lifted mesh a 3D edge.

We construct an initial triangulation of the parameter domain D by approximating it as a polygon.
This polygon may contain holes and is assumed to resolve the underlying topology. The initial polygon
P is split into a few simply connected polygons P =

⋃n
i=1 P(i). Afterwards, we do the following for

every simply connected polygon P(i). One initializes its set of triangles as empty set T (i)
h := ∅. Then,

one finds a triangle T which can be chopped off from P(i). We can repeat this process by updating

P (i) := P (i) \ T and T (i)
h := T (i)

h ∪ T . Finally, the triangulation of P is the union of all triangulations:

Th :=
⋃

i T
(i)
h . Finally, the edges between adjacent boundary nodes are replaced by the boundary curve.

Next we define an edge size function ρ : S → R≥0 on the parametric surface S via the Laplace-
Beltrami equation

∆Γ ρ = 0 in S, ρ = ρbound on ∂S

where ρbound is prescribed by the above coarse triangulation. By composing ρ with the parameterization
κ of S, we obtain the so-called parameter edge size function ρ̃ := ρ ◦ κ : D → R≥0.

For all internal 2D edges we then alternate the following two operations as long as the triangulation
does not change any more.

(1) If the two triangles [a,b, c] and [a, c,d] which share the edge [a, c] form a convex quadrilateral,
then the edge is flipped into [b,d] if the following generalized Delaunay angle criterion is met

‖(a− b)× (c− b)‖〈a− d,T(c − d)〉 < ‖(a− d)× (c− d)‖〈a− b,T(c − b)〉.
Here, T denotes the mean of the first fundamental forms Ia, Ib, Ip and Iq at the nodes.

(2) An edge [a,b] is split if the average distance

dRiem(a,b) :=
√

〈b− a,T(b − a)〉 where T :=
1

2
(Ia + Ib).

exceeds the value of the parameter edge size function ρ̃ at the midpoint of [a,b].
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4.2 Quadrangulation

The process of generating the patches starts from a fine quadrangulation Qfine which is obtained by
subdividing each triangular element of M into three quadrilaterals. More precisely, a new node is
inserted at the center of gravity of each triangle and three new nodes at the midpoints of its three
edges.

Pattern Simplification

Table 1 Pattern and related simplification.

Since the resulting quadrangulation is too fine, we need to coarsen the quadrangulation. We ini-
tialize Q0 := Qfine and apply repeatedly coarsening steps Qk 7→ Qk+1. Each coarsening consists in
amalgamating a few neighboring quadrilaterals of Qk to form a coarser in Qk+1. Each quadrilateral
amalgamation is most easily described by using 2D patterns as seen in Tab. 1. Related simplifications,
belonging to Qk, are depicted in the right column of this table. Notice that the simplifications do not
change the pattern’s shape.

It is beyond the scope of this paper to describe all possible simplification patterns. We implemented
more than 50 different pattern which to our experience is enough to get a robust coarsening algorithm.
However, when applying the patterns to quadrangulations on manifolds, geometrical conflicts like fold-
ings or irregular mappings might occur. To check the shape property of a quadrilaterals, we investigate
the Coons map resulting from the four straight boundary curves.

Once the coarse quadrangulation Qcoarse is available, we replace every edge of Qcoarse by a curve
E ⊂ ΓSES with the same endpoints. Geodesics serve as a good method to determine such curves.

4.3 Cleaning up

In many decomposition techniques, clean-up is the process of generating a tessellation by improving an
available one according to a given quality criterion. We will keep the numbers of nodes and edges fixed
but we move the position of the nodes and edges in order to enhance the quality of the quadrangulation.

Before describing the clean-up operations, let us consider a technique of assessing the quality of a
convex quadrilateral. It requires the introduction of the following distortion coefficient of any triangle
[a,b, c]:

β := 2
√
3

‖(c− a)× (a− b)‖
‖c− a‖2 + ‖a− b‖2 + ‖b− c‖2 ∈ [0, 1].

