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MOLECULAR DYNAMICS USING TWO-BODY POTENTIAL FROM
UNOBSERVED APPROXIMATION

MAHARAVO RANDRIANARIVONY

ABSTRACT. We propose a stochastic �tting for deducing a potential from a total
energy which can be incorporated inside a molecular dynamic program. The objective of
that �tting process is twofold. First, the total energy can be reproduced with a su�cient
accuracy. In addition, we want to separate the potential energyinto atomic contributions.
The only inputs in the stochastic regression are the total energiesof the atomic systems.
The rationale supporting that process is that a molecular dynamics program necessitates
the energy per atom in order to be able to compute the force appliedat each atom. That
needs to be calculated at each molecular dynamic step. In contrast, an electronic structure
packet such as DFT does not provide energy per atom but only the total energy of the
complete system. As for the applications, we examine the performance of the method
with the help of a mathematical model. Afterwards, we use it for quantum applications
in which we compare the direct method and the unobserved �tting with respect to the
energy conservations. For a molecular dynamic application, we examine the atomic cluster
formations during freezing when the proposed potential is used. Although the method is
generally applicable, we restrict in this paper to total energies whichare reproduced from
two-body potentials for the molecular dynamic simulation.

1. Introduction

We are mainly interested in bridging some gap in multiscale computation [16] which has
become more and more investigated in the last decades. Multiscale computation is the
sequence of simulations from nanoscale quantum mechanics till macroscopic simulation.
This sequence usually consists of electronic structure, molecular dynamics (MD), meso-
scopic simulation, quasi-continuum, till FEM/CAD (Finite Element Method/Computer
Aided Design). The central component that a user usually wishes toperfection in MD
packages [1, 3, 9] is the local forces which are derived from the potential energy. That
is because all other parts of MD packets are almost optimal: time integration, atom
repositioning, etc. There are numerous empirical potentials including Lennard-Jones,
Finnis-Sinclair, ReaxFF(Reactive Force Field), REBO(Reactive Empirical Bond Order)
and BOP(Bond Order Potential) among others. In Fig. 1(b) we illustrate a molecular

Key words and phrases.Molecular dynamics, Gaussian regression, unobserved data, kernel
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dynamic simulation of a graphene fracture using REBO potentials where the colors in-
dicate the potential energy per atom. In this document, we would like to consider the
part of multiscale computation between electronic structure suchas DFT and molecular
dynamics which is graphically illustrated in Fig. 1(a). The main problem in bridging that
gap is the separation of atomic contributions of the potential energy. In fact, a quantum
packet provides only the total energy of a given atomic con�guration whereas a molecular
dynamic package requires the atomic contribution in order that theforce applied to each
atom can be computed at every molecular dynamic step. We are interested in molecu-
lar dynamics where the potential is obtained from a pre�ting process which consists in
splitting the potential energy into atomic local energies. We propose a stochastic method
whose only observed inputs are the total energy while the objective is to reconstruct the
local energy per atom.
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Figure 1. Motivation: (a)Local energy computation and molecular dy-
namic simulation (b)Potential energy in a graphene fracture.

The method presented here is based uponmachine learningwhich uses the concept of
learning on the y. It means in general that when an atom or a con�guration passes
in one state, a certain computation is performed. Upon passing on that state for the
next times, the computation is not repeated any more but experiences from previous
computation is used. The machine learning process generates a structure [14] which
enables the e�cient and fast access of such a methodology. Our motivation is to generate
a system which is both accurate and fairly inexpensive to evaluate. The proposed method
is based on stochastic method where the expectancy and the variance of the prediction
need to be computed. One utilizes the Matern correlation function for the assembly of
the covariance matrices. The stochastic posterior depends only on the input observed
total energies. As a consequence, it can be computed once for alland it is looked up
during future computations. For an MD simulation, what is really required is not the
energy but the force derived from that energy. Hence, the derivative of the prediction will
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be computed analytically. That is important because using Finite Di�erence is known
to diverge the energy conservation in MD. During the simulation, oneneeds to solve
a nonlinear optimization pertaining to the logarithm marginal likelihood. We present a
method for avoiding the singularity at the diagonal of the covariance matrix. Our method
can be applied to all sorts of quantum information but we mainly focuson the atomic
energy in this paper.

The practical implementation is divided into two applications. The �rst one is the investi-
gation of the method by using some mathematical system. In that case, we consider some
exact solution and we reconstruct the internal local energy function by using our theoret-
ical method. The purpose of that test is to examine the performance of the method by
comparing the exact solution with the solution provided by the �tting. The local energies
are expressed in term of the Coulomb matrix. As for the second application which is
based on quantum systems, this paper presents only a preliminary work because evaluat-
ing DFT is a very time-consuming process. As a consequence, we compare an MD using
Lennard-Jones and an MD where the potential is obtained from unobserved Gaussian
regression. In order to gauge the simulation quality, we investigatethe radial distribution
function (RDF) for various values of the temperature by using thepotential which was
obtained from the unobserved �tting. The general tendency of the RDF curve is to start
from zero values followed by a sudden peak which in turn is followed by aslow approxi-
mation of the unit value. In general, the height of the peak dependson the temperature.
For very cold temperature, the peak is remarkably high while it is barely observable when
the temperature is very warm. To validate the use of the atomic separation approach, we
investigate the results of the MD simulation at freezing temperatures. The formation of
clusters of atoms which features the phenomenon of freezing temperatures as described
in [2, 20] will be practically reconstructed. The adjustment of the temperature value is
regulated by using the method of kinetic energy scaling. By using theunobserved Gauss-
ian regression, we achieve total energy conservation as one observes the energy values
at many MD steps. In addition, we will compare the energy values by using the direct
method and the proposed atomic separation method.

