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Figure 1. Parametric decompositions: (a) DNA molecule,

(b)Hexahedral decomposition

1. Introduction

B-Spline and NURBS techniques have already been successfully used in Isogeometric

Analysis which is a method for directly integrating CAD models in numerical simula-

tions. Our purpose is to improve existing techniques to enhance the efficiency. First,

we use local B-Spline subdivisions and knot insertions for the goal of achieving better

accuracy in simulations where we concentrate on two and three dimensions. Traditional

simulation methods employ fine meshes to represent geometries. Such a representation

suffers from a geometric flaw: an unnecessarily large degree of freedom is often required

to capture the geometric accuracy. In this paper, we propose a method that can be

categorized as a meshless one because we do not consider a fine mesh to represent the

initial geometry but rather a set of very coarse parametric spline blocks.

Before presenting our method, a survey of some pertaining works is in order. The

initial purpose of Bézier and B-splines entities [3, 10] was to design curves and surfaces

especially for car bodies and CAD components. But later they found their use in

different disciplines such as molecular modelings and statistical data processing. The

desire to apply simulations on curved models is not new. In fact, Höllig and Reif have

[16] used the WEB spline to approximate the solution to a PDE. Curved elements

motivate equally the isogeometric analysis using NURBS (Non-Uniform Rational B-

Spline) described in [17]. As for wavelets, the Wavelet-Galerkin method [14, 15] is

able to produce a good accuracy with low computational cost by means of adaptivity.

Harbrecht and Randrianarivony [14, 15] have successfully applied Wavelet methods on

CAD and molecular models similar to those in Fig. 1(a). As inputs, they accept a CAD
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file in an IGES format [22] or a molecular model in PDB format. In the domain of CAD

preprocessings, some former works are as follows. For transfinite interpolations [8, 12],

Coons patches usually serve as tools to generate the mappings [10] from parametric

domains. Brunnett and Randrianarivony have proposed [19] a splitting method for

CAD surfaces. They have also invested a lot to implement their methods by using the

IGES format [22]. But they did not treat the global continuity of the resulting patches.

For molecular surfaces, global continuity can be obtained exactly [14, 15, 20] because

all boundary curves are circular arcs which can be easily parametrized. That is not the

case for other CAD curves which need more careful treatments. The main task in [21]

is the correlation between the Coons patch which resides in an individual patch and

the global continuity.

This paper is organized as follows. We start by formulating the problem in Section 2

which contains also the space of approximation and the discontinous Galerkin (DG)

scheme using B-splines. We formulate there the treatment of the problem on the param-

eter domain instead of the physical domain. We will see in Section 3 the establishment

of an a-posteriori error estimator [1]. That will be deduced from the de Boor-Fix func-

tional. In Section 4, we describe some outcomes of practical adaptive simulation using

our DG method.

2. Discontinuous Galerkin Using B-Splines

2.1. Parametric Setting. Our purpose in this document is to solve a Poisson problem

having a Dirichlet boundary condition on a multi-dimensional domain Ω ⊂ Rd where

d = 2, 3. More precisely, we would like to solve the following problem

∆u(x) = f(x) for x ∈ Ω,(2.1)

u(x) = g(x) for x ∈ ∂Ω(2.2)

where the domain Ω is supposed to be constituted of a set of very coarse parametric

patches as in Fig. 1(b). That is, we suppose that there are mappings Mi such that

(2.3) Ω =

N⋃

i=1

Mi

( d∏

j=1

[ai,j , bi,j]
)
.

For the sake of notational convenience, we suppose that we have only a single patch

M = M1 as illustrated in Fig. 2(b). Later on, the domain Ω will be termed physical

domain while P :=
∏d

i=1[ai, bi] parameter domain. We suppose that M is invertible,

differentiable and that it admits a regularity condition meaning that the Jacobian

matrix DM has nonvanishing determinant everywhere. In addition, we suppose that
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Figure 2. (a)Counter example of a regular mapping M, (b) A dis-

cretization Th on the parameter domain and a mapping onto the physical

domain Ω.

there is some positive constant µ such that the linear operators DM and DM−1 have

the next bounds

(2.4) ‖DM‖∗ := sup
x∈Rn\{0}

‖DMx‖
‖x‖ ≤ µ, and ‖DM−1‖∗ ≤ µ.