The triangular distortion satisfies α = 1 if the triangle [a,b, c] is equilateral.
For a given convex quadrilateral Q = [a,b, c,d] we compute the triangular distortions βi of the

triangles [a,b, c], [a, c,d], [a,b,d] and [b, c,d]. By ordering them such that β1 ≥ β2 ≥ β3 ≥ β4, we
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(a) (b)

Fig. 6 Quadrangulation simplification with NND nodes, NEL quadrilaterals and NED edges: (a)NND=484,
NEL=482, NND=964 (b)NND=251, NEL=249, NND=498.

p

(a) (b)

Fig. 7 Clean-up: (a) Shifting a node p, (b) Flipping an edge.

can measure the quality of the quadrilateral Q by

µ(Q) := (β3β4)/(β1β2) ∈ [0, 1].

It holds µ(Q) = 1 if Q is a rectangle whereas µ(Q) becomes small as the quadrilateral becomes
triangular shaped. Since a node p is shared by several quadrilaterals Qj , j ∈ J , its quality can be
measured by

µ(p) :=
1

card(J )

∑

j∈J

µ(Qi).

Similarly, the quality of common edge E of the quadrilaterals Q1 and Q2 is measured by

µ(E) := 1

2

{
µ(Q1) + µ(Q2)

}
.

Our cleaning-up is done by alternating the following two operations several times: node repositioning
and edge flipping. The first one consists in shifting an internal node to another position in order to
improve the quality of the neighboring quadrilaterals. In the course of node shifting, we have to make
sure that all incident quadrilaterals remain convex. The second operation modifies the endpoints of an
internal edge.

The node repositioning consists in moving a node p in order to minimize µ(p). Let us denote by
e the minimal length of the edges which emanate from the node p. Consider a circle centered at the
node p and having radius ρ := λe where λ ∈ (0, 1) is a user defined parameter (say λ = 0.25). The new
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Fig. 8 Compatibility condition of the control points of the bounding curves.

position of p is then sought inside this circle. The practical realization of such a shifting is to pick ℓ
(say ℓ = 5) positions qi inside the circle. For every qi we test if by replacing p by qi we would still have
incident nicely shaped quadrilaterals. We replace then p by qi which gives new incident quadrilaterals
and which minimizes µ(qi). If none of the qi fulfills the desirable properties, then we keep p in its
current position.

The second operation consists in flipping an edge in order to improve the qualities of the neighboring
quadrilaterals. In the best case, there are two possibilities for flipping an edge by considering the union
of the incident quadrilaterals as illustrated in Fig. 7(b). We flip an internal edge E to a position which
keeps the two incident quadrilaterals nicely shaped and which improves the value of µ(E).

5 Globally continuous spline representation

The objective of this section is the determination of a NURBS parametrization which is globally
continuous. To this end, we are given four boundary NURBS curves

Ku
1 (t) =

∑nu

i=0 a
u
i w

u
a,iN

k
i (t)∑nu

i=0 w
u
a,iN

k
i (t)

, Ku
2 (t) =

∑nu

i=0 b
u
i w

u
b,iN

k
i (t)∑nu

i=0 w
u
b,iN

k
i (t)

,

Kv
1 (t) =

∑nv

i=0 a
v
iw

v
a,iN

k
i (t)∑nv

i=0 w
v
a,iN

k
i (t)

, Kv
2 (t) =

∑nv

i=0 b
v
iw

v
b,iN

k
i (t)∑nv

i=0 w
v
b,iN

k
i (t)

.

We assume that all four curves are defined on the interval [0, 1] and that the knot sequences of the
opposite curves Kp

1 and Kp
2 for p = u, v are the same. Otherwise, we insert additional knots in

a preprocessing step. We further assume compatibility conditions related to the control points and
weights at the corners (see Fig. 8):

aunv
= bu

0 , av0 = au0 , aunu
= bv

0 , bu
nu

= bv
nv
,

ωu
a,nv

= ωu
b,0, ωv

a,0 = ωu
a,0, ωu

a,nu
= ωv

b,0, ωu
b,nu

= ωv
b,nv

.
(20)