2. Theoretical methodology

2.1. Potential energy w.r.t. nuclei coordinates. Consider a system composed of
n atoms R = f r i gn

i =1 and m electronsX = f x i gm
i =1 . The main problem in electronic
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structure computation involves the general Hamiltonian [16, 4, 13]operator

H = �
nX

k=1

~2

2M k
� r k �

~2

2me

mX

i =1

� x i �
mX

i =1

nX

j =1

qeZ j

kx i � r j k
+(2.1)

1
2

nX

i =1

nX

i 6= j

Z i Z j

kr i � r j k
+

1
2

mX

i =1

mX

j 6= i

q2
e

kx i � x j k

where ~ is the Planck constant divided by 2� , qe is the electronic charge,me and M k

represent the electron mass and the mass of thek-th nucleus while the charge of thej -th
nucleus isZ j = jqejnj in which nj is the atomic number.

The wave function 	 is the eigenfunction corresponding to the smallest eigenvalue of the
eigenvalue problem

(2.2) H 	 = Emin 	 ; 	 = 	( r 1; :::; r n ; x1; :::; xm ):

The kinetic energies of the nucleus and electron are

(2.3)


	

�
�TA

�
� 	

�
;



	

�
�TE

�
� 	

�
where TA := �

nX

k=1

~2

2M k
r 2

r k
; TE := �

~2

2me

mX

i =1

r 2
x i

:

The third summations of (2.1) provides the nucleon-electron Coulomb attraction energy.
The two last summations are the inter-nuclei and inter-electron repulsion energies.

We shall de�ne the atom-electron interaction, the inter-nucleon operator and the inter-
electron interaction operatorsVAE , VAA and VEE as follows

VAE (x1; :::; xm ; r 1; :::; r n ) = �
mX

i =1

vAE (x i );(2.4)

VAA (r 1; :::; r n ) =
1
2

nX

i =1

nX

j =1

Z i Z j v(r i ; r j );(2.5)

VEE (x1; :::; xm ) =
1
2

mX

j =1

j � 1X

i =1

q2
ev(x i ; x j );(2.6)

where

(2.7) vAE (x) :=
nX

j =1

qeZ j

kx � r j k
; v(u; u0) :=

1
ku � u0k

:

Thus, one has

(2.8) H = TA + TE + VAE + VAA + VEE :

We use theBorn-Oppenheimeror adiabatic approximation assumption stating that the
mass and the volume of the atoms are very large in comparison to those of the electrons.
In fact, an electron is 2000 times lighter than any nucleus such thatthe atoms move
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comparatively slower than the electrons. Thus, electrons are supposed to follow the
movements of the atoms in the sense that

(2.9) 	( r 1; :::; r n ; x1; :::; xm ) = �( r 1; :::; r n ) R (x1; :::; xm ) for each R = ( r 1; :::; r n ):

As a consequence, we treat the time-independent Hamiltonian operator with respect to
the a set of nucleir i which are supposed to be stationary. That is to say, for each given
R = ( r 1; :::; r n ), the initial electronic structure is reduced to the expression

(2.10) H B :O : = �
~2

2me

mX

i =1

� x i +
mX

i =1

nX

j =1

qeZ j

kx i � r j k
+

1
2

mX

j =1

j � 1X

i =1

q2
e

kx i � x j k
:

Thus, the eigenproblem corresponding to the above Born-Oppenheimer Hamiltonian op-
erator becomes

(2.11) (TE + VAE + VEE ) R (r 1; :::; r n) = ER  R (r 1; :::; r n)

in which the ground state energyER and the reduced wave function R depend on the
given nuclear coordinatesR = ( r 1; :::; r n). Due to the independence of � onX = f x i g in
(2.9), one deduces from (2.11) that

H �( R) R (X ) = ( TA + TE + VAE + VAA + VEE )�( R) R (X )(2.12)

= ( TA + VAA )�( R) R (X ) + ER �( R) R (X )(2.13)

= ( TA + VAA + ER )�( R) R (X )(2.14)

By using (2.2) and (2.9) in the last equality, one obtains

(2.15) (TA + VAA + ER )�( R) R (X ) = Emin �( R) R (X ):

By assuming the independence of R (X ) on the atomic kinetic term such as

(2.16) TA

�
�( R) R (X )

�
=  R (X )TA �( R)

one obtains from (2.15)

(2.17)  R (X )
h
(TA + VAA + ER )�( R)

i
= Emin �( R) R (X ):

Thus, one obtains the Schr•odinger equation with respect to the nuclear coordinates only

(2.18) (TA + Vpot )�( r 1; :::; r n ) = Emin �( r 1; :::; r n );

in which

(2.19) Vpot := VAA + ER such that Epot := h	 jVpot j	 i :

For the molecular dynamic applications, one usesVpot which is the e�ective inter-atomic
potential or the potential energy surface. With the help of the quantum assumptions
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above, that last equation takes only the nuclei coordinatesr 1, ..., r n of the atoms as
variables. Since it is generally very expensive to evaluate the function

(2.20) (r 1; :::; r n) 7�! Epot (r 1; :::; r n );

one uses a simpli�cation or an approximation ofEpot . It is impossible to express that
function analytically for large MD systems which consist of multi-millionsatoms. E�cient
empirical approximations of (2.20) for extremely large systems include: Finnis-Sinclair,
EAM (Embedded Atom Method) and BOP (Bond Order Potential).

