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HIERARCHICAL A-POSTERIORI ESTIMATOR + NONLINEAR

POISSON-BOLTZMANN

MAHARAVO RANDRIANARIVONY

Abstract. We consider the Poisson-Boltzmann problem for the ionic interaction

between solute and solvent media. We emphasize on the nonlinear form of the equation

without using a linearization. We consider a-posteriori error estimates which can be

computed very efficiently. Although the initial problem is a nonlinear one, the error

estimator is a linear one. To corroborate the analysis, we report on a few numerical

results for illustrations. We compute numerically the values of the constants seen from

the theoretical study. A brief survey of the solving of the nonlinear system resulting

from the FEM discretization is reported.

1. Introduction

We encounter the nonlinear Poisson-Boltzmann Equation in different areas including:

plasma physics, ionic solution, highly charged macroparticles, FET and MOSFET.

We consider here the PBE for the interaction of solute and solvent media which are

respectively denoted by Ωu, Ωv as in in Fig. 1(a). The surface Γ represents the solute-

solvent boundary which is in our case the molecular surface as in Fig. 1(b). The solvent

is represented by a continuous dielectric medium while the solute is located inside the

cavity Γ. In the sequel, the whole solute-solvent domain is denoted by Ω := Ωu ∪Ωv.

In this document, we consider the nonlinear PBE whose general expression with the

Γ

Ω
u

(solute) Ω
v

(solvent)

(immobile charges)

x1

x2

x3

xi +

–

– +

(mobile ions)

+

–

(a) (b) (c)

Figure 1. (a)Solute/solvent regions, (b)Molecular surface, (c)Mesh

around the molecule.
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unknown function u is

(1.1) −∇ · (ε(x)∇u(x)) +
M∑

i=1

niqiκ(x)e
−βqiu(x) =

4πe2C
kBT

Nm∑

i=1

ziδ(x− xi) ∀x ∈ Ω,

such that u(x) = g(x) for all x ∈ ∂Ω. The coordinates xi are the atom centers located

in the interior of the molecular region Ωu. The parameters ni, kB, T , eC , β are phys-

ical quantities. The unknown function is the dimensionless electrostatic potential u is

related to the electrostatic potential Φ by

(1.2) u(x) =
eCΦ(x)

kBT
.

The coefficients ε(x) and κ(x) are in general space-dependent functions but we consider

only the situation where ε(x) := εu for x ∈ Ωu and ε(x) := εv for x ∈ Ωv while

κ(x) := κu for x ∈ Ωu and κ(x) := κv for x ∈ Ωv. Those coefficients are discontinuous

between Ωu and Ωv but the solution u is required to be continuous everywhere. We

follow the method of Chen and Holst [1] by treating the PBE with FEM (Finite Element

Method). Most methods [2, 3] based exclusively on BEM (Boundary Element Methods)

consider only the linearized PBE because it is difficult to use fundamental solutions

for nonlinear PBE. Although the method can be extended to the general case, we

will restrict ourselves to the monovalent case M = 2 where the nonlinear term of

(1.1) becomes
∑M

i=1 niqiκ(x)e
−βqiu(x) = κ(x) sinh[u(x)]. In addition, the right hand

side is replaced by a general function f(x) in order to compare the error between the

exact solution with the computed one. We develop here a-posteriori estimates based

on space enrichment. Such an estimator is also used in [4] but not in the context

of nonlinear Poisson-Boltzmann as presented here. Our former investigations are as

follows. We have applied mesh generation on molecular surfaces such as in Fig.1(c). The

FEM implementation for linearized PBE on parallel machines is detailed in [5]. Mesh

generation on parallel processors is under development where the coarsest mesh is not

loaded in one processor. The a-posteriori estimator presented here is a generalization

of the method in [6]. Treatments of molecular data are published in our previous works

[7, 2, 3].

2. Space enrichment for nonlinear Poisson-Boltzmann

Let us present in this section an a-posteriori error estimator base on space enrichment.