Suppose we are given a set of samples (ui, vi) ∈ [0, 1]2 and data points pi ∈ R3 for i = 0, 1, . . . ,M .
To approximate these samples, we seek a NURBS surface

γ(u, v) =

(
x1(u, v)

ω(u, v)
,
x2(u, v)

ω(u, v)
,
x3(u, v)

ω(u, v)

)

where

xq(u, v) =

nu∑

i=0

nv∑

j=0

wi,jd
q
i,jN

ku

i (u)Nkv

j (v), q = 1, 2, 3, (21)

and

ω(u, v) =

nu∑

i=0

nv∑

j=0

wi,jN
ku

i (u)Nkv

j (v) (22)
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with unknown control points di,j := (d1i,j , d
2
i,j , d

3
i,j) ∈ R3 and weights wi,j ∈ R>0. For sake of simplicity

in representation we introduce the index set Z := {ν = (i, j) : 0 ≤ i, j ≤ n} and define Nν(u, v) :=

Nku

i (u)Nkv

j (v). With the help of this new notation, (21) and (22) are equivalent to

xq(u, v) =
∑

ν∈J

wνd
q
ν
Nν(u, v), ω(u, v) =

∑

ν∈J

wsNν(u, v), q = 1, 2, 3.

The NURBS surface becomes in homogeneous coordinates

γ(u, v) =
[
ω(u, v) : x1(u, v) : x2(u, v) : x3(u, v)

]
.

A data point p = (p1, p2, p3) will be identified with a point in the projective space

p =
[
β : βp1 : βp2 : βp3

]
with β(p) := 1

/√
1 + ‖p‖2 = 1

/√
1 + p21 + p22 + p23.

We follow [13] and introduce the following distance functional of the above surface to the point p

Q
(
γ(u, v),p

)
:=‖γ(u, v)‖2 − 〈γ(u, v),p〉

=ω(u, v)2 +

3∑

q=1

xq(u, v)
2 − β

[
ω(u, v) +

3∑

q=1

pqxq(u, v)

]2
.

The sought NURBS surface is now the solution of the minimization problem

F ({dν}, {wν}) :=
M∑

i=0

Q
(
γ(ui, vi),pi

)
→ inf .

To avoid a NURBS function with negative or zero weights, we add a regularization term

F̃λ({dν}, {wν}) :=
M∑

i=0

{
Q
(
γ(ui, vi),pi

)
+ λR

(
γ(ui, vi)

)}
→ inf (23)

where R
(
γ(ui, vi)

)
:= [w(ui, vi) − 1]2. As the value of the parameter λ becomes large, the weights

are likely to be positive. Thus, this value is a trade-off between the approximation and the regularity.
In practice, the value of λ starts from a small one and is incremented gradually until all weights are
positive.

For the purpose of global continuity, the control points and weights on the boundary are interpolated
while the internal ones need to be determined. Thus, the boundary entities verify

di,0 := aui , ωi,0 := ωu
a,i, di,nv

:= bu
i , ωi,nv

:= wu
b,i, for i = 0, . . . , nu,

d0,j := avj , ω0,j := wv
a,j , dnu,j := bv

j , ωnu,j := wv
b,j , for j = 0, . . . , nv.

Let us denote by I ⊂ J the set of indices whose corresponding control points dν are internal ones.
Likewise, the set of indices of the boundary control points is denoted by B := J \ I. As for the
coordinates, we define Z(I) := {1, 2, 3}×I while the set Z(B) is defined analogously. The coordinates
of the internal control points are dq

ν
for (q,ν) ∈ Z(I). We further will abbreviate αi(ν1,ν2) :=

Nν1
(ui, vi)Nν2

(ui, vi) and βi := β(pi).

For any (q0,ν0) ∈ Z(I), the partial derivative of F̃λ with respect to dq0
ν0

is given by

∂F̃λ

∂dq0ν0

({dν}, {wν}) =
M∑

i=0

∑

ν∈J

αi(ν,ν0)

[
d̃q0s

3∑

q=1

(δq,q0 − βipq,ipq0,i)− βiωνpq0,i

]
.

