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MOLECULAR DYNAMICS USING TWO-BODY POTENTIAL FROM
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ABSTRACT. We propose a stochastic tting for deducing a potential from a tal
energy which can be incorporated inside a molecular dynamic prograithe objective of
that tting process is twofold. First, the total energy can be repoduced with a su cient
accuracy. In addition, we want to separate the potential energyto atomic contributions.
The only inputs in the stochastic regression are the total energie$ the atomic systems.
The rationale supporting that process is that a molecular dynamicsrpgram necessitates
the energy per atom in order to be able to compute the force applied each atom. That
needs to be calculated at each molecular dynamic step. In contragh electronic structure
packet such as DFT does not provide energy per atom but only thetal energy of the
complete system. As for the applications, we examine the perfornee of the method
with the help of a mathematical model. Afterwards, we use it for quaum applications
in which we compare the direct method and the unobserved tting wit respect to the
energy conservations. For a molecular dynamic application, we exea® the atomic cluster
formations during freezing when the proposed potential is used.though the method is
generally applicable, we restrict in this paper to total energies whidwe reproduced from
two-body potentials for the molecular dynamic simulation.

1. Introduction

We are mainly interested in bridging some gap in multiscale computationglLwhich has
become more and more investigated in the last decades. Multiscalenputation is the
sequence of simulations from nanoscale quantum mechanics till n@smopic simulation.
This sequence usually consists of electronic structure, moleculamdmics (MD), meso-
scopic simulation, quasi-continuum, till FEM/CAD (Finite Element Method/Computer
Aided Design). The central component that a user usually wishes foerfection in MD
packages [1, 3, 9] is the local forces which are derived from the grtal energy. That
is because all other parts of MD packets are almost optimal: time irgeation, atom
repositioning, etc. There are numerous empirical potentials includinLennard-Jones,
Finnis-Sinclair, ReaxFF(Reactive Force Field), REBO(Reactive Empical Bond Order)
and BOP(Bond Order Potential) among others. In Fig. 1(b) we illustate a molecular
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dynamic simulation of a graphene fracture using REBO potentials whe the colors in-
dicate the potential energy per atom. In this document, we would l& to consider the
part of multiscale computation between electronic structure suchs DFT and molecular
dynamics which is graphically illustrated in Fig. 1(a). The main problem in bdging that
gap is the separation of atomic contributions of the potential engy. In fact, a quantum
packet provides only the total energy of a given atomic con gur&n whereas a molecular
dynamic package requires the atomic contribution in order that théorce applied to each
atom can be computed at every molecular dynamic step. We are ingsted in molecu-
lar dynamics where the potential is obtained from a pre ting proceswhich consists in
splitting the potential energy into atomic local energies. We propesa stochastic method
whose only observed inputs are the total energy while the objeativs to reconstruct the
local energy per atom.

(@) (b)

Figure 1. Motivation: (a)Local energy computation and molecular dy-
namic simulation (b)Potential energy in a graphene fracture.

The method presented here is based upanachine learningwhich uses the concept of
learning on the y. It means in general that when an atom or a con guration passes
in one state, a certain computation is performed. Upon passing ohdt state for the
next times, the computation is not repeated any more but experiees from previous
computation is used. The machine learning process generates austure [14] which
enables the e cient and fast access of such a methodology. Our tvation is to generate
a system which is both accurate and fairly inexpensive to evaluate h& proposed method
is based on stochastic method where the expectancy and the vaia of the prediction
need to be computed. One utilizes the Matern correlation functiorof the assembly of
the covariance matrices. The stochastic posterior depends onlg the input observed
total energies. As a consequence, it can be computed once foraall it is looked up
during future computations. For an MD simulation, what is really reqired is not the

energy but the force derived from that energy. Hence, the deaitive of the prediction will
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be computed analytically. That is important because using Finite Di eence is known
to diverge the energy conservation in MD. During the simulation, on@eeds to solve
a nonlinear optimization pertaining to the logarithm marginal likelihood. We present a
method for avoiding the singularity at the diagonal of the covariarematrix. Our method

can be applied to all sorts of quantum information but we mainly focusn the atomic

energy in this paper.

The practical implementation is divided into two applications. The rstone is the investi-
gation of the method by using some mathematical system. In thatse, we consider some
exact solution and we reconstruct the internal local energy fution by using our theoret-
ical method. The purpose of that test is to examine the performae of the method by
comparing the exact solution with the solution provided by the tting. The local energies
are expressed in term of the Coulomb matrix. As for the second dmation which is
based on quantum systems, this paper presents only a preliminarpik because evaluat-
ing DFT is a very time-consuming process. As a consequence, we pare an MD using
Lennard-Jones and an MD where the potential is obtained from ubserved Gaussian
regression. In order to gauge the simulation quality, we investigathe radial distribution
function (RDF) for various values of the temperature by using theotential which was
obtained from the unobserved tting. The general tendency offte RDF curve is to start
from zero values followed by a sudden peak which in turn is followed bysbow approxi-
mation of the unit value. In general, the height of the peak depends the temperature.
For very cold temperature, the peak is remarkably high while it is bahg observable when
the temperature is very warm. To validate the use of the atomic sepation approach, we
investigate the results of the MD simulation at freezing temperat@s. The formation of
clusters of atoms which features the phenomenon of freezing feenatures as described
in [2, 20] will be practically reconstructed. The adjustment of the@mperature value is
regulated by using the method of kinetic energy scaling. By using themobserved Gauss-
ian regression, we achieve total energy conservation as one olese the energy values
at many MD steps. In addition, we will compare the energy values bysing the direct
method and the proposed atomic separation method.