Finally, we suppose that M is of smoothness Cm where m is sufficiently large. The

mapping M is in general supposed to be a B-spline or NURBS patch [10]. A counter

example of a mapping violating the above condition is observed in Fig. 2(a). An efficient

preparation of such mappings is discussed in [18, 19, 21]. For two integers k ≥ 1 and

n ≥ k − 1, the definition of B-spline basis functions with respect to the knot sequence

ζ = (ζi)
n+k
i=0 uses the divided difference of the truncated power functions (· − t)k

+ given

by

(2.5) (x − t)k
+ :=

{
(x − t)k if x ≥ t,

0 if x < t.

More precisely, one has the definition and support property

Nk
i (t) = Nn,k,ζ

i (t) := (ζi+k − ζi)[ζi, ..., ζi+k](· − t)k−1
+ ,(2.6)

Supp(Nk
i ) = [ζi, ζi+k].(2.7)

To ensure that the B-spline functions are open, we assume that the knot sequence

ζ is clamped. That is, the sequence ζ0, ..., ζn+k is provided as: ζ0 = · · · = ζk−1 and

ζn+1 = · · · = ζn+k. For the multi-variate case (d = 2, 3), let us consider d spline

properties (n1, k1, ζ
1),..., (nd, kd, ζ

d) and let us define

(2.8)
(
Nn1,k1,ζ1

i1
⊗ · · · ⊗ Nnd,kd,ζd

id

)
(t1, ..., td) := Nn1,k1,ζ1

i1
(t1) · · ·Nnd,kd,ζd

id
(td).

We denote the space of d-dimensional splines by

(2.9) S[n1, k1, ζ
1; · · · ; nd, kd, ζ

d] := span
{
Nn1,k1,ζ1

i1
⊗ · · · ⊗ Nnd,kd,ζd

id

}
.
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The efficient de Boor algorithm [3, 10] serves as a method to evaluate a B-spline function

without using the above divided differences.

In our present method, we do not use a mesh on the physical domain Ω. Instead, we have

a non-conforming discretization Th on the parameter domain as depicted in Fig. 2(b).

More precisely, the discretization Th is composed of elements Q1,...,QN satisfying the

following conditions.

(C1) Each element is a closed domain Qi =
∏d

ν=1[ri,ν, si,ν ] ⊂ P.

(C2) For two different indices i, j, we have Q̊i ∩ Q̊j = ∅ where Q̊ designates the

topologic interior of Q.

(C3) We have P = ∪N
i=1Qi.

According to those assumptions, the discretization Th is allowed to be non-conforming.

For an element Q :=
∏d

ν=1[rν , sν ], we denote hν(Q) := sν − rν so that the element

measure is h(Q) :=
∏d

ν=1 hν(Q). In addition, we assume the shape regularity condition

throughout this document. That is, there is a positive constant ρ independent of Q

such that

(2.10) r(Q)/R(Q) ≤ ρ ∀Q ∈ Th,

where R(Q) is the largest circle for d = 2 (resp. sphere for d = 3) contained in Q

while r(Q) is the smallest circle (resp. sphere) including Q. An internal edge (resp.

face) is defined to be a nonempty intersection e of two different elements Qi ∈ Th

and Qj ∈ Th such that e is not a point. Similarly, a boundary edge (resp. face) is a

nonempty intersection of an element Qi ∈ Th and the boundary ∂P which is not a

point. The sets of internal and boundary edges (resp. faces) are denoted by Jh and Bh

respectively. We will denote by Eh = Jh ∪ Bh the set of all edges (resp. faces). Finally,

the length (resp. area) of an edge (resp. face) e ∈ Eh is denoted by h(e).

For the mesh Th on the parameter domain, the approximating space will be

(2.11) Vh :=
{

s ∈ L2(P) : s|Q ∈ S
[
n1, k1, ζ

1; · · · ; nd, kd, ζ
d
]

∀Q ∈ Th

}

where the spline properties depend on Q. That is, ni = ni(Q), ki = ki(Q) and ζi =

ζi(Q) for i = 1, ..., d.