The partial derivative of F̃λ with respect to ων0
is

∂F̃λ

∂ων0

({dν}, {wν}) =
M∑

i=0

{ ∑

ν∈J

αi(ν,ν0)

[
(1 + λ− βi)ων − βi

3∑

q=1

pq,id
q
ν

]
− λNν0

(ui, vi)

}
.
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Claiming that these derivatives are equal to 0, we obtain in virtue of the boundary conditions that

∑

(q,ν)∈Z(I)

[ M∑

i=0

(
δq,q0 − βipq,ipq0,i

)
αi(ν,ν0)

]
dq
ν
−
∑

s∈I

[ M∑

i=0

βipq0,iαi(ν,ν0)

]
ων = Gq0

ν0
, (24)

∑

(q,ν)∈Z(I)

[ M∑

i=0

−βipq,iαi(ν,ν0)

]
dq
ν
+
∑

s∈I

[ M∑

i=0

(1 + λ− βi)αi(ν,ν0)

]
ων = Hν0 , (25)

where

Gq0
ν0

:=
∑

(q,ν)∈Z(B)

[ M∑

i=0

(
βipq,ipq0,i − δq,q0

)
αi(ν,ν0)

]
dq
ν
+
∑

s∈B

[ M∑

i=0

βipq0,iαi(ν,ν0)

]
ων ,

Hν0
:=

∑

(q,ν)∈Z(B)

[ M∑

i=0

βipq,iαi(ν,ν0)

]
dq
ν

−
∑

s∈B

[ M∑

i=0

(1 + λ− βi)αi(ν,ν0)

]
ων + λ

M∑

i=0

Nν0
(ui, vi).

Consequently, we obtain card
(
Z(I)

)
+card(I) = 4 card(I) linear equations for the 4 card(I) unknowns

{dq
ν
}(ν,q)∈Z(I) and {wν}ν∈I .

Theorem 2 ([13]) The linear system of equations (24), (25) has a unique solution provided that the
sampling points (ui, vi,pi) satisfy the Schoenberg-Whitney condition [36]. This means that for each
[ζui , ζ

u
i+k]× [ζvj , ζ

v
j+k] there must exists at least one sample point (uz, vz,pz) such that ζui < uz < ζui+k

and ζvj < vz < ζvj+k.

Notice that the above process can of course also be used for the determination of a NURBS curve
from a set of points. The determination of all NURBS patches is now done as follows. First, find
all separating curves Ci and compute the four NURBS curves Ku

1 , K
u
2 , K

v
1, and Kv

2 by the above
algorithm. The NURBS curves should fulfill the compatibility conditions in (20). Afterwards, determine
the NURBS surface which interpolates those four curves by solving the minimization problem (23).

For the numerical solution of boundary integral equations all patches should have a positive orien-
tation which implies that on all patches the normal vector points outward the molecule. If adjacent
NURBS patches are oriented in the same direction, then their common edge is traversed from both
sides in opposite directions. As a consequence, starting from one patch, we can flip the orientation
of the patches by redefining the control points and weights according to di,j := dj,i and wi,j := wj,i

until all patches have the same direction. To check whether the final orientation is positive or not, we
compute the volume of the molecule by the Gauss theorem

V (Ω) =

∫

Ω

1dx =
1

3

∫

Γ

〈n,x〉do.

If the computed volume is negative, then the normal points in the wrong direction and the orientation
is negative.

6 Numerical results

6.1 Cavity generation

In this section, we present results of the cavity generation. To get a first impression, in Figs. 9 and
10 we visualized the graphical output for a DNA molecule and a water cluster, respectively. Next, we
report on some numerical tests related with the runtime of the cavity generation. The runtime depends
on several factors, namely on the number and the distribution of the molecule’s atoms as well as on
the coarseness of the patch decomposition.



18 H. Harbrecht and M. Randrianarivony
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Fig. 9 Patch representation of a DNA with 1905 NURBS.
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Fig. 10 Patch representation of a water cluster with 1089 NURBS.