2. Theoretical methodology

2.1. Potential energy w.r.t. nuclei coordinates. Consider a system composed of
n atoms R = frigl, and m electronsX = fx;g%,. The main problem in electronic
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structure computation involves the general Hamiltonian [16, 4, 13Jperator

X1 2 2 )( )( X1 OeZ
(2.1) H = — 0 X S e R
2M 2mg . o kxi ik

i=1 i=1 j=1

1 XX Z,Z N 1_)(” xXn q§
kri I'jk 2 kXi Xjk

i=1 j6i

+

i=1 i6j
where ~ is the Planck constant divided by 2, ¢ is the electronic chargem, and My

represent the electron mass and the mass of tketh nucleus while the charge of th¢-th
nucleus isZ; = jgjn; in which n; is the atomic number.

The wave function is the eigenfunction corresponding to the small eigenvalue of the
eigenvalue problem

(2.2) H = Emn ; = (e Xa N Xm):!
The kinetic energies of the nucleus and electron are

X2 ) =2 X )
2.3 T : T where T, = —1r < Tg = re:
(2:3) A : A o My T E 2m,

The third summations of (2.1) provides the nucleon-electron Couldmattraction energy.
The two last summations are the inter-nuclei and inter-electron pilsion energies.

We shall de ne the atom-electron interaction, the inter-nucleon perator and the inter-
electron interaction operatorsVae , Vaa and Vege as follows

xo
(2.4) Vag (X155 Xm3 F1; 555 0n) = Vae (Xi);
i=1
1)@ xXo
(2.5) Vaa (F;i5rn) = = ZiZiv(ri;ry);
i=1 j=1
1)(” X1 X
(2.6) Vee (X155 Xm) = = EV(Xi; Xj);
j=1 i=1
where
GZ| 1
2.7 = —; u) = ——
(2.7) Vae (X) . X 1K v(u; ud U Uk
Thus, one has
(28) H = TA + TE + VAE + VAA + VEE:

We use theBorn-Oppenheimeror adiabatic approximation assumption stating that the
mass and the volume of the atoms are very large in comparison to Heoof the electrons.

In fact, an electron is 2000 times lighter than any nucleus such thahe atoms move
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comparatively slower than the electrons. Thus, electrons are supsed to follow the
movements of the atoms in the sense that

2.9  (ryunryXganXm) = ( ryganrn) (X iixm) foreach R =(rq;ry):

As a consequence, we treat the time-independent Hamiltonian opé&sr with respect to
the a set of nucleir; which are supposed to be stationary. That is to say, for each given
R = (rq;:::5ry), the initial electronic structure is reduced to the expression

2 X xXnoXn ®Z; 1 X" X1 qg

-+ — + _
) ) . KX; I'jk kx; Xjk
i=1 i=1 j=1

(210) HB:O: =

2Me ji=1 i=1

Thus, the eigenproblem corresponding to the above Born-Oppeagimer Hamiltonian op-
erator becomes

(2.11) (Te + Vag + Vee) r(r1;i5rn) = Er r(roiirn)

in which the ground state energyEr and the reduced wave function g depend on the
given nuclear coordinateR = (rq;:::;rn). Due to the independence of onX = fx;gin
(2.9), one deduces from (2.11) that

(2.12) H(R) R(X) = (Ta+ Te+ Vag +Van + Vee) ( R) r(X)
(2.13) = (Ta+Van)(R) r(X)+ Er ( R) r(X)
(2.14) = (Ta + Vaa + Er) ( R) r(X)

By using (2.2) and (2.9) in the last equality, one obtains

(2.15) (Ta + Vaa + Er) ( R) r(X)= Emin ( R) r(X):

By assuming the independence ofg (X) on the atomic kinetic term such as
(2.16) Ta (R) r(X) = r(X)Ta (R)

one obtains from (2.15) .

(2.17) R(X) (Ta + Vaa + ER)( R)I = Emin ( R) r(X):

Thus, one obtains the Schredinger equation with respect to theuslear coordinates only

(2.18) (Ta + Vpor) ( Ta;:5rn) = Emin (( T55510);
in which
(2.19) Voot := Vaa + Er such that Epoe := h Vpo i

For the molecular dynamic applications, one useg,,; which is the e ective inter-atomic

potential or the potential energy surface. With the help of the gantum assumptions
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above, that last equation takes only the nuclei coordinates,, ..., r, of the atoms as
variables. Since it is generally very expensive to evaluate the funatio

(2.20) (re; ) 70 Epor(ra; i ra);

one uses a simpli cation or an approximation oE,y. It is impossible to express that
function analytically for large MD systems which consist of multi-milliongtoms. E cient
empirical approximations of (2.20) for extremely large systems inda: Finnis-Sinclair,
EAM (Embedded Atom Method) and BOP (Bond Order Potential).

