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Summary. This paper is concerned with the approximate solution of partial differ-
ential equations using meshfree Galerkin methods on arbitrary domains in two space
dimensions which we assume to be given as CAD/IGES data. In particular we focus
on the particle-partition of unity method (PPUM) yet the presented technique is
applicable to most meshfree Galerkin methods. The basic geometric operation em-
ployed in our cut-cell type approach is the intersection of a planar NURBS patch
and an axis-aligned rectangle. Note that our emphasis is on the speed of the clipping
operations since these are invoked frequently while trying to attain a small number
of patches for the representation of the intersection. We present some first numerical
results of the presented approach.
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1.1 Introduction

One major advantage of meshfree methods (MM) over traditional mesh-based
approximation approaches is that the challenging task of mesh generation can
(in principle) be avoided. Thus the numerical treatment of partial differen-
tial equations (PDE) on complex time-dependent domains can be simplified
substantially by MM.

Collocation techniques for instance are essentially independent of the com-
putational domain. They employ a collection of points for the discretization
process only and require no explicit access to the domain or the boundary. In
meshfree Galerkin methods however we have to integrate the respective bilin-
earform and linearform over the domain Ω (and parts of the boundary ∂Ω).
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Hence, we must be concerned with the issues of a meshfree domain represen-
tation and the efficient numerical integration of the meshfree shape functions
over Ω and ∂Ω. These issues often lead to the perception that a background
mesh is needed in meshfree Galerkin methods. This is in fact not the case,
we must rather compute an appropriate decomposition of the domain into
pairwise disjoint cells which respect the algebraic structure of the employed
shape functions as well as the geometry of the domain. Thus, we must be able
to compute this decomposition efficiently on the fly since the construction of
the meshfree shape functions is independent of the domain and the domain
may change during the simulation.

In the following we present a two step procedure for the efficient compu-
tation of a decomposition in two space dimensions for the particle–partition
of unity method (PPUM) [9,10,20] where we assume the domain to be given
as CAD/IGES data. Note that our approach is easily extendable to other
meshfree Galerkin methods.

The remainder of this paper is organized as follows: In section 1.2 we give
a short review of the construction of meshfree shape functions in the PPUM
which is essentially independent of the domain Ω. Moreover we introduce the
employed weak formulation and an initial decomposition which respects the
algebraic structure of the constructed shape functions and covers the domain
and its boundary with pairwise disjoint cells. The main contribution of this
paper, the treatment of general domains in two space dimensions, is discussed
in section 1.3. Here, we introduce the fundamental IGES entities used in our
implementation for the domain representation and present an efficient cell-
clipping approach for the computation of the intersection of an axis-aligned
rectangle with a NURBS patch. First numerical results are reported in section
1.4 before we conclude with some remarks in section 1.5.

1.2 Particle–Partition of Unity Method

In this section let us shortly review the core ingredients of the PPUM, see
[9,10,20] for details. In a first step, we need to construct a PPUM space V PU,
i.e., we need to specify the PPUM shape functions ϕiϑ

n
i . With these shape

functions, we then set up a sparse linear system of equations Aũ = f̂ via
the classical Galerkin method where we realize essential boundary conditions
via Nitsche’s method [16]. The arising linear system is then solved by our
multilevel iterative solver [10].

An arbitrary function uPU ∈ V PU is defined as the linear combination

uPU(x) =
N
∑

i=1

ϕi(x)ui(x) with ui(x) =

di
∑

m=1

um
i ϑm

i (x) (1.1)

and the respective PPUM space V PU is defined as
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V PU :=

N
∑

i=1

ϕiVi with Vi := span〈ϑm
i 〉. (1.2)

Here, we assume that the functions ϕi form an admissible partition of unity
(PU) on the domain Ω; i.e., the supports ωi := supp(ϕi) cover the complete
domain Ω and its boundary ∂Ω, and refer to the spaces Vi with dim(Vi) = di
as local approximation spaces. Hence, the shape functions employed in the
PPUM are the products ϕiϑ

m
i of a PU function ϕi and a local basis function

ϑm
i .
This abstract approach is the basis of any partition of unity method [2,3]

such as e.g. the generalized/extended finite element method (GFEM/XFEM)
[15, 25–27]. The key difference between our PPUM and the GFEM/XFEM is
that the PU in GFEM/XFEM is usually constructed by classical FE shape
functions φi based on some kind of mesh which may also encode the (discrete)
computational domain Ω or may simply cover Ω In the PPUM, however,
the PU is constructed from independent point data only; i.e. it is always
independent of the representation of the computational domain Ω.

The fundamental construction principle employed in [9] for the construc-
tion of the PU {ϕi} is a d-binary tree. Based on the given point data
P = {xi | i = 1, . . . , N̂}, we sub-divide a bounding-box CΩ ⊃ Ω of the do-
main Ω until each cell

Ci =
d
∏

l=1

(cli − hl
i, c

l
i + hl

i)

associated with a leaf of the tree contains at most a single point xi ∈ P , see
Figure 1.1. We obtain an overlapping cover CΩ := {ωi} from this tree by
defining the cover patches ωi by

ωi :=

d
∏

l=1

(cli − αhl
i, c

l
i + αhl

i), with α > 1. (1.3)

Note that we define a cover patch ωi for leaf-cells Ci that contain a point
xi ∈ P as well as for empty cells that do not contain any point from P .