Our first numerical test is concerned with the number of patches relative to the number of atoms of
the molecule. The results of this test are tabulated in Tab. 2. According to our experience, the inter-
esting practical values of the coarseness factor α range between 0.2 and 0.4. The choice α = 1 means
no coarsening, i.e., Qcoarse = Qfine (see Subsect. 4.2), whereas α = 0 is the coarsest quadrangulation
which can be generated by our algorithm. A small value of α amounts to a fewer number of fitting
tasks. On the other hand, a single large NURBS surface area needs many sampling points. This means
that it takes more time to complete the NURBS determination. The runtime depends therefore not
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only on the initial molecular size but also on the surface area of the cavity. For example, lecithin has
more atoms than DNA but the cavity generation of DNA takes almost four times longer.

molecules #atoms
#patches (runtime in seconds)

α = 0.2 α = 0.3 α = 0.4
benzene 12 84 (13.86 s) 97 (14.06 s) 119 (14.60 s)
cyclohexane 18 99 (15.27 s) 108 (16.27 s) 127 (16.13 s)
LDS 49 286 (50.36 s) 346 (53.73 s) 409 (52.76 s)
streptomycin 81 399 (68.69 s) 468 (67.78 s) 564 (74.02 s)
lecithin 128 687 (118.50 s) 821 (120.68 s) 932 (145.11 s)
PDMPG 225 1102 (219.23 s) 1345 (219.12 s) 1556 (226.34 s)
DNA 116 1610 (461.67 s) 1899 (475.33 s) 2232 (487.38 s)

Table 2 Number of patches relative to the number of atoms and the coarseness factor α.

The purpose of the second test is the investigation of the size |Γi| of each patch Γi. We compare the
areas of the patches with respect to two perspectives, a local and a global comparison. For the local
test, let Ni denote the set of neighboring patches which have at least one vertex in common with the
patch Γi. We compute the ratios

M(i) := |Γi|
/(

1

card(Ni)

∑

j∈Ni

|Γj |
)

and tabulate their mean in the third column of Tab. 3. One figures out that the sizes of the patches vary
slowly becauseM(i) approximates the unity. The size and the shape of the patches of SES surfaces are
in general very nice. This fact is a clear advantage of the SES surfaces over the van der Waals surface
[20] where the patches are located on single atoms and may have extremely varying sizes.

molecules #patches area/neighboring area area/ideal area
benzene 12 0.960095 0.706800
cyclohexane 97 0.959639 0.695809
tamoxifen 410 1.012924 0.665099
streptomycin 462 0.959130 0.662762
lecithin 821 0.971143 0.676250
PDMPG 2175 1.015307 0.688102
DNA 3144 0.950066 0.651584

Table 3 Investigation of the patches area.

The ideal area µideal of a patch is the area of the whole molecular surface divided by the number
of all patches. Hence, for the global comparison, we compute for each patch Γi the ratio

R(i) := min
{
|Γi|

/
µideal, µideal

/
|Γi|

}
∈ [0, 1].

The mean of the values of R(i) is found in the last column of Tab. 3. We observe that the sizes of the
patches differ not too much from the ideal size. In fact, we generally have |Γi| = ρµideal (or vice versa
µideal = ρ|Γi|) with a factor ρ ∈ [0.65, 0.75].

Our last test consists in investigating the patch quality. Let a,b, c,d denote the four vertices
of a given element Γi,j,k (see Subsect. 2.6). Let θ(Tℓ) denote the smallest angle in the triangle Tℓ,
ℓ = 1, 2, 3, 4, defined by

T1 := [a,b, c], T2 := [a, c,d], T3 := [a,b,d], T4 := [b, c,d].

In order to quantify the quality of the element Γi,j,k we introduce the measure

Ψ(Γi,j,k) :=
1

2

[
min

{
θ(T1), θ(T2)

}
+min

{
θ(T3), θ(T4)

}]
.
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Ψ -value
molecules #patches

average ratio with Ψideal

benzene 133 0.595737 0.758516
quinine 358 0.554006 0.705383
borane 812 0.531560 0.676803
lecithin 821 0.555027 0.706682
water cluster 1567 0.571700 0.727911
DNA 3348 0.576848 0.734465

Table 4 Quality of the resulting patches.
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Fig. 11 Interaction energies in case of a VWS (left) and SES (right) surface of benzene.