2.2. Computing the potential energy surface. Exact solutions for the above equa-
tion are only known for very few special cases. Hence, numericattimods must be used
for the general cases. The domain of computationis R® which is supposed su ciently
larger than the nuclei cloudf & ngzul such that the above operator has neglecting in uence
beyond it. We consider the domain of simulation By considering the etean spins which
take values +1=2 or 1=2, we are searching for the electronic wave function

Ne
f  1=2;+1=2g ' R verifying the eigenproblem

(221) Hego ( 225 ne)= (1535 Ne) Where  =(X;; )2 f  1=2+1=2g

such that is antisymmetric ( :; ;5 ;i) = (=g ) for all distinet
i;j = 1;:;N. Exact solutions for equation (2.21) are only known for very few sgial
cases. Hence, numerical methods must be used for the geneesles. The ground state
energy corresponds to the smallest eigenvalug,, of (2.21). The antisymmetrization
operator A applied to any N -variate function f is de ned by

NI sgnP)f P

P2 N

(2.22) A(f) =

in which y is the set of permutations overf 1;:::;Ng and sgnf) designates the sig-
nature of a permutationP. If f is a tensor product function asf = N, f;, then the
antisymmetrizer coincides with the Slater determinant or wedge pduct

o fa( 1) fu(2) =0 fa( )
(2.23) A Fo( g ):% le(ul) le(uz) fz(mN)

-
fnC 1) fn(2) ot fn(n)

The antisymmetrization operatorA has the properties that it commutes with the Hamil-
tonian operator and that foranN N matrix M such asA(M ) =det( M)A(). The
Hartree-Fock approach is the variational formulation on the Hamilbnian operator (2.10)
where the trial functions are antisymmetric functions. The main di culty is that the

problem is of N -dimension without taking the electronic spins into account. In addion,
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on account of the antisymmetric property, a direct use of the Slat determinant often
produces computations having orders dD(N!) which are very expensive. Counting the
electronic spins lead usually to a factor of"2 which makes the computation even more
intractable.

Some simpli cations of the stationary Hamilton operators have alraly been proposed.
For the DFT(Density Functional Theory), one solves a set of equi@ns for each electron.
The similarity of the solutions is then derived from the theory of KohsSham [5]. The
Kohn-Sham formalism consists in replacing the complicated initial préém into several
ones. For each = 1;:::; Ne

(2.24) 2 V%0 0= E ()

whereV, is the S ective potential energy which depends implicitly on the totaklectron
density (x) = iN:elj i(X)j? such that Ve (x) = Ve [ (X)](X). The problem is then
reduced from dimensions I8, to N, sets of ® smaller problems. The in uence of one
electron with respect to the other electron is measured by the w@itelectron density. These
approaches enable the treatment of Hamiltonian problem even fon &lectronic structure
having a large number of particles on a single desktop. The eigenvaju@blem in (2.24)
is nonlinear because its variational operator

(2.25) %r 2+ Ve (X)

depends on which in turn depends on ;. It is solved by using a sequence of the linear
eigenvalue problems SCF (Self Consistent Field).

The e ective potential is constituted of the Hartree potentialV4, , the exchange correlation
potential Vixc and the external electrostatic eld such as

(2.26) Ve [ (O1(x) = Vul[ ()1(x) + Vxe [ ()I(X) + Ve[ (x)1(x)

in which the Hartree potential is the inverse of the Poisson operatsuch as Vy(X) =
4 (x). For its evaluation, either a Poisso%problem is solved or one convet/with the
Green fundamental solution such a8y (x) = ()=kx rkde. The main feature of DFT
is that one has to approximate the potential by using some correch terms known as
exchange-correlation potential [10, 11]. That is usually done by LDA ocal Density Ap-
proximation) or GGA (Generalized Gradient Approximation). Those &pressions contain
some parameters which are guessed or obtained from some expentad measurements
in term of the Weigner-Seitz radius. Analytic expressions of the aalation energy are
only known in a few special cases which mainly consist of the high and ldensity limits.
The external electrostatic eld potential Ve is provided by the kernel i'\':“l z=kx  Xx;k.

The above exchange-correlation potential is related to the examge-correlation energy by

Viwc = Exc= where one expressdsyc = Ex + Ec as the exchange and the correlation
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parts. In term of the exczhange-correlation energy densitixc one has
(2.27) Exc[ 1= "xc[ I(X) (x)dx  where  "yc = "x + "c:

For the local density approximation (LDA), the exchange &nergyehsity is expressed as
"LDA ()= 0:75(3 (x)= ) sothatEx[ = 0752 ° (x)*2dx. Analytic values
of the correlation energy density are only known for some extrenoases. For the high
density limit, the exchange correlation energy density as approxirted by "c = Aln(rg)+

B + rs(ClIn(rg)) + D as the Weigner-Seitz radiuss is very small. For the low density
limit where r is very large, one hadc = 0:5((go=rs) + (G=rs 2) + (g=rs )+ ). For
other values ofrg, some interpolation of those extreme values is considered. For exde,
by using the VWN-approximation (Vosko, Wilk, Nusair) as in [18], one ha

o)
f %R0)
wheref ( )=0:5((1+ )*3+@ )*® 2)=2¥ 1) while each one of(r; 0), "c(r; 1)
and ",(r) is of the form