2.2. Computing the potential energy surface. Exact solutions for the above equa-
tion are only known for very few special cases. Hence, numerical methods must be used
for the general cases. The domain of computation is
 � R3 which is supposed su�ciently
larger than the nuclei cloudf aj gNu

j =1 such that the above operator has neglecting inuence
beyond it. We consider the domain of simulation By considering the electron spins which
take values +1=2 or � 1=2, we are searching for the electronic wave function

	 :
�


 � f� 1=2; +1=2g
� Ne

�! R verifying the eigenproblem

(2.21) H BO 	(  1; :::;  Ne) = � 	(  1; :::;  Ne) where  i = ( x i ; � i ) 2 
 � f� 1=2; +1=2g

such that 	 is antisymmetric 	( :::;  i ; :::;  j ; :::) = � 	( :::;  j ; :::;  i ; :::) for all distinct
i; j = 1; :::; N . Exact solutions for equation (2.21) are only known for very few special
cases. Hence, numerical methods must be used for the general cases. The ground state
energy corresponds to the smallest eigenvalue� min of (2.21). The antisymmetrization
operator A applied to any N -variate function f is de�ned by

(2.22) A (f ) :=
1

N !

X

P 2 � N

sgn(P)f � P

in which � N is the set of permutations overf 1; :::; Ng and sgn(P) designates the sig-
nature of a permutation P. If f is a tensor product function asf = 
 N

i =1 f i , then the
antisymmetrizer coincides with the Slater determinant or wedge product

(2.23) A
� NO

i =1

f i

�
( 1; :::;  N ) =

1
N !

�
�
�
�
�
�
�
�
�

f 1( 1) f 1( 2) ::: f 1( N )
f 2( 1) f 2( 2) ::: f 2( N )

::: ::: ::: :::
f N ( 1) f N ( 2) ::: f N ( N )

�
�
�
�
�
�
�
�
�

:

The antisymmetrization operatorA has the properties that it commutes with the Hamil-
tonian operator and that for an N � N matrix M such asA(M �) = det( M )A (�). The
Hartree-Fock approach is the variational formulation on the Hamiltonian operator (2.10)
where the trial functions are antisymmetric functions. The main di�culty is that the
problem is of 3N -dimension without taking the electronic spins into account. In addition,
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on account of the antisymmetric property, a direct use of the Slater determinant often
produces computations having orders ofO(N !) which are very expensive. Counting the
electronic spins lead usually to a factor of 2N which makes the computation even more
intractable.

Some simpli�cations of the stationary Hamilton operators have already been proposed.
For the DFT(Density Functional Theory), one solves a set of equations for each electron.
The similarity of the solutions is then derived from the theory of Kohn-Sham [5]. The
Kohn-Sham formalism consists in replacing the complicated initial problem into several
ones. For eachi = 1; :::; Ne

(2.24)
�

�
1
2

� + Ve� (x)
�
 i (x) = E i  i (x)

whereVe� is the e�ective potential energy which depends implicitly on the totalelectron
density � (x) =

P Ne
i =1 j i (x)j2 such that Ve� (x) = Ve� [� (x)](x). The problem is then

reduced from dimensions 3Ne to Ne sets of 3D smaller problems. The inuence of one
electron with respect to the other electron is measured by the total electron density. These
approaches enable the treatment of Hamiltonian problem even for an electronic structure
having a large number of particles on a single desktop. The eigenvalueproblem in (2.24)
is nonlinear because its variational operator

(2.25)
�

	

�
�
�
� �

1
2

r 2 + Ve� (x)

�
�
�
� 	

�

depends on� which in turn depends on i . It is solved by using a sequence of the linear
eigenvalue problems SCF (Self Consistent Field).

The e�ective potential is constituted of the Hartree potentialVH , the exchange correlation
potential VXC and the external electrostatic �eld such as

(2.26) Ve� [� (x)](x) = VH [� (x)](x) + VXC [� (x)](x) + Vext [� (x)](x)

in which the Hartree potential is the inverse of the Poisson operator such as � VH(x) =
� 4�� (x). For its evaluation, either a Poisson problem is solved or one convolves with the
Green fundamental solution such asVH (x) =

R
� (ex)=kx � exkdex. The main feature of DFT

is that one has to approximate the potential by using some correction terms known as
exchange-correlation potential [10, 11]. That is usually done by LDA(Local Density Ap-
proximation) or GGA (Generalized Gradient Approximation). Those expressions contain
some parameters which are guessed or obtained from some experimental measurements
in term of the Weigner-Seitz radius. Analytic expressions of the correlation energy are
only known in a few special cases which mainly consist of the high and lowdensity limits.
The external electrostatic �eld potential Vext is provided by the kernel

P Nu
i =1 zi =kx � x i k.

The above exchange-correlation potential is related to the exchange-correlation energy by
VXC = �E XC =�� where one expressesEXC = EX + EC as the exchange and the correlation
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parts. In term of the exchange-correlation energy density"XC one has

(2.27) EXC [� ] =
Z

"XC [� ](x)� (x)dx where "XC = "X + "C:

For the local density approximation (LDA), the exchange energy density is expressed as
"LDA

X (� ) = � 0:75(3� (x)=� )1=3 so that EX [� ] = � 0:75
�

3
�

� 1=3 R
� (x)4=3dx. Analytic values

of the correlation energy density are only known for some extremecases. For the high
density limit, the exchange correlation energy density as approximated by "C = A ln(r s)+
B + r s(C ln(r s)) + D as the Weigner-Seitz radiusr s is very small. For the low density
limit where r s is very large, one has"C = 0:5((g0=rs) + ( g1=r3=2

s ) + ( g2=r5=2
s ) + � � � ). For

other values ofr s, some interpolation of those extreme values is considered. For example,
by using the VWN-approximation (Vosko, Wilk, Nusair) as in [18], one has

(2.28) "C (r s; � )VWN = "C (r s; 0) + "a(r s)
f (� )
f 00(0)

(1 � � 4) +
�
"C (r s; 1) � "C (r s; 0)

�
f (� )� 4

wheref (� ) = 0 :5((1 + � )4=3 + (1 � � )4=3 � 2)=(21=3 � 1) while each one of"C (r; 0), "C (r; 1)
and "a(r ) is of the form

"C=a(x) =
A
2

�
ln

x2

X (x)
+

2b
Q

arctan
Q

2x + b

�
�(2.29)

A
2

bx0

X (x0)