2.2. Parametric Discontinuous Galerkin. The values of a function from Vh gener-

ally do not admit continuities at element interfaces. As a consequence, let us introduce

the jump value [[v]] and average value {{v}}. For an internal edge e ∈ Jh such that

e = ∂Q1 ∩ ∂Q2, let nQ1
(x) and nQ2

(x) designate the outward normals at x ∈ e with

respect to Q1 ∈ Th and Q2 ∈ Th respectively. For a scalar valued function v, the jump
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is defined to be the vector

(2.12) [[v]](x) := uQ1
(x)nQ1

(x) + uQ2
(x)nQ2

(x) ∀x ∈ e.

Additionally, the average is defined as

(2.13) {{v}}(x) := 0.5
(
vQ1

(x) + vQ2
(x)

)
∀x ∈ e.

The jump and average for a boundary edge e ∈ Eh are defined similarly where the

exterior value is assumed to be zero. Later, the unknown function is approximated by

a function in Vh where the jump values are constrained to be zero with the help of

some penalty terms.

The broken Sobolev space with respect to the non-conforming discretization Th is

denoted by

(2.14) H
k(Th) :=

{
w ∈ L

2(Ω) : w|Q ∈ H
k(Q) ∀Q ∈ Th

}
.

We will need also

(2.15) |||w||| :=
[ ∑

Q∈Th

|w|21,Q + h(Q)2|w|22,Q +
∑

e∈Eh

1

h(e)

∥∥∥[[w]]
∥∥∥

2

0,e

]1/2

.

By using DG variational formulations [2, 4], the initial problem in (2.1) reduces to seek

uh ∈ Vh such that

(2.16) B(uh, vh) = L(vh) ∀ vh ∈ Vh

where B and L are as follows when expressed in terms of the parameter domain

B(u, v) :=
∑

Q∈Th

∫

Q

(DMT )−1∇tu · (DMT )−1∇tv det DM dt

−
∑

e∈Eh

∫

e

{{
(DM−1)(∇tu)

}}
· [[v]] det DM dt

−
∑

e∈Eh

∫

e

[[u]] ·
{{

(DM−1)(∇tv)
}}

det DM dt +
1

η

∑

e∈Eh

∫

e

[[u]] · [[v]] det DM dt,

L(v) :=
∑

Q∈Th

∫

Q

f ◦M det DMdt−
∑

e∈Bh

∫

e

g ◦M
[
∇v · n +

1

η
v
]
det DMdt

in which η is a certain large positive number. The above expressions are similar to the

usual DG variational formulation [2, 4, 5] but we use the Jacobians to transform them

onto the parameter domain. We will need the operator A which is defined to be such

that

(2.17) B(u, φ) = 〈Au, φ〉 ∀φ ∈ H
k(Th).
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Note that although it is possible to reformulate the above form B on the physical

domain Ω by using curved elements, we want to avoid that because it is difficult to

apply geometric operations such as refinements to curved entities.

Lemma 2.1. Under the above conditions on the mapping M, we have

(2.18)
1

µ
≤ ‖DM‖∗ ≤ µ, and

1

µ
≤ ‖DM−1‖∗ ≤ µ.

Thus, the determinant verifies

(2.19) 0 < C1 ≤ det(DM) ≤ C2.

Hence, with respect to ||| · |||, the bilinear form B admits coercivity

(2.20) |||f |||2 ≤ Cµ,Ω B(f, f),

and boundedness

(2.21)
∣∣B(f, g)

∣∣ ≤ Cµ,Ω|||f ||||||g|||

Proof. Use the property of M, and proceed as in [2, 4, 5].