It is beyond the scope of this short paper to present detailed proof. The following

results apply for the general case but we use only the piecewise linear setting in the

2D case because of scarcity of space. The exact solution u belongs to V := Hm(Ω) for

m sufficiently large. Suppose uh is the current FEM solution from the piecewise linear

Key words and phrases. Poisson-Boltzmann, A-posteriori error estimator.
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space Vh on a mesh Mh. We want to estimate the error inside an arbitrary triangle T

of Mh. Let εT and κT represent the restriction of the piecewise constant functions ε(x)

and κ(x) on T . Denote by a1, a2, a3 the midpoints of its edges and by φi, i = 1, 2, 3

the linear polynomials in T for which φi(aj) = δij i, j = 1, 2, 3. We uniformly refine

T into 9 similar triangles and denote by b1, ..., b7 the nodes which do not coincide with

the apices of T . Finally, let ψj be the piecewise linear nodal basis functions at bj . The

spaces spanned by φi and ψj are denoted by V(T ) and W(T ) respectively. Denote

〈u, v〉1,T :=

∫

T

∇u · ∇v and |u|1,T := 〈u, u〉
1/2
1,T .(2.3)

〈u, v〉0,T :=

∫

T

u · v and |u|0,T := 〈u, u〉
1/2
0,T .(2.4)

There are two constants γ1, γ2 ∈ [0, 1) which are independent of the geometric proper-

ties of T such as the largest edge length h(T ), the aspect ratio ρ(T ) and the area µ(T )

such that

〈u, v〉1,T ≤ γ1|u|1,T .|v|1,T ∀u ∈ V(T ), ∀v ∈ W(T ),(2.5)

〈u, v〉0,T ≤ γ2|u|0,T .|v|0,T ∀u ∈ V(T ), ∀v ∈ W(T ).(2.6)

Those constants describe the strengthened Cauchy-Schwarz inequality which is numer-

ically used in [6].

(2.7) Wh := {v ∈ L2(Ω) : v|T ∈ W(T ) ∀T ∈ Mh}.

Now we enlarge the space Vh hierarchically into Ṽh by using the direct sum

(2.8) Ṽh := Vh ⊕Wh .

For the next discussion, we will use

(2.9)

A(u, v) :=

∫

Ω

ε(x)∇u(x)·∇v(x)dx, |||u||| :=

∫

Ω

∇u(x)·∇u(x)dx, ‖u‖ :=

∫

Ω

|u(x)|2dx.

Consider the continuous problem of finding E ∈ V such that for all v ∈ V,

(2.10) A(E, v) +
〈
κ cosh(uh)E, v

〉
= 〈f, v〉 −A(uh, v)−

〈
κ sinh(uh), v

〉
.

One can show that ‖E‖∗ and ‖u − uh‖∗ are equivalent up to some mesh independent

factors in which we use ‖ · ‖∗ := ||| · |||+ ‖ · ‖. The function E cannot yet be used as an

a-posteriori error estimator because it is in an infinite dimensional space and it cannot

be computed element-wise. Find vh ∈ Vh such that for all v ∈ Vh,

(2.11) A(vh, v) +
〈
κ cosh(uh)vh, v

〉
= 〈f, v〉 −A(uh, v)−

〈
κ sinh(uh), v

〉
.

Find wh ∈ Wh such that for all v ∈ Wh,

(2.12) A(wh, v) +
〈
κ cosh(uh)wh, v

〉
= 〈f, v〉 −A(uh, v)−

〈
κ sinh(uh), v

〉
.
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The following property called saturation assumption:

(2.13) ∃ β < 1 : ‖E − wh‖∗ ≤ β‖E − vh‖∗

quantifies that the solution in the larger space Wh corresponding to the 9 times uni-

formly refined mesh is more accurate than the solution in the smaller space Vh.

The computation of the a-posteriori error estimator is performed as follows. For each

element T ∈ Mh, let eT ∈ W(T ) be the solution to the local problem:

(2.14)

εT aT (eT , v)+κT
〈
cosh(uT )eT , v

〉
T
= 〈f, v〉T−εT aT (uT , v)−κT

〈
sinh(uT ), v

〉
T

∀ v ∈ W(T ).

Under the hypothesis of the saturation assumption (2.13), there exist two constants c1
and c2 which are independent of h(T ), ρ(T ), µ(T ) for all elements T of Mh such that

(2.15) c1
∑

T∈Mh

η2T ≤ |||u− uh|||
2 + ‖u− uh‖

2 ≤ c2
∑

T∈Mh

η2T

where

(2.16) ηT :=
√

|eT |21,T + |eT |20,T or ηT :=

√√√√
nW∑

i=1

ai(eT )2.