�
ln

(x � x0)2

X (x)
+

2(b+ 2x0)
Q

arctan
Q

2x + b

�
(2.30)

in which x =
p

r s, X (x) = x2 + bx + c and Q =
p

4c � b2. The constants A, x0, b,
c are �tting parameters which are di�erent for "C (r; 0), "C (r; 1) and "a(r ). Once the
solution E i to (2.25) for all i = 1; :::; Ne becomes known, the Khon-Sham approach uses
the approximation to E of (2.1) by

(2.31) EKS =
NeX

i =1

E i �
1
2

Z
� (x)VH (x) +

Z
� (x)

�
EXC [� (x)] � VXC [� (x)]

�
dx

The main improvement from LDA to GGA is that the exchange-correlation energy does
not depend only on the total electron density but also on its gradient such asE GGA

XC =
E GGA

XC [�; r � ](x). In the computations, one represents	 as a set of basis which are usually
plane waves [19], Finite Element Method [17, 15] or wavelets [7].

2.3. Unobserved information and Gaussian regression. In this section, we will
describe the main points about the unobserved Gaussian regression. We are going beyond
the usual reconstruction of a functionf by using the observationsf yi g such that yi =
f (x i ) + " i becauseyi is unobserved in our situation. During the data �tting, we do not
reconstruct a global function with respect to the atom coordinates. Instead, we use an
implicit variables q of dimensionD. That is to say, for every atomic systemR having
n atoms we have the new variablesq� (R) = [ q�

1 (R); :::; q�
D (R)] 2 RD for each atom
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x � 2 R . In this theoretical description, q� (R) is supposed to be a general mapping
depending on the atom coordinates. But for the applications, theymight have some
physical signi�cations such as the Coulomb matrix which we will encounter toward the
end of this paper. We consider many observations involvingN atomic systemsfR i g of
number N . For each observation, we have a corresponding total energyE i

tot such that

(2.32) E i
tot =

n iX

� =1

E loc
�
q�

1 (R i ); :::; q�
D (R i )

�
+ " i ; 8 i = 1; :::; N

in which " i are measurement imperfections. The observed data areE i
tot which represent

the total energy for quantum application while the unknown is the function E loc. We
sometimes use the term total energy to refer to the sum of all local energies. It is not
to be confused with the usual total energy which is the sum of the kinetic energy and
the potential energy. The quantum motivation for this kind of reconstruction is that
we are interested in the local energiesE loc is applications including molecular dynamics.
Whereas, it is impossible to obtain from a quantum simulator some samples f E i

locg. The
only values that a quantum simulator provides are a set of total energies f E i

tot g It is
possible to provide gradient valuesr E tot and Hessian values@2E tot =@xp@xq but we do
not treat that yet in this current article. In general, using the gradients and Hessian is
computationally very expensive. Fitting using gradient and higher order derivatives will
be reported in a subsequent paper. For the next stochastic deduction, we will use the
following Matern correlation function

(2.33) kMATERN (r ) :=
21� �

�( � )

� p
2�r
`

� �
K �

� p
2�r
`

�

where (�; ` ) are positive hyper-parameters andK � is the modi�ed Bessel function. In
dimensionD, the spectral density of the Matern function is

(2.34) S(s) =
2D � D=2�( � + D=2)(2� )�

�( � )`2�

� 2�
`2

+ 4� 2s2
� (� � + D=2)

:

If � tends to in�nity, one obtains the squared exponential case. For the special case of
half-integers such as� = p+1=2, one obtains a product of an exponential and a polynomial
of order p such as

(2.35) k� (r ) = exp
�

�

p
2�r
`

� �( p + 1)
�(2 p + 1)

pX

i =0

(p + i )!
i !(p � i )!

� p
8�r
`

� p� i
:

For the special cases where� = 3=2 and � = 5=2, one has

k3=2(r ) =
�

1 +

p
3r
`

�
exp

�
�

p
3r
`

�
;(2.36)

k5=2(r ) =
�

1 +

p
5r
`

+
5r 2

3`2

�
exp

�
�

p
5r
`

�
:(2.37)
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The number of atoms in thei -th observation isni for i = 1; :::; N and we denoteM :=
P N

i =1 ni . Let us denoteQ the following of implicit variable

Q =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

q1
1(R 1) q1

2(R 1) � � � q1
D (R 1)

...
...

...
...

qn1
1 (R 1) qn1

2 (R 1) � � � qn1
D (R 1)

...
...

...
...

q1
1(R N ) q1

2(R N ) � � � q1
D (R N )

...
...

...
...

qnN
1 (R N ) qnN

2 (R N ) � � � qnN
D (R N )

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

9
>>>>>=

>>>>>;

1-st observation

9
>>>=

>>>;

Next observations

9
>>>>>=

>>>>>;

N -th observation

which is a matrix having the size (M � D) where D is the dimension of the training
variables x i . Let L be a binary matrix of size (M � N ) having entries 0 or 1 such
that only the Coulomb entries in the i -th observation are relevant for thei -th row of
LT . Denote Q = [ qi ]Mi =1 so that one has the relationE i

loc := E loc(qi ) where f E i
locg

M
i =1

are unobserved samples. As a consequence, one has the following covariance relation for
noise-free observations

K (R p; R s) = COV
�
E tot (R p); Etot (R s)

�
= COV( E p

tot ; E s
tot )(2.38)

= COV

 
MX

i =1

LT [p; i]E i
loc ;

MX

j =1

LT [s; j ]E j
loc

!