(2.28) "c(rs; )™ = "c(rs;0) + "a(rs) @ 9+ "clrsl) "clrs0) F() °

A x? 2b Q
: o= = — + —

(2.29) c=a(X) > In xx) " arctan >+ b

A bx (X Xo)?2  2(b+2xq) Q
(2.30) >X (x0) In X (x) + 9 arctan >+ b
in which x = pE, X(X) = x2+ bx+ cand Q = IO4c k2. The constants A, Xq, b,
c are tting parameters which are dierent for "c(r; 0), "c(r; 1) and "4(r). Once the
solution E; to (2.25) for all i = 1;:::;; N becomes known, the Khon-Sham approach uses
the approximation to E of (2.1) by

e 1Z z

(2.31) Exks = Ei > (X)Vh (x) + (X) Exc[ ()]  Vxc[ (x)] dx

i=1

The main improvement from LDA to GGA is that the exchange-correl@gon energy does
not depend only on the total electron density but also on its gradi¢rsuch asE$S" =
ESEAL; r 1(x). Inthe computations, one represents as a set of basis which are usually
plane waves [19], Finite Element Method [17, 15] or wavelets [7].

2.3. Unobserved information and Gaussian regression. In this section, we will
describe the main points about the unobserved Gaussian regressitVe are going beyond
the usual reconstruction of a functionf by using the observationsy;g such thaty; =
f (xj) + "i becausey; is unobserved in our situation. During the data tting, we do not
reconstruct a global function with respect to the atom coordinas. Instead, we use an
implicit variables g of dimensionD. That is to say, for every atomic systemR having

n atoms we have the new variableg (R) = [, (R);:::;(R)] 2 RP for each atom
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X 2 R. In this theoretical description, q (R) is supposed to be a general mapping
depending on the atom coordinates. But for the applications, theyight have some
physical signi cations such as the Coulomb matrix which we will encoter toward the
end of this paper. We consider many observations involving atomic systemsfR ;g of
number N . For each observation, we have a corresponding total enery, such that

. X
(2.32) Eit = Eoe & (Ri);:5p(Ri) +"; 8i=1;::N

=1

in which "; are measurement imperfections. The observed data &¢, which represent
the total energy for quantum application while the unknown is the foction Ej,.. We
sometimes use the term total energy to refer to the sum of all ldcanergies. It is not
to be confused with the usual total energy which is the sum of theretic energy and
the potential energy. The quantum motivation for this kind of recastruction is that
we are interested in the local energiels,. is applications including molecular dynamics.
Whereas, it is impossible to obtain from a quantum simulator some saiegfEl,.g. The
only values that a quantum simulator provides are a set of total engies fE|, g It is
possible to provide gradient values Ey; and Hessian values@E =@x@x but we do
not treat that yet in this current article. In general, using the gradients and Hessian is
computationally very expensive. Fitting using gradient and higher aler derivatives will
be reported in a subsequent paper. For the next stochastic dedion, we will use the

following Matern correlation function
2 Poy o
S K S
()
where (;° ) are positive hyper-parameters andK is the modi ed Bessel function. In
dimensionD, the spectral density of the Matern function is

2 P2 4D=)2) 2, L 10D,

( ) 2 2
If tends to in nity, one obtains the squared exponential case. Fome special case of
half-integers such as = p+1=2, one obtains a product of an exponential and a polynomial
of orderp such as

(2.33) Kmatern (1) =

(2.34) S(s) =

Y p

2r  (p+1) ® (p+i) "8r el
@p+1) _ il(p i)Y '

For the special cases where=3=2 and =5=2, one has

(2.35) k (r) =exp

P p§r
(2.36) Ks=2(r) = 1+ —— exp —
P p_
5r  5r2 5r
(2.37) Kso(r) = 1+ —+ 7z P —



he number of atoms in thei-th observation isn; fori = 1;::;;N and we denoteM

N
2
%(R1)

i—; Ni. Let us denoteQ the following of implicit variable

3 9
% (R1) %
1-st observation

B(R1)

q'(R1) '(Ra) ' (R1) 9
3
Next observations
3
®(Rn)  %(Rn) % (Rn) %
™ (Ry) " (Rn) & (Ry) N -th observation

which is a matrix having the size
variables x;.