From (2.10) and the residual, we obtain for all v ∈ V that

(2.17) A(E, v) + 〈κ cosh(uh)E, v〉 = A(u− uh, v) + 〈κ sinh(u)− κ sinh(uh), v〉.

Due to the mean value theorem, we deduce for all v ∈ V

(2.18) A(E, v) + 〈κ cosh(uh)E, v〉 = A(u− uh, v) + 〈κ cosh(θh)(u− uh), v〉.

By using v := u− uh and the fact that cosh
[
θh(x)

]
≥ 1, we obtain

(2.19) |||u− uh|||
2 + ‖u− uh‖

2 ≤ A(E, u− uh) + 〈κ cosh(uh)E, u− uh〉.

By using the above facts, one deduces the efficiency and reliability of the a-posteriori

estimator.

3. Practical results

The previous strengthened Cauchy-Schwarz are given by

(3.20) γ = sup
u∈V(T )

sup
v∈W(T )

〈u, v〉T
|u|T |v|T

= sup
u∈R3

sup
v∈R7

uTBv

(uTAu)1/2(vTCv)1/2

where we use the stiffness or the mass matrix corresponding to (φ1, φ2, φ3, ψ1, ..., ψ7),

which has a block structure

(3.21) S =

[
A B

BT C

]
.
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Degree of freedom Nb. iterat. Residual Setup time Solving time

463,249 129 9.616e-09 0.5228 sec 25.0889 sec

1,547,641 188 9.987e-09 0.8954 sec 42.1407 sec

3,597,985 301 9.070e-09 1.4088 sec 68.5293 sec

7,106,761 320 9.829e-09 2.5147 sec 102.7691 sec

12,080,449 450 9.786e-09 3.9483 sec 186.1989 sec

28,560,961 602 9.500e-09 8.3579 sec 415.1201 sec

41,221,225 572 9.653e-09 10.3053 sec 467.0384 sec
Table 3.1. Linear solver using 30 processors to drop the residual error

below 1.0e-8. (εu, εv, κu, κv) = (1, 100, 2, 40) for piecewise linear.

Therefore, γ is given by the square root of the largest eigenvalue of the generalized

eigenproblem

(3.22) (BC−1BT )v = λAv .

Suppose the triangle T ∈ Mh has the angles (α, β, θ). In the case of the stiffness

matrix, it is possible [6] to express the eigenvalues in terms of the angles α and β (we

get rid of θ = π − α − β). It can be shown that one eigenvalue is always zero while

the other two eigenvalues are bivariate functions away from the unity. The plots of the

two eigenvalues are shown graphically in Fig. 2(a) and Fig. 2(b) in terms of the angles

(α, β). One can clearly observe that the two eigenvalues do not attain the unity. As

for the FEM-error, the reduction of the error compared to the exact solution has been

measured by using theH1-norm. In Fig. 2(c), one observes a plot of theH1-error in term

of the edge length h. It displays the linear decrease of the energy norm in term of the

edge length h which is in full accordance with the theoretical expectation. We consider

in fact two simulations where we use the parameters (εu, εv, κu, κv) = (2, 5, 7, 3) and

(εu, εv, κu, κv) = (1, 20, 20, 3). For both cases, one observe the same numerical behavior.

The a-posteriori error estimates are equally shown in the same figure. It is observed

that when the H1-error is large, the a-posteriori error is also comparatively large and

they decrease proportionally.

The solver of the nonlinear system resulting from the FEM discretization is per-

formed by a combination of Fletcher-Reeves nonlinear CG and a damped Newton

using monotony tests. In general, only a few iterations of nonlinear CG and damped

Newton are required. In addition, the involved Jacobians are sparse. As a consequence,

the main issue is the fast solving of the linear system which occurs in each CG/Newton

loop. For that matter, we use the linear solvers with least-square preconditioner using

Parasails. The performance of the linear solver is presented in Tab.3.1 for the case

(εu, εv, κu, κv) = (1, 100, 2, 40). A detail of such a computation on parallel processor is
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Figure 2. (a)First eigenvalue w.r.t (α, β) (b) Second eigenvalue (c)H1

and a-posteriori errors.

presented in [5]. As shown in the table, only very few iterations are needed to drop the

residual errors very significantly. Both the setup times and the solving times are very

fast in comparison to the degree of freedom.
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