(2.39)

=
MX

i;j =1

LT [p; i]LT [s; j ]COV
�
E i

loc; E j
loc

�
(2.40)

=
MX

i;j =1

LT [p; i]L [j; s ]K (qi ; qj ) =
�

LT K (Q; Q)L
�

[p; s]:(2.41)

For a noisy data E i
tot = E tot (R i ) + " where the additional noise follows the Gaussian

distribution " � N (0; � 2
n), one has the covariance

(2.42) COV(E p
tot ; E s

tot ) =
�

LT K (Q; Q)L
�

[p; s] + � 2
n � ps:

Introduce the next vectors of observed and unobserved inputs

(2.43) Etot = [ E 1
tot ; :::; EN

tot ]T ; Eloc = [ E 1
loc; :::; EM

loc]
T :
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In the presence of noise, the marginal likelihood is the integral of the likelihood and the
prior such as

(2.44) p(y jX ) =
Z

p(y jf ) p(f jX )df

If Etot jQ follows the Gaussian distributionN
�
0; LT K (Q; Q)L

�
, and one has no noise,

then the marginal likelihood is

(2.45) p(Etot jQ) = (2 � )� N=2jLT K (Q; Q)Lj � 1=2 exp
�
�

1
2

ET
tot

�
LT K (Q; Q)L

� � 1
Etot

�

which implies by taking the logarithm marginal likelihood

p(Etot jQ)
�
�LT K (Q; Q)L

�
�1=2

(2� )N=2 = exp
�
�

1
2

ET
tot

�
LT K (Q; Q)L

� � 1
Etot

�

log
�
p(Etot jX )

�
+

1
2

log
�
�LT K (Q; Q)L

�
� +

N
2

log(2� ) = �
1
2

ET
tot

�
LT K (Q; Q)L

� � 1
Etot

from which one obtains the marginal likelihood

(2.46) log
�
p(Etot jQ)

�
= �

1
2

ET
tot

�
LT K (Q; Q)L

� � 1
Etot �

1
2

log
�
�LT K (Q; Q)L

�
� �

N
2

log(2� ):

In the presence of noise" � N (0; � 2
n ) by using (2.42), the log marginal likelihood becomes

log
�
p(Etot jQ)

�
= �

1
2

ET
tot

�
LT K (Q; Q)L + � 2

n I N;N

� � 1
Etot(2.47)

�
1
2

log
�
�LT K (Q; Q)L + � 2

n I N;N

�
� �

N
2

log(2� ):(2.48)

The �rst term � 1
2ET

tot

�
LT K (Q; Q)L + � 2

n I N;N
� � 1

Etot corresponds to thedata-�t term .
The second term� 1

2 log
�
�LT K (Q; Q)L + � 2

n I N;N

�
� is the complexity term. The last term

� N
2 log(2� ) is the normalization term.

For a given test valueQ� , the predicted estimation of the local energy follows the Gaussian
distribution as

(2.49)

"
Eloc

E�
loc

#

� N

 

0;

"
LT K (Q; Q)L + � 2

n I N;N LT K (Q; Q� )
K (Q� ; Q)L K (Q� ; Q� )

#!

That is to say, for Q and Etot , the predictive distribution for a covariate vector Q� is
Gaussian having the following expectancy and variance

EXP
�
E�

locjQ
� ; Q

�
= K (Q� ; Q)L

h
LT K (Q; Q)L + � 2

n I N;N

i � 1
Etot

VAR
�
E�

locjQ
� ; Etot ; Q

�
= K (Q� ; Q� ) � K (Q� ; Q)L

h
LT K (Q; Q)L + � 2

n I N;N

i � 1
LT K (Q; Q� )

where those expressions are dependent on some set of hyper-parameters.

The main objective is to theoretically optimize the marginal likelihood. In practice, using
the log marginal likelihood is more e�cient to implement. The partial derivatives of the
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above estimation with respect to components ofq can be expressed analytically as we use
linear entities.

The value of r for given qp 2 RD and qs 2 RD is

(2.50) r 2 = ( qp � qs)T

2

6
4

1=� 2
1

. . .

1=� 2
D

3

7
5 (qp � qs)

in which � 1,..., � D are hyper-parameters which should be determined by using the log
marginal likelihood. One has� = log( `), � = log( � i ) where i = 1; :::; D. In order to apply
an e�cient nonlinear optimization to the former functional, we need the partial derivative
of the inverse

�
LT K � (Q; Q)L

� � 1
with respect to a hyper-parameter� . From the fact that

(2.51)
@
@�

h�
LT K � (Q; Q)L

� � 1
[LT K � (Q; Q)L

� i
=

@IN;N

@�
= 0;

one deduces

@
@�

�
LT K � (Q; Q)L

� � 1
= �

�
LT K � (Q; Q)L

� � 1 @
@�

�
LT K � (Q; Q)L

��
LT K � (Q; Q)L

� � 1

= �
�
LT K � (Q; Q)L

� � 1
LT @K� (Q; Q)

@�
L

�
LT K � (Q; Q)L

� � 1

which cannot be simpli�ed any further asL is not invertible. Similarly, one has the
relation

(2.52)
@
@�

log
�
�
�LT K � (Q; Q)L

�
�
� = trace

�
[LT K � (Q; Q)L]� 1 @

@�
[LT K � (Q; Q)L]

�
:

The partial derivative of a covariance matrix entry with respect toa hyperparameter� is
(2.53)

@�

h
k
�
r (qp; qs)

� i
= k0(r )@�

h
r (qp; qs)

i
; where r (qp; qs) =

vu
u
t

DX

i =1

1
� i

(qp;i � qs;i )2:

This is singular in the situation whereqp = qs which occurs on the diagonal entries of
the covariance matrix. In fact, one has

(2.54) @� � r (qp; qs) = �
1

r (qp; qs)

�
qp;� � qs;�

� �

� 2

for � = 1; :::; D:

In order to suppress the singularity, one utilizesR(qp; qs) := r 2(qp; qs) such that @� � R(qp; qs)
is regular everywhere. In addition,ek(R) := k(

p
r ) is smooth at the origin. Indeed, one

hasek(R) = pMATERN (
p

2�r=` ) such that

pMATERN (t) = f MATERN (t) exp(� t)(2.55)

p0
MATERN (t) =

�
f 0

MATERN (t) � f MATERN (t)
�

exp(� t)(2.56)
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wheref � =3 =2 = 1 + t and f � =5 =2 = 1 + t + (1 =3)t2 so that

(2.57)
h
f 0

MATERN (t) � f MATERN (t)
i

= tqMATERN (t)

whereqMATERN is a polynomial. Therefore, one has

dk
dR

=

p
2�

2`
p

R

"

f 0
MATERN

� p
2�

p
R

`

�
� f MATERN

� p
2�

p
R

`

�
#

exp
�

�

p
2�

p
R

`

�
(2.58)

=

p
2�

2`
qMATERN

� p
2�

p
R

`

�
exp

�
�

p
2�

p
R

`

�
(2.59)

which is regular for all values ofr (qp; qs).