Let L be a binary matrix of size M

D) where D is the dim’ension of the training
N) having entries 0 or 1 such

that only the Coulomb entries in thei-th observation are relevant for thei-th row of

LT. Denote Q = [q;]™, so that one

has the relationE],. :

= Ec(di) where fE|

M
Iocgi:l

are unobserved samples. As a consequence, one has the follonongriance relation for

noise-free observations

(238)  K(RpRs) =
(2.39) = cov
(2.40) =

ihj =1
(2.41) = L™ p; ]

i =1

For a noisy dataE}, = Eu(Ri)+ "
distribution "

p
tot »

(2.42) COV(EP, ES,) =

LT [p;ilL"[s;jICOV Ej,

COV Ewt(Rp); Ewt (Rs) = COV( Et%t ;'Etsot

LT[0;iEle;  LTIS;iIEl.
ji=1
' E

loc

L[i;sIK(ai;0) = LTK(Q; Q)L [p;sl:

where the additional noise follows the Gaussian

N (0; 2), one has the covariance

2
n

LTK(Q; Q)L [p;s+

ps-

Introduce the next vectors of observed and unobserved inputs

(2.43) Etot

= [Eios 5 Bl

EIoc = [EI%)C; B EI'\(;lc]T:
12



In the presence of noise, the marginal likelihood is the integral ofeHikelihood and the

prior such as
Z

(2.44) p(yjX) = p(yjf) p(fjx)df

If E:jQ follows the Gaussian distributionN 0;LTK (Q; Q)L , and one has no noise,

then the marginal likelihood is
1

(245)  PEiQ =@ ) "LTK(QQL] exp  SEu L'K(QQL Ew

which implies by taking the logarithm marginal likelihood

PEGIQ) LTK(QQL @ )V = exp ZEL L'KQQL 'E

1
EEJOt LTK(Q; Q)L 'Eq

09 P(EwiX) + 2105 LTK(QQ)L + > log(2 )

from which one obtains the marginal likelihood

(2.46) 10g NEQ) = SEL L'K(QQL 'Ew 2log L'K(QQL > log(2 ):

2
In the presence of noise N (0; 2) by using (2.42), the log marginal likelihood becomes
. 1
(247)  log pEwiQ) = SEGL L'KQQL+ flyn Euw
(2.48) %Iog LTK(Q; QL+ Zlyn Nzlog(z ):

The rst term %EtTot LTK(Q; Q)L + 2l lEtot corresponds to thedata-t term.
The second term %Iog LTK(Q;Q)L + 2Iyn is the complexity term The last term
N7 log(2 ) is the normalization term.

For a given test valueQ , the predicted estimation of the local energy follows the Gaussian

distribution ag 4 " #

N O LTK(Q; QL+ Jlnn LTK(Q;Q)
’ K(Q;Q)L K(Q;Q)

That is to say, for Q and Ey, the predictive distribution for a covariate vectorQ is
Gaussian having the following expectancy and variance
h 1
K(Q;QL LTK(Q;QL+ Zlyn  Euw

EXP EIoch ;Q
h i

VAR EoQ iEo;Q = K(Q:Q) K(Q;QL LTK(QQL+ 2lyy LTK(QQ)

where those expressions are dependent on some set of hypeaipaters.

(2.49)

The main objective is to theoretically optimize the marginal likelihood. i practice, using

the log marginal likelihood is more e cient to implement. The partial deiivatives of the
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above estimation with respect to components @f can be expressed analytically as we use
linear entities.

The value ofr for giveng, 2 R® andqgs 2 RP is

2 3
1= 2
(2.50) 2= 0’8 - B g
1= 2
D
in which 4,..., p are hyper-parameters which should be determined by using the log

marginal likelihood. One has =log(’), =log( ;) wherei =1;::;D. In order to apply
an e cient nonlinear optimization to the former functional, we need he partial derivative
of the inverse LTK (Q; Q)L ' with respect to a hyper-parameter . From the fact that

(2.51) @@h K (@O LK QL = @gN = 0;
one deduces
@@LTK (QQL * = LTK (Q;Q)L 1@ L™K (Q;Q)L L™K (Q;Q)L *
- kot TEE Uk @ion

which cannot be simplied any further asL is not invertible. Similarly, one has the
relation

@52)  Zlog LK (QiQL =tace [LTK (QiQL] *SILK (QQL] -
The partial derivative of a covariance matrix entry with respect toa hyperparameter is
(2.53) y

h i h i ﬁ X0

@ Kk r(dp;gs) = k)@ r(ap;as)

1
where r(dp;Qs) = __(Q);i Ck;i)?:

i=1
This is singular in the situation whereq, = qs which occurs on the diagonal entries of
the covariance matrix. In fact, one has

1 O Gk: 2
2.54 @ r(qy; = ' ’ for =1;::::D:
( ) (qp qS) r(qp, qs)
In order to suppress the singularity, one utilizeR(qp; gs) := r?(dp; gs) such that @ R(qp; ds)
is regular everywhere. In additionR(R) := k(' r) is smooth at the origin. Indeed, one
has R(R) = PMATERN ( z:\ ) such that

(2.55) Puatern (1) =  fuatern (t) exp( t)

(2.56) plc\)/IATERN (t) = flslATERN (t) fmarern (t) exp( t)
14



wheref 3, =1+ tandf s, =1+ t+ (1:3)t2_so that

h i
(2.57) foarern (1) fuatern (t) = touarern (t)
where guatern 1S @ polynomial. Therefore, one has
. - L, # o
k Po 0 P75 PR P5PR P75 PR
(25 R = 2—\p—§ fMATERN N fMATERN exp D
P P_P_— P_—P_—
2 2 R 2 R
(259 = TquATERN exp
which is regular for all values of (qy; qs).
2.4. Molecular dynamics of large systems. In general, by considering a Lagrange

function L (t; X1; 132 Xn; Vi) ii5; V) which is a real valued function and several continuously
di erentiable functions q,...,¢,, one obtains the following Euler-Lagrange equation for
eachk =1;:::;n