The ideal element is a square and corresponds to Ψideal = π/4 ≈ 0.785398. In general, it is impossible
to attain always the ideal value since not all patches could be a squares. Whereas, a small value of Ψ
indicates a bad quad quality. In Tab. 4, for j = 5, we gather the results of our tests which consists
in computing the average values of Ψ for all elements. We also listed the ratio of these value and the
ideal value Ψideal.

6.2 Wavelet BEM

In contrast to the SAS/VWS surface the molecule’s SES surface is smooth. Therefore, it is worthwhile
to discretize the underlying boundary integral equations (5), (6) and (7) by piecewise bilinear boundary
elements instead of using the standard piecewise constant approximation. Moreover, in case of original
PCM, the convergence of the Galerkin approximation of the second kind integral equation (7) is ensured
since the double layer operator is compact.

To validate these statements we compare the results of piecewise constant and bilinear boundary
elements in case of benzene. Its VWS surface is represented by 160 patches (we refer the reader to [20]
for the construction of the parametrization), whereas the SES surface requires only 91 patches. We
place point charges at the nuclei positions and are interested in the interaction energy

EI(ρ, ρ) = −1

2

∫

Γ

σNρdo.

Water at 25◦ Celsius is considered as solvent which leads to original PCM with κ = 0 and ε = 78.39.
The apparent surface charge is computed by the respectively first and second kind integral equations
(6) and (7). In Fig. 11 we plotted the approximate exchange energies.

We figure out that for both types of surfaces bilinear boundary elements converge much faster to
the energies −335.64 (VWS surface) and −329.15 (SES surface). The energies are of course different
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Fig. 12 Interaction energy in dependence on the Debye length.

a-priori a-posteriori a-posteriori compression
level compression compression (exterior)

(in/exterior) (interior) κ = 0 κ = 0.1 κ = 1 κ = 10 κ = 100
2 13 % 10 % 10 % 10 % 8.6 % 2.3 % 1.5 %
3 5.6 % 3.3 % 3.3 % 3.3 % 2.7 % 1.0 % 0.71 %
4 1.8 % 0.76 % 0.76 % 0.76 % 0.69 % 0.37 % 0.23 %
5 0.53 % 0.19 % 0.19 % 0.19 % 0.18 % 0.12 % 0.068 %
6 0.14 % 0.050 % 0.050 % 0.050 % 0.046 % 0.0344 % 0.021 %

Table 5 Compression rates in dependence on the Debye length.

since the surfaces differ. In case of the VWS surface and the second kind integral equation (7) the
energy starts to diverge on higher levels which issues from the fact that the double layer operator
is not compact. On SES surfaces the boundary element method provides higher accuracy and faster
convergence (seen by the different scaling of the y-axes). The first kind integral equation is superior to
the second kind integral equation.

Next, we like to study the influence of a ionic solvent, i.e., the dependence on the Debye length 1/κ.
Due to κ 6= 0 we have now to solve the boundary integral equation (5), i.e., we need to assemble four
integral operators instead of two like in original PCM. We apply a piecewise constant discretization of
the apparent surface charge. In accordance with Fig. 12 we observe that the convergence is not affected
by the different values of κ. However, the interaction energy decreases as κ increases, where the energy
becomes less sensitive with respect to κ for large values of κ.

We finally present the compression rates of the wavelet matrix compression. The relative number of
nonzero coefficients is tabulated in Tab. 5. The exterior double and single layer operators become more
and more local as κ increases. This is confirmed by the a-posteriori compression rates of the related
system matrices. In our implementation we do so far not exploit this fact, that is, the compression
pattern of all system matrices are computed like in the case of the pure Laplacian. Nevertheless, on level
6 less than 580 coefficients per degree of freedom remain in the mean after the a-priori compression.
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