�

�

3. Adaptive Simulation

3.1. Adaptive Refinments and spline operators. In an adaptive simulation, we

deduce a finer discretization Th+1 from a coarse one Th by refining some elements

Q ∈ Th. We consider two kinds of 2D subdivisions. The first one consists in bisecting

the rectangle Q ∈ Th by inserting a vertical cut resulting in two sub-rectangles of the

same size as shown in Fig. 3(a). The second one does the same but with a horizontal cut

as in Fig. 3(b). Note that those two subdivisions could deteriorate the shape regularity

(2.10). As a consequence, we choose the subdivision such that the aspect ratios of the

resulting rectangles do not exceed the threshold ρ. In fact, it is possible to subdivide in

both directions but it is a bit more difficult to apply space hierarchies (see Section 3.3)

for that. The generalization to 3D is done in a straightforward manner as illustrated

in Fig. 3(c),(d),(e).

In the next description, we show a method to establish if an element Q ∈ Th should be

split or not. It is anyhow beyond the scope of this paper to determine which kind of

subdivision is optimal. In order to know the elements Q ∈ Th which ought to be subdi-

vided, we need an a-posteriori error indicator. For that purpose, let us first introduce
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Figure 3. (a)Vertical 2D-subdivision (b)Horizontal 2D-subdivision

(c)3D-subdivision along x-axis (d)3D-subdivision along y-axis (e)3D-

subdivision along z-axis.

some interesting definitions [3, 13] about spline dual functionals where we consider the

spline property (n, k, ζ). We define for i = 0, ..., m

(3.22) ϑi(t) :=
1

(k − 1)!

k−1∏

p=1

(t − ζi+p).

We introduce also the function zi for i = 0, ..., m as

(3.23)
zi(t) := 0 for t ≤ ζi,

zi(t) := ϑi(t) for t ≥ ζi+k.

Inside the interval [ζi, ζi+k], the function zi is defined to be a smooth function having

C(k−1)-joints at ζi and ζi+k:

(3.24) z
(m)
i (ζi) = 0, z

(m)
i (ζi+k) = ϑ

(m)
i (ζi+k) ∀m = 0, ..., k − 1.

For that, use for example a higher order Hermite interpolations [11]. For a univariate

square integrable function ϕ in the interval [ζ0, ζn+k], we define for i = 0, ..., n

(3.25) λi(ϕ) :=

∫ ζi+k

ζi

ϕ(t) z
(k)
i (t)dt.

Under some mild assumption, it can be proved by simple partial integrations that λi

coincides with the usual de Boor-Fix functional [3, 13]

(3.26) λi(ϕ) =

k∑

m=1

(−1)k−mϑ
(m−1)
i (τ)ϕ(k−m)(τ)

for some τ ∈ [ζi, ζi+k]. In the present context, (3.25) is more suitable than relation

(3.26) that requires point evaluations of ϕ which are not appropriate if ϕ is only square

integrable. As for the multivariate case (d = 2, 3), let us fix some n = (n1, ..., nd),

k = (k1, ..., kd) and Q = [ζ1
0 , ζ

1
n1+k1

]× · · · × [ζd
0 , ζd

nd+kd
]. For i = (i1, ..., id) where each iν

belongs to {0, 1, ..., nν} in which ν = 1, ..., d, we define for ϕ ∈ L2(Q)

(3.27) λi(ϕ) :=

∫ ζi1+k1

ζi1

· · ·
∫ ζid+kd

ζid

ϕ(t1, ..., td) z
(k1)
i1

(t1) · · · z(kd)
id

(td) dt1 · · · dtd.
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Note that for a tensor product function ϕ(t1, ..., td) =
∏d

ν=1 ϕν(tν), we have λi(ϕ) =∏d
ν=1 λiν (ϕν). The above functional admits B-spline duality: for a tensor product B-

spline basis function Nk
i = Nk1

i1
⊗· · ·⊗Nkd

id
we have λi(N

k
j ) = δi,j. Finally, for a square

integrable function ϕ in Q, we define the B-spline quasi-interpolant

(3.28) P (ϕ) :=
∑

i∈I

λi(ϕ)Nk1

i1
⊗ · · · ⊗ Nkd

id

where the sum is over I := {0, ..., n1} × · · · × {0, ..., nd}.

3.2. A-posteriori Error Indicator. In this section, we discuss about a-posteriori

errors where we suppose that the solution uh of (2.16) with respect to the current

discretization Th is available.