(2.60)
@, @ @, o
@L tqu(t); o an(t); au(t); i g (t) @@NL tqu(t); o an(t); au(t); i g (t) 0:

We consider a time-dependent system consisting mfatoms where thek-th atom admits
the Cartesian coordinatesy = ry(t) depending on time. By considering the MD Lagrange
function
1 X
(2.61) Lt a5 i) = 5 Mikik® - Epor(ra;iisirn)
k=1
where My is the mass of thek-th ion, the Euler-Lagrange equation (2.60) yields the

following equation of motion which is described as an ODE (ordinary dirential equation)

@,
@k,
for each componeni = 1;2; 3. That expression is the second law of motion wheng [«(t),
kr:2(1), Fk.3(t)] denotes the acceleration while the forcEy = [Fy.1; Fk.2; Fk:3] is applied on
the k-th atom. By considering the kerneV,. of the potential energy, one should normally
obtain the relation 5 b .

(2.63) —?}h Voot] 1=2 @—?J Voot + @—%Vpot

where corresponds to the ground state energy. But the Hellmaireynmann rule states
the independence of the force on the derivative of the ground staenergy such that one
eventually obtains

(2.62) Mk (1) =

=0 Fyg(ro g s 8k=1;:5n

D E
(2.64) @—ijh Voot 1= @—ivpot :
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Every MD iteration consists of the following steps. First, one detemines the atomic force
F«. Then, one has to solve the above equation of motion with the help afy ODE solver.
The usual methods for the ODE solver are based on variants of RystKutta or Verlet
algorithm. Finally, one updates the atomic positionr,. For an expressionA = A(t)

depending ont, we designate the time average by
Z t
(2.65) hAI = lim 1 A( )d:
et

Since the MD trajectory involves only a large number of discrete vads, we utilize the
following discrete counterpart forL number of MD iterations

X
(2.66) PAI = T A( k):

k=1
In the case of two-body potentials where the potential functio’y depends only on the
interatomic distancesrj = kr; rjk, let us review some MD thermodynamic expressions.
The pressure and the temper%ture are respectively given by thepeession
+

1 X X @\ry)
( ) 3 _ ivi i - @I!, ij
* +
1 X
(268) T = 3nk Mivi Vv,
B

i=1
That relates the regulation of the temperature with the kinetic enegy. The radial distri-
bution function for nonzero radiusr is,

1 X X
4r 2n

+

(2.69) o(r) == (r kri rk

i=1 j6i
which quanti es the general distribution of the atoms with respecto their corresponding
neighbors. We have in addition

X Z x
(2.70) V(ry) = V(r) (r ry)dr
i<j i<j
22 1 XX
(2.71) = 4n V(r) (r ry)dr

2 4r%n
i=1 j6i

R
One obtains nally the total potential energy PE =2 n  r?g(r)V(r)dr. In general, the

stress tensor which consists of a kinetic and a potential part is deed, for ; =1;2;3
by

1 X
(272) = MiVi; A/ Fi; ri

g

where one uses the force componen& such that the stress per atom is .; =
16
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Figure 2. (a)Error in the total energy (b)Energy conservation: Lennard
Jones vs. unobserved tting potential.

Mivi. vi + Fi. ri. . In the case of two-body potential, it is reduced into
!
1 X 1X
(2.73) ;T T Mivii vii 5 Fig Ty
I 2 j6i
where F;;. is the -th component of the force between the-th and the j -th particles
while rij. is the -th component ofr; .

3. Practical implementation

In this section, we would like to give some details about the results dig¢ practical imple-
mentation of the formerly described theoretical method. We will @sent results related
to mathematical models as well as to quantum application for moleculaynamics. The
implementation uses C/C++, BLAS/LAPACK and NLOPT. The BLAS pac ket is used
for the fast vector operations. We use LAPACK for the linear opeations such as Cholesky
factorization and dense matrix solvers. The code is a very develdpeersion of the matlab
implementation provided in [12]. The new additional enhancements frothe matlab ver-
sion consist of the following features. First, using NLOPT provides lat of improvements
as compared to the original matlab nonlinear conjugate gradient3.hat can be observed
when both the number of points and the dimension become large in tenlinear opti-
mization of the hyper-parameters. In addition, we can also accepigher derivatives in
the input apart from the functional values. One can use the entirgradient or only some
components of it. Furthermore, the gradient of the kernel-badeapproximation can be
evaluated by using analytical expressions instead of using nite dirence. The initial
guess of the hyper-parameters is provided by the users. One camsider the determi-

nation of the nal hyper-parameters as an unconstrained nonli@& optimization. We
17
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Figure 3. Atom cluster formations after freezing by using the potential
from Gaussian unobserved tting.

use NLOPT for the nonlinear operations [6] for the optimal hypergrameters in the log
marginal likelihood (2.47). NLOPT supports diverse nonlinear optimiZzéon operations
[8] in which local optimizers are involved. A local one searches only insid neighbor-
hood of a certain provided starting initial guess. The optimizers arperformed by using
derivative-free or gradient-based algorithm which are available in NDPT. Derivative-
free algorithms include BOBYQA (Bond Optimization BY Quadratic Approximation),
COBYLA (Constrained Optimization BY Linear Approximation), NEWUO A (NEW Un-
constrained Optimization Algorithm). Gradient-based methods inclde MMA (Method of
Moving Asymptotes) and LBFGB (Limited memory Broyden-FletcherGoldfarb-Shanno).