2.4. Molecular dynamics of large systems. In general, by considering a Lagrange
function L (t; x 1; :::; xn ; v1; :::; vn) which is a real valued function and several continuously
di�erentiable functions q1,...,qn , one obtains the following Euler-Lagrange equation for
eachk = 1; :::; n
(2.60)

@
@xk

L
�
t; q1(t); :::; qn (t); _q1(t); :::; _qn (t)

�
�

@
@t

@
@vk

L
�
t; q1(t); :::; qn (t); _q1(t); :::; _qn (t)

�
= 0:

We consider a time-dependent system consisting ofn atoms where thek-th atom admits
the Cartesian coordinatesr k = r k(t) depending on time. By considering the MD Lagrange
function

(2.61) L (t; r 1; :::; r n ; _r 1; :::; _r n) :=
1
2

nX

k=1

M kk_r kk2 � Epot (r 1; :::; r n)

where M k is the mass of thek-th ion, the Euler-Lagrange equation (2.60) yields the
following equation of motion which is described as an ODE (ordinary di�erential equation)

(2.62) M k •r k;j (t) =
@Epot

@rk;j
=: � Fk;j (r 1; :::; r k ; :::; r n) 8 k = 1; :::; n

for each componentj = 1; 2; 3. That expression is the second law of motion where [•r k;1(t),
•r k;2(t), •r k;3(t)] denotes the acceleration while the forceFk = [ Fk;1; Fk;2; Fk;3] is applied on
the k-th atom. By considering the kernelVpot of the potential energy, one should normally
obtain the relation

(2.63)
@

@rk;j
h	 jVpot j	 i = 2

D @
@rk;j

	
�
�
�Vpot

�
�
� 	

E
+

D
	

�
�
�

@
@rk;j

Vpot

�
�
� 	

E

where 	 corresponds to the ground state energy. But the Hellman-Feynmann rule states
the independence of the force on the derivative of the ground state energy such that one
eventually obtains

(2.64)
@

@rk;j
h	 jVpot j	 i =

D
	

�
�
�

@
@rk;j

Vpot

�
�
� 	

E
:
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Every MD iteration consists of the following steps. First, one determines the atomic force
Fk . Then, one has to solve the above equation of motion with the help ofany ODE solver.
The usual methods for the ODE solver are based on variants of Runge-Kutta or Verlet
algorithm. Finally, one updates the atomic positionr k . For an expressionA = A(t)
depending ont, we designate the time average by

(2.65) hAi = lim
t !1

1
t

Z t

0
A(� )d�:

Since the MD trajectory involves only a large number of discrete values, we utilize the
following discrete counterpart forL number of MD iterations

(2.66) hAi =
1
L

LX

k=1

A(� k):

In the case of two-body potentials where the potential functionV depends only on the
interatomic distancesr ij = kr i � r j k, let us review some MD thermodynamic expressions.
The pressure and the temperature are respectively given by the expression

P =
1

3


*
nX

i =1

�
M i v i � v i �

X

j>i

@V(r ij )
@rij

r ij

�
+

;(2.67)

T =
1

3nkB

*
nX

i =1

M i v i � v i

+

:(2.68)

That relates the regulation of the temperature with the kinetic energy. The radial distri-
bution function for nonzero radiusr is

(2.69) g(r ) :=
1

� 4�r 2n

*
nX

i =1

X

j 6= i

� (r � k r i � r j k)

+

which quanti�es the general distribution of the atoms with respectto their corresponding
neighbors. We have in addition

X

i<j

V(r ij ) =
Z X

i<j

V(r )� (r � r ij )dr(2.70)

= � 4�n
Z

r 2

2
1

� 4�r 2n

nX

i =1

X

j 6= i

V(r )� (r � r ij )dr(2.71)

One obtains �nally the total potential energy P E = 2��n
R

r 2g(r )V(r )dr. In general, the
stress tensor which consists of a kinetic and a potential part is de�ned, for �; � = 1; 2; 3
by

(2.72) � �;� =
1

j
 j

nX

i =1

M i vi;� vi;� + Fi;� r i;�

where one uses the force componentsFi;� such that the stress per atom is� �;�;i =
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Figure 2. (a)Error in the total energy (b)Energy conservation: Lennard-
Jones vs. unobserved �tting potential.

M i vi;� vi;� + Fi;� r i;� . In the case of two-body potential, it is reduced into

(2.73) � �;� =
1

j
 j

nX

i =1

 

M i vi;� vi;� �
1
2

X

j 6= i

Fi;j;� r i;j;�

!

where Fi;j;� is the � -th component of the force between thei -th and the j -th particles
while r i;j;� is the � -th component ofr i;j .