Theorem 3.1. For each element Q ∈ Th in which we have the B-spline properties

ki = ki(Q), ni = ni(Q), for i = 1, ..., d, we consider the next error indicator

ε(Q) := ‖f ◦M−Auh‖0,Q

[
d∏

i=1

√
ni − ki + 2√

hi(Q)

][
d∑

i=1

(
kihi(Q)

ni − ki + 2

)2
]1+(d/4)

.

Under the quasi-uniformity condition

(3.29) max
i=k−1,...,n

|ζi − ζi+1|
/

min
i=k−1,...,n

|ζi − ζi+1| ≤ θ < ∞,

we have the following reliability relation

|||u − uh||| ≤ c(θ)ε(Th) = c(θ)
[ ∑

Q∈Th

ε(Q)2
]1/2

.

Proof. Denote by PVh
the projection to Vh such that inside each Q ∈ Th, PVh

is

the quasi-interpolant PQ as defined in (3.28) with respect to the spline properties(
n1(Q), k1(Q), ζ1(Q)

)
, ...,

(
nd(Q), kd(Q), ζd(Q)

)
. From the boundedness (2.21), the

coercivity (2.20), the operator A of relation (2.17) and an orthogonality relation, one

obtains

|||u − uh||| ≤ B
(
u − uh,

u − uh

|||u − uh|||
)
≤ sup

|||φ|||=1

B(u − uh, φ) =

= sup
|||φ|||=1

B
(
u − uh, φ − PVh

(φ)
)

= sup
|||φ|||=1

〈Au −Auh, φ − PVh
(φ)〉 = sup

|||φ|||=1

〈
f ◦M−Auh, φ − PVh

(φ)
〉

= sup
|||φ|||=1

∑

Q∈Th

〈f ◦M−Auh, φ − PQ(φ)〉Q

≤
∑

Q∈Th

‖f ◦M−Auh‖0,Q sup
|||φ|||=1

‖φ − PQ(φ)‖0,Q.
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Consider now the last supremium within an element Q ∈ Th. Consider one spline

segment ∆(j) :=
∏d

ν=1[ζ
ν
jν

, ζν
jν+1] ⊂ Q where j = (j1, ..., jd).Consider also an extension

of the spline segment as ∆̃(j) :=
∏d

ν=1[ζ
ν
jν−(kν−1), ζ

ν
jν+kν

]. Due to the support property

(2.7), for each t = (t1, ..., td) ∈ ∆(j), the basis functions with nonzero coefficients of

PQ(φ)(t) from (3.28) correspond to i = (i1, ..., id) such that iν ∈ {jν−(kν−1), ..., jν+kν}
for ν = 1, ..., d.

Since the de Boor-Fix quasi-interpolant PQ keep polynomials unchanged [3], we obtain

for every p ∈ P(∆̃(j)) (polynomials on ∆̃(j))

‖φ − PQ(φ)‖0,∆(j) ≤
√

µ[∆(j)]
∥∥φ − PQ(φ)

∥∥
∞,∆(j)

(3.30)

=
√

µ[∆(j)]
∥∥(φ − p) − PQ(φ − p)

∥∥
∞,∆(j)

(3.31)

≤
√

µ[∆(j)](1 + ‖PQ‖)‖φ − p‖∞,∆̃(j)(3.32)

(µ(X) standing for the Lebesgue measure of X). Hence,

(3.33) ‖φ − PQ(φ)‖0,∆(j) ≤
√

µ[∆(j)] inf
p∈P(∆̃(j))

‖φ − p‖∞,∆̃(j).

In virtue of polynomial approximation of [9], we have

(3.34) ‖φ − p‖∞,∆̃(j) ≤ C
[
diam(∆̃(j))

]2+(d/2)

|φ|2,∆̃(j).

As a consequence, one obtains

(3.35) ‖φ − PQ(φ)‖0,∆(j) ≤
√

µ[∆(j)]
[
diam(∆̃(j))

]2+(d/2)

|φ|2,Q.

Since |||φ||| = 1, we obtain from the definition (2.15) that h(Q)2|φ|22,Q ≤ 1 or equivalently

|φ|2,Q ≤ 1/h(Q). As a consequence, we deduce

(3.36) ‖φ − PQ(φ)‖0,∆(j) ≤
√

µ[∆(j)]
[
diam(∆̃(j))

]2+(d/2)

h(Q)−1.