As a rst application, we consider the reconstruction of a mathentacal model where the
exact solution is explicitly known. In an atomic systenR constituting of n atoms (4,

ra, ...,ln), the Coulomb matrix g. admits the following entries for; =1;::;n:
.= Z Z =k k if
(3.74) qg. > r r I 6
g = 0:5z2<

in which Z is the nuclear charge of the -th atom. In our situation, we consider only
homogeneous systems consisting of one element type such that Z is a constant. We
x any positive number D which will then be the implicit dimension. That is to say, for
each atomr , the implicit variables g, (R);:::; 5 (R) will be the largest Coulomb entries

involving the atom r . Except for the Coulomb entryq = 0:5Z%4, the largest Coulomb
18



values correspond to the closest atom neighbors. The purposetlod rst application is
to reconstruct the local energyE .. which is aD -variate function. In order to be able to
compare the reconstructed function with the original one, we ceitder an exact function
which maps an atomic systenR =(rq,..., rp) to
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Figure 4. Using the unobserved Gauss reconstruction: (a)Temperature
adjustment and uctuation (b)Radial distributed functions for di erent

temperatures.
X
(3.75) Ewt(R) = Ewc ¢ (R);:55p(R) ;  where
=Atom
x 5
(3.76) Ec(q) = sin(g); g=(o;u50) 2R
i=1

It is possible to evaluate the errors with respect to the local energr the global one. As
in the real situation, the above exact function is unchanged by regering the sequence of
the atoms and the Coulomb matrix. The reconstruction of the implicifunction E, from
the total energy values follows the theoretical prediction from séon 2.3. The inputs are
the set of total energied E;g in which each total energyE; corresponds to one atomic
systemR;. We do not put any restriction on the size of the atomic systems fdhat two
di erent atomic systems R; and R; may contain di erent numbers of atoms and thatD
is not necessarily the wholen;. On the other hand, the sizeD of the Coulomb values
per atom has to remain constant during the whole simulation. Othense, it would be
impossible to assemble the covariance matrices. For our simulatiorach coordinate of

the atom x 2 R is randomly de ned.
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Size of atomic systems (tests)

Nb. atomic systems Implicit size 12 13 14 15
10 138 2.1257e-01 2.0297e-01 1.9596e-01 1.9369e-01
20 272 3.8405e-02 3.5413e-02 3.3224e-02 3.2212e-02
50 682 1.2911e-03 1.0181e-03 9.0925e-04 8.5913e-04
100 1333 3.5975e-04 2.1320e-04 1.7760e-04 1.2839%e-04
200 2700 5.7095e-05 2.7146e-05 1.1649e-05 9.6627e-06
300 4032 4.3027e-05 1.5299e-05 5.1034e-06 3.5984e-06
500 6717 1.6109e-05 5.5015e-06 2.5408e-06 1.5625e-06
Table 3.1. Errors in term of number of atomic systems with four Coulomb

coordinates per atom.

As a rst test for examining the accuracy, we consider severaldming atomic systems
where the number of atoms in each systeml; varies fromn; = 12 to n; = 15 which is
chosen by some random number generator. To test the accurame consider additional
5000 atomic systems whose sizes also vary from 12 to 15. The resoftthe computations
are collected in Table 3.1 which contains the accuracy of the local egg E ... It shows
the in uence of the numberN of training atomic systems and the implicit size which is the
size of the involved covariance matrices. Note that the implicit size isuoh larger than
the number of atomic systems so that much larger capacity of theomputer memories
are required than in the usual tting [12]. We examine the accuracie®r each group
of atomic systems categorized according to their sizes = 12;:::;15. In our case, the
implicit dimension and the atomic number areD =4 and Z =5 respectively. We observe
that we have generally a good accuracy improvement when the nuertN of the atomic
systems increases irrespective of the simg of each atomic system because the value of
closest neighbor® is xed.

We would like now to investigate the in uence of the implicit dimensiorD on the accuracy
of the local energies. As in the former test from Table 3.1, we takgan 5000 testing
atomic systems. We vary the value of the dimension in the range = 4 till D =7

which controls the number of Coulomb values that are consideredrfeach atom. The
results of the test are collected in Table 3.2 where it can be observit the dimension

a ects the accuracy. A higher dimension is somewhat more dicult toapproximate
than a lower dimension. Nonetheless, it can be observed that ther@r reductions are
somehow comparable for all dimensions. As the number of the atonsigstems grows, the

improvements of the accuracy are relatively of the same size for edinsidered dimensions.
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In order to observe the error reduction more clearly, we would lik@tanalyze the accuracy
of the total energy. In Fig. 2(a), we display the error plots in funiton of the number of
training atom systems. Both the axis for the number of atomic systns and the axis for
the error in the total energy are logarithmically scaled. We examinenb di erent cases
admitting dimensionsD =4 and D = 6 which correspond respectively to the blue curve
with triangular markers and the red curve with square markers. Té results exhibit that
the performance is e cient for both test cases. The cade = 6 is somewhat more di cult
to approximate than the caseD = 4 but both situations show that a good accuracy is

possible to be reached as more and more atomic systems are addéd the training
con gurations.