To obtain a PU on a cover CΩ with N := card(CΩ) we define a weight
function Wi : Ω → R with supp(Wi) = ωi for each cover patch ωi by

Wi(x) =

{

W ◦ Ti(x) x ∈ ωi

0 else
(1.4)

with the affine transforms Ti : ωi → [−1, 1]d and W : [−1, 1]d → R the
reference d-linear B-spline. By simple averaging of these weight functions we
obtain the Shepard functions

ϕi(x) :=
Wi(x)

S(x)
, with S(x) :=

N
∑

l=1

Wl(x). (1.5)
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Fig. 1.1. Point cloud and induced tree decomposition (left) and the resulting over-
lapping patches (1.3) with α = 1.3 (right).

We refer to the collection {ϕi} with i = 1, . . . , N as an admissible partition
of unity since there hold the relations

0 ≤ ϕi(x) ≤ 1,

N
∑

i=1

ϕi ≡ 1 on Ω,

‖ϕi‖L∞(Rd) ≤ C∞, ‖∇ϕi‖L∞(Rd) ≤
C∇

diam(ωi)

(1.6)

with constants 0 < C∞ < 1 and C∇ > 0 so that the assumptions on the PU
for the error analysis given in [3] are satisfied by our PPUM construction.

Furthermore, the PU (1.5) based on the coverCΩ obtained from the scaling
of a tree decomposition with (a particular choice of) α ∈ (1, 2) satisfies

µ({x ∈ ωi |ϕi(x) = 1}) ≈ µ(ωi),

i.e., the PU has the flat-top property, see [12, 23]. This ensures that the
product functions ϕiϑ

n
i are linearly independent and stable, provided that

the employed local approximation functions ϑn
i are stable with respect to

{x ∈ ωi |ϕi(x) = 1} (and ωi) [22].
With the help of the shape functions ϕiϑ

n
i we then discretize a PDE in

weak form
a(u, v) = 〈f, v〉

via the classical Galerkin method to obtain a discrete linear system of equa-
tions Aũ = f̂ . Since our general PPUM shape functions do not satisfy es-
sential boundary conditions by construction we employ Nitsche’s method for
their implementation.3 This approach, for instance, yields the bilinear form

aβ(u, v) :=

∫

Ω

∇u · ∇v dx−

∫

∂Ω

(

(∂nu)v + u(∂nv)
)

ds+ β

∫

∂Ω

uv ds (1.7)

and the associated linear form
3 Note, however, that there is also a conforming treatment of boundary conditions
for the PPUM [24].
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〈lβ , v〉 :=

∫

Ω

fv dx−

∫

∂Ω

g(∂nv) ds+ β

∫

∂Ω

gv ds (1.8)

for the Poisson model problem

−∆u = f in Ω ⊂ R
D,

u = g on ∂Ω,
(1.9)

where the regularization parameter β is used to enforce the definiteness of the
bilinear form (1.7) with respect to the employed finite dimensional discretiza-
tion space and can be computed automatically, see [11, 20, 21] for details.

1.2.1 Numerical Integration

Note that the PU functions (1.5) in the PPUM are in general piecewise rational
functions only. Therefore, the use of an appropriate numerical integration
scheme is indispensable in the PPUM as in most meshfree Galerkin approaches
[1, 4, 5, 8, 10].

In the FEM the (numerical) integration of the weak form of the consid-
ered PDE is simpler than in meshfree methods due to the availability of a
mesh. This fact often leads to the perception that a mesh is required for
numerical integration also in meshfree methods and that therefore meshfree
Galerkin methods are not truly meshfree. However, a mesh is not required
for the reliable and stable numerical integration of the weak form. We only
need an appropriate decomposition of the integration domain into cells with
pairwise disjoint interiors (a far more general partitioning of the domain than
a mesh). Observe for instance that we can in principle allow for hanging
nodes of arbitrary order in the union of these cells—a property that is usu-
ally not acceptable for FE meshes to ensure inter-element continuity of the
shape functions. Thus, our construction is a much simpler task than full-blown
mesh-generation.

Recall that the global regularity of our PPUM shape functions ϕiϑ
m
i ∈

V PU is dominated by the regularity of the PU functions ϕi of (1.5), i.e.

ϕi(x) :=
Wi(x)

S(x)
, with S(x) :=

N
∑

l=1

Wl(x).

Thus, let us first focus on the PU functions ϕi and how we can construct
a decomposition {Tα} of its support ωi such that ϕj |Tα

is smooth (i.e. of
arbitrary regularity) for all ωj ∈ Ci := {ωl ∈ CΩ |ωi ∩ ωl 6= ∅}. To this
end, we consider a patch ωi ∩ ∂Ω = ∅ and carry out the differentiation in
(1.7) and (1.8) and introduce the shorthand notation Gi := ∇WiS −Wi∇S,
Ωi := Ω ∩ωi, Ωi,j := Ωi ∩ωj , and Γi,j := ∂Ω ∩ωi ∩ωj to