On the other hand, due to the knot quasi-uniformity (3.29), we have

(3.37)
√

µ[∆(j)] = C(θ)
d∏

ν=1

[
hν(Q)

nν − kν + 2

]1/2

.

We use now the Pythagorean rule and the quasi-uniformity (3.29) again to obtain

diam[∆̃(j)] =

[
d∑

ν=1

|ζν
jν+kν

− ζν
jν−kν+1|2

]1/2

(3.38)

= C(θ)

[
d∑

ν=1

( kν(Q)hν(Q)

nν(Q) − kν(Q) + 2

)2
]1/2

.(3.39)

Finally, in order to deduce the theorem, take the sum over j by noting that there are∏d
ν=1

(
nν(Q) − kν(Q) + 2

)
spline segments ∆(j) within each Q ∈ Th.
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(a) (b)

Figure 4. (a) Original B-spline (b) Several knot insertions generate two

B-splines which have the same parametrization as the original B-spline

� �

3.3. Cascading from Coarse to Fine Discretizations. The linear system obtained

from (2.16) using the discretization Th is solved by a CG (conjugate gradient) with a

simple diagonal preconditioner. For the initial guess of the CG, we use cascading. That

is, the solution from the previous Th−1 is used as a starting value for the CG on Th. As

opposed to the usual Finite Element bases, applying cascading using B-spline basis is

not very straightforward. The next description consists of the expression of a function

f ∈ Vh in terms of the bases of Vh+1 ⊃ Vh by using discrete B-splines.

Consider two knot sequences ζ = (ζ0, ..., ζn+k) and ζ̃ = (ζ̃0, ..., ζ̃m+k) such that ζ ⊂ ζ̃.

We recall [6, 7] the discrete B-splines which enable the expression of a coarse basis Nk,ζ
i

as a linear combination of fine bases Nk,ζ̃
p . Choose ai ∈ [ζ̃j , ζ̃j+k) and define

φk
i (y) := (y − ai)

0
+Ψk

i (y),(3.40)

(y − ai)
0
+ := 1 if y > ai,(3.41)

(y − ai)
0
+ := 0 if y ≤ ai.(3.42)

where Ψk
i (t) := (t − ζ̃i+1) · · · (t − ζ̃i+k−1). One has

(3.43) Nk,ζ
i (x) =

m∑

p=0

αk
i (p)Nk,ζ̃

p (x)

where αk
i (p) := (ζi+k − ζi)[ζi, · · · , ζi+k]φ

k
p.

A fact [6, 7] is that a splitting into two B-splines is equivalent to applying knot insertions

several times as shown in Fig. 4. Suppose that a 2D element Q ∈ Th has been bisected

vertically as in Fig. 3(a) into Q1 and Q2. The spline properties on Q are (n1, k1, ζ
1(Q))

and (n2, k2, ζ
2(Q)). Let ζ̃

1
(Q) be defined by inserting the midpoint µ := 0.5(ζ1

0 +ζ1
n1+k1

)
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in the knot sequence ζ1(Q) by k1 times. We have

N
k1,ζ1(Q)
i ⊗ N

k2,ζ2(Q)
j =

m∑

p=0

αk
i (p)Nk1,ζ̃

1
(Q)

p ⊗ N
k2,ζ2(Q)
j

=

m1∑

p=0

αk
i (p)Nk1,ζ̃

1
(Q)

p ⊗ N
k2,ζ2(Q)
j +

n∑

p=m1

αk
i (p)Nk1,ζ̃

1
(Q)

p ⊗ N
k2,ζ2(Q)
j

=
m1∑

p=0

αk
i (p)Nk1,ζ1(Q1)

p ⊗ N
k2,ζ2(Q)
j +

n−m1∑

p=0

αk
i (p + m1)N

k1,ζ1(Q2)
p ⊗ N

k2,ζ2(Q)
j

In the last equality, ζ1(Q1) is the subsequence of ζ̃
1
(Q) from the begining until µ

while ζ1(Q2) is the remaining subsequence. A similar deduction can be done for the

2D horizontal bisection and for the 3D case.