Coulomb closest neighbors

Nb. atomic systems Implicit size D =4 D=5 D=6 D=7
10 150 2.0280e-01 3.8312e-01 6.2124e-01 1.0541e+00
20 300 3.8980e-02 1.6537e-01 3.4794e-01 8.0643e-01
50 750 1.0663e-03 7.9429e-03 5.8230e-02 1.3724e-01
80 1200 2.1809e-04 2.1177e-03 1.8412e-02 5.0782e-02
100 1500 7.0613e-05 1.0199e-03 6.2647e-03 3.6338e-02
400 6000 5.9077e-06 2.1401e-05 2.0990e-04 1.6834e-03
500 7500 2.2626e-06 9.4676e-06 9.9216e-05 8.4464e-04
600 9000 2.0130e-06 6.9972e-06 6.6619e-05 5.7867e-04

Table 3.2.

In uence of the implicit dimension (Number of the closest neighbors)

The purpose of the following test is to apply the potential energiesbtained from the
tting process into a molecular dynamic model. We focus only on a twbedy potential
for the computation of the potential energy. In fact, we utilize tke following Lennard-Jones
potential energy [16] for the molecular dynamics:

X

(3.77) E=

6 2R

ELJ kr

r k

where

ELJ(r) =4

12

r

This corresponds to the general theory in (2.32) where the unkwa function is E ;.
We replace only the sum in (2.32) by a sum with two indices which can beganized
lexicographically in order to obtain a sum with a single index. The implicit vaables

in this case areq.

= kr

r k so that we have the dimensiorD = 1 for the two-

body potential. The atomic forces at each MD step are obtained byking the analytical
partial derivatives of the Gaussian tting which can be computed exicitly. Taking nite
di erence from the potential energy is known to possess a divergirenergy conservation.
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The purpose of the test is to compare the MD simulation using the dicé potential
energy on the one hand and the one using the Gaussian tting on thether. The total
energy which is the sum of the kinetic energy and the potential erggr should be kept
approximately constant during the whole molecular dynamic steps. 8Want to compare
the results pertaining to the energy conservations. The curvesrfthe total energies are
shown in Fig. 2(b) for several MD steps. One can observe that tletal energies for the
two methods align well. The closeup shows that at each MD steps, th&o results di er
somewhat but the general energy conservations remain practigaunchanged.

We want to examine the in uence of the temperature on the whole nhecular dynamic
simulation. The adjustment of the temperatures is regulated by # scaling method
of the kinetic energies which is a well-known method for regulating tgreratures. In
fact, one executes the molecular dynamic simulation for su cient nmber of steps until
the equilibrium is reached before one applies a constant scaling facto the kinetic
energy. An illustration of that situation is depicted on Fig. 4(a) whee 200 MD steps are
executed to reach the equilibrium. Three di erent temperature agistments are displayed
there. One of them corresponds to a heating adjustment while th@her two are used
for cooling. These temperatures are respectively = 0:78Tequi, T = 0:62T¢qui and
T = 1:28Tcqui- When the desired cooling or heating temperature values are attaid, one
applies again a normal MD simulation. In our case, the whole simulatioroisists of 2000
molecular dynamics steps. We want now to investigate the radial drdbution function
which was met in (2.69). We use the local potential energies which leelveen separated on
atoms by using the former method. The radial distribution functiorquanti es the general
distribution of each atom with respect to its neighbors. The valuesdve been averaged
with respect to the whole molecular dynamic trajectories. The rela of the RDF tests
are depicted on Fig. 4(b) where the horizontal axis describes thgemage radius from an
atom. We consider four situations which correspond to four di erg thermal values. In
general for all values of the temperature, the RDF value is zero tiinthe ideal radius is
reached at the position where the RDF attains its peak. That is folloed by some values
which alternate in the neighborhood of the unity. The heights of th@eak are very much
a ected by the temperature. The peak values are:1, 23, 28 and 49 for the temperature
T =285:71Tequii, T =2:1930Mequit, T = 0:2917equi and T = 0:0604T¢q,i respectively.

By using the proposed potential, one obtains the phenomenon ofoat clustering in the
case of freezing temperatures. By executing su ciently many motelar dynamic steps,
the atoms automatically form clusters by accumulating close to onaather. In Fig. 3, we
can observed some instances of such cluster formations. Atontsch are close enough to
one another are depicted with the same colors. That is another vadition that the pro-
posed Gaussian potential energies can e ciently simulate moleculaydamics. This clus-

tering phenomenon can also be con rmed by the radial distributionuhctions in Fig. 4(b)
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because a high peak averagely re ects the phenomenon of dens@lmbors next to each
atom.
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