3. Practical implementation

In this section, we would like to give some details about the results of the practical imple-
mentation of the formerly described theoretical method. We will present results related
to mathematical models as well as to quantum application for molecular dynamics. The
implementation uses C/C++, BLAS/LAPACK and NLOPT. The BLAS pac ket is used
for the fast vector operations. We use LAPACK for the linear operations such as Cholesky
factorization and dense matrix solvers. The code is a very developed version of the matlab
implementation provided in [12]. The new additional enhancements from the matlab ver-
sion consist of the following features. First, using NLOPT provides alot of improvements
as compared to the original matlab nonlinear conjugate gradients.That can be observed
when both the number of points and the dimension become large in thenonlinear opti-
mization of the hyper-parameters. In addition, we can also accepthigher derivatives in
the input apart from the functional values. One can use the entiregradient or only some
components of it. Furthermore, the gradient of the kernel-based approximation can be
evaluated by using analytical expressions instead of using �nite di�erence. The initial
guess of the hyper-parameters is provided by the users. One canconsider the determi-
nation of the �nal hyper-parameters as an unconstrained nonlinear optimization. We
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(a) (b)

Figure 3. Atom cluster formations after freezing by using the potential
from Gaussian unobserved �tting.

use NLOPT for the nonlinear operations [6] for the optimal hyper-parameters in the log
marginal likelihood (2.47). NLOPT supports diverse nonlinear optimization operations
[8] in which local optimizers are involved. A local one searches only inside a neighbor-
hood of a certain provided starting initial guess. The optimizers areperformed by using
derivative-free or gradient-based algorithm which are available in NLOPT. Derivative-
free algorithms include BOBYQA (Bond Optimization BY Quadratic Approximation),
COBYLA (Constrained Optimization BY Linear Approximation), NEWUO A (NEW Un-
constrained Optimization Algorithm). Gradient-based methods include MMA (Method of
Moving Asymptotes) and LBFGB (Limited memory Broyden-Fletcher-Goldfarb-Shanno).

As a �rst application, we consider the reconstruction of a mathematical model where the
exact solution is explicitly known. In an atomic systemR constituting of n atoms (r 1,
r 2, ...,r n ), the Coulomb matrix

�
q�;�

�
admits the following entries for�; � = 1; :::; n:

(3.74)

(
q�;� = Z � Z � =kr � � r � k if � 6= �
q�;� = 0:5Z 2:4

�

in which Z � is the nuclear charge of the� -th atom. In our situation, we consider only
homogeneous systems consisting of one element type such thatZ � � Z is a constant. We
�x any positive number D which will then be the implicit dimension. That is to say, for
each atomr � , the implicit variables

�
q�

1 (R); :::; q�
D (R)

�
will be the largest Coulomb entries

involving the atom r � . Except for the Coulomb entryqi = 0:5Z 2:4
i , the largest Coulomb
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values correspond to the closest atom neighbors. The purpose ofthe �rst application is
to reconstruct the local energyE loc which is a D-variate function. In order to be able to
compare the reconstructed function with the original one, we consider an exact function
which maps an atomic systemR = ( r 1,..., r n ) to
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Figure 4. Using the unobserved Gauss reconstruction: (a)Temperature
adjustment and uctuation (b)Radial distributed functions for di�erent
temperatures.

E tot (R) =
X

� =Atom

E loc

�
q�

1 (R); :::; q�
D (R)

�
; where(3.75)

E loc(q) :=
DX

i =1

sin(qi ); q = ( q1; :::; qD ) 2 RD :(3.76)

It is possible to evaluate the errors with respect to the local energy or the global one. As
in the real situation, the above exact function is unchanged by reordering the sequence of
the atoms and the Coulomb matrix. The reconstruction of the implicitfunction E loc from
the total energy values follows the theoretical prediction from section 2.3. The inputs are
the set of total energiesf E i g in which each total energyE i corresponds to one atomic
systemR i . We do not put any restriction on the size of the atomic systems forthat two
di�erent atomic systems R i and R j may contain di�erent numbers of atoms and thatD
is not necessarily the wholeni . On the other hand, the sizeD of the Coulomb values
per atom has to remain constant during the whole simulation. Otherwise, it would be
impossible to assemble the covariance matrices. For our simulation, each coordinate of
the atom x � 2 R is randomly de�ned.
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Size of atomic systems (tests)
Nb. atomic systems Implicit size 12 13 14 15

10 138 2.1257e-01 2.0297e-01 1.9596e-01 1.9369e-01
20 272 3.8405e-02 3.5413e-02 3.3224e-02 3.2212e-02
50 682 1.2911e-03 1.0181e-03 9.0925e-04 8.5913e-04
100 1333 3.5975e-04 2.1320e-04 1.7760e-04 1.2839e-04
200 2700 5.7095e-05 2.7146e-05 1.1649e-05 9.6627e-06
300 4032 4.3027e-05 1.5299e-05 5.1034e-06 3.5984e-06
500 6717 1.6109e-05 5.5015e-06 2.5408e-06 1.5625e-06

Table 3.1. Errors in term of number of atomic systems with four Coulomb
coordinates per atom.

As a �rst test for examining the accuracy, we consider several training atomic systems
where the number of atoms in each systemR i varies from ni = 12 to ni = 15 which is
chosen by some random number generator. To test the accuracy, we consider additional
5000 atomic systems whose sizes also vary from 12 to 15. The results of the computations
are collected in Table 3.1 which contains the accuracy of the local energy E loc. It shows
the inuence of the numberN of training atomic systems and the implicit size which is the
size of the involved covariance matrices. Note that the implicit size is much larger than
the number of atomic systems so that much larger capacity of the computer memories
are required than in the usual �tting [12]. We examine the accuraciesfor each group
of atomic systems categorized according to their sizesni = 12; :::; 15. In our case, the
implicit dimension and the atomic number areD = 4 and Z = 5 respectively. We observe
that we have generally a good accuracy improvement when the number N of the atomic
systems increases irrespective of the sizeni of each atomic system because the value of
closest neighborsD is �xed.