In practice, the discrete B-splines αk
i (p) are evaluated by using the recurrence

α1
i (j) = 1 if ζ̃j ∈ [ζi, ζi+j)(3.44)

α1
i (j) = 0 if ζ̃j 6∈ [ζi, ζi+j)(3.45)

αk
i (j) = (ζ̃j+k−1 − ζi)β

k−1
i (j) + (ζi+k − ζ̃j+k−1)β

k−1
i+1 (j)(3.46)

in which

(3.47) βk
i (j) :=

{
αk

i (j)/(ζi+k − ζi) for ζi+k > ζi

0 otherwise.

4. Practical results

In this section, we present some practical results to supplement the previous theory. Let

us consider first a 2D adaptive simulation where we consider the next exact solution

(4.48) u(x, y) = exp
[
− 1

α

(
(x − a)2 + (y − b)2

)]

Refin. step Nb. elements Ratio estim. Refin. step Nb. elements Ratio estim.

0 9 2.595145 9 34 1.889834

2 12 2.177448 10 37 2.129213

3 16 1.616603 13 46 2.199019

5 23 1.708272 18 61 2.299195

6 25 1.796925 20 67 2.649732

Table 4.1. Ratio of exact and estimated errors
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(a) (b) (c)

Figure 5. NURBS physical domains and the exact solutions

on the NURBS physical domain shown in Fig. 5(a) . That function takes unit value at

x = (a, b) which is (−0.35, 0.75) in our test. The large dot in mixed blue and red color

inside the physical domain indicates the position where the function nearly takes unit

values. Note that away from the dot, the function u decays exponentially to zero. The

speed of that decay becomes quicker as the value of the parameter α approaches zero.

In the depicted case, we have used α = 1.0e − 04. In Fig. 6, we collect some adaptive

history of a few refinement grids. We start from a very coarse discretization T0 which is

a uniform 3 × 3 tensor product grid in Fig. 6(a). Then, we refine adaptively according

to the a-posteriori error estimator described in Section 3. This example illustrates very

clearly the situation where the grid refinement takes place strictly within the domain

and therefore there is no need to use a fine mesh at the boundary although we deal with

a curved physical domain. A mesh-based approach would necessitate a fine mesh at

the boundary because the bounding curves are not straight. Approximating the curved

portions of the boundary by PL-curves would require a significant number of points

which would substantially increase the degree of freedom.

For the next test, we consider the same NURBS for the physical domain but the exact

solution is chosen to be the following

(4.49) u(x, y) = exp
[
− 1

ω
(x + 0.5)2

]

This corresponds to an internal layer whose width is specified by ω as shown in Fig. 5(b).

As the parameter ω becomes smaller, the layer gets thinner. In our experiment, we chose

the parameter value ω = 0.001. As in the former test, we start again from a very coarse

tensor product mesh having 3×3 uniform elements. We apply the previously described

theory during the adaptive refinements. The results of that process is depicted in Fig. 7

where the a-posteriori error estimator can efficiently detect the position of the internal

layer. It is plainly observed that the elements which are far from the layer are very
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(a) (b) (c)

Figure 6. Adaptive refinement for an internal accumulation.

(a) (b) (c)

Figure 7. Local spline adaptivity for a thin internal layer.

(a) (b) (c)

Figure 8. Adaptive refinement in 3D: the elements are slightly

shrunken in order to see the refinements.

coarse. That is for example the case of the top right element which is intact from

beginning till the finest discretization shown in Fig. 6(c). In addition, we gather in

Table 4.1 the averages of the ratio between the exact error and the a-posteriori error

indicator.
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(a) (b)

Figure 9. (a)Initial mesh for the usual DG (b) Adaptive DG-mesh.

In addition to the planar situation, we perform also some practical tests in the 3D case.

To that end, we consider the exact solution

(4.50) u(x, y, z) = sin(πx).

The 3D NURBS for the physical domain is depicted in Fig. 5(c). The history of some

adaptive refinements for this case is summarized in Fig. 8.
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