We would like now to investigate the inuence of the implicit dimensionD on the accuracy
of the local energies. As in the former test from Table 3.1, we take again 5000 testing
atomic systems. We vary the value of the dimension in the rangeD = 4 till D = 7
which controls the number of Coulomb values that are considered for each atom. The
results of the test are collected in Table 3.2 where it can be observedthat the dimension
a�ects the accuracy. A higher dimension is somewhat more di�cult toapproximate
than a lower dimension. Nonetheless, it can be observed that the error reductions are
somehow comparable for all dimensions. As the number of the atomicsystems grows, the
improvements of the accuracy are relatively of the same size for allconsidered dimensions.
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In order to observe the error reduction more clearly, we would like to analyze the accuracy
of the total energy. In Fig. 2(a), we display the error plots in function of the number of
training atom systems. Both the axis for the number of atomic systems and the axis for
the error in the total energy are logarithmically scaled. We examine two di�erent cases
admitting dimensionsD = 4 and D = 6 which correspond respectively to the blue curve
with triangular markers and the red curve with square markers. The results exhibit that
the performance is e�cient for both test cases. The caseD = 6 is somewhat more di�cult
to approximate than the caseD = 4 but both situations show that a good accuracy is
possible to be reached as more and more atomic systems are added into the training
con�gurations.

Coulomb closest neighbors
Nb. atomic systems Implicit size D = 4 D = 5 D = 6 D = 7

10 150 2.0280e-01 3.8312e-01 6.2124e-01 1.0541e+00
20 300 3.8980e-02 1.6537e-01 3.4794e-01 8.0643e-01
50 750 1.0663e-03 7.9429e-03 5.8230e-02 1.3724e-01
80 1200 2.1809e-04 2.1177e-03 1.8412e-02 5.0782e-02
100 1500 7.0613e-05 1.0199e-03 6.2647e-03 3.6338e-02
400 6000 5.9077e-06 2.1401e-05 2.0990e-04 1.6834e-03
500 7500 2.2626e-06 9.4676e-06 9.9216e-05 8.4464e-04
600 9000 2.0130e-06 6.9972e-06 6.6619e-05 5.7867e-04

Table 3.2. Inuence of the implicit dimension (Number of the closest neighbors).

The purpose of the following test is to apply the potential energies obtained from the
�tting process into a molecular dynamic model. We focus only on a two-body potential
for the computation of the potential energy. In fact, we utilize the following Lennard-Jones
potential energy [16] for the molecular dynamics:

(3.77) E =
X

� 6= � 2R

ELJ
�
kr � � r � k

�
where ELJ (r ) := 4 �

� � �
r

� 12
�

� �
r

� 6
�

:

This corresponds to the general theory in (2.32) where the unknown function is ELJ .
We replace only the sum in (2.32) by a sum with two indices which can be organized
lexicographically in order to obtain a sum with a single index. The implicit variables
in this case areq�;� := kr � � r � k so that we have the dimensionD = 1 for the two-
body potential. The atomic forces at each MD step are obtained by taking the analytical
partial derivatives of the Gaussian �tting which can be computed explicitly. Taking �nite
di�erence from the potential energy is known to possess a diverging energy conservation.

21



The purpose of the test is to compare the MD simulation using the direct potential
energy on the one hand and the one using the Gaussian �tting on theother. The total
energy which is the sum of the kinetic energy and the potential energy should be kept
approximately constant during the whole molecular dynamic steps. We want to compare
the results pertaining to the energy conservations. The curves for the total energies are
shown in Fig. 2(b) for several MD steps. One can observe that thetotal energies for the
two methods align well. The closeup shows that at each MD steps, thetwo results di�er
somewhat but the general energy conservations remain practically unchanged.

We want to examine the inuence of the temperature on the whole molecular dynamic
simulation. The adjustment of the temperatures is regulated by the scaling method
of the kinetic energies which is a well-known method for regulating temperatures. In
fact, one executes the molecular dynamic simulation for su�cient number of steps until
the equilibrium is reached before one applies a constant scaling factor to the kinetic
energy. An illustration of that situation is depicted on Fig. 4(a) where 200 MD steps are
executed to reach the equilibrium. Three di�erent temperature adjustments are displayed
there. One of them corresponds to a heating adjustment while theother two are used
for cooling. These temperatures are respectivelyT = 0:78Tequil , T = 0:62Tequil and
T = 1:28Tequil . When the desired cooling or heating temperature values are attained, one
applies again a normal MD simulation. In our case, the whole simulation consists of 2000
molecular dynamics steps. We want now to investigate the radial distribution function
which was met in (2.69). We use the local potential energies which have been separated on
atoms by using the former method. The radial distribution functionquanti�es the general
distribution of each atom with respect to its neighbors. The values have been averaged
with respect to the whole molecular dynamic trajectories. The results of the RDF tests
are depicted on Fig. 4(b) where the horizontal axis describes the average radius from an
atom. We consider four situations which correspond to four di�erent thermal values. In
general for all values of the temperature, the RDF value is zero until the ideal radius is
reached at the position where the RDF attains its peak. That is followed by some values
which alternate in the neighborhood of the unity. The heights of thepeak are very much
a�ected by the temperature. The peak values are 1:7, 2:3, 2:8 and 4:9 for the temperature
T = 285:71Tequil , T = 2:1930Tequil , T = 0:2917Tequil and T = 0:0604Tequil respectively.

By using the proposed potential, one obtains the phenomenon of atom clustering in the
case of freezing temperatures. By executing su�ciently many molecular dynamic steps,
the atoms automatically form clusters by accumulating close to one another. In Fig. 3, we
can observed some instances of such cluster formations. Atoms which are close enough to
one another are depicted with the same colors. That is another validation that the pro-
posed Gaussian potential energies can e�ciently simulate molecular dynamics. This clus-
tering phenomenon can also be con�rmed by the radial distribution functions in Fig. 4(b)
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because a high peak averagely reects the phenomenon of dense neighbors next to each
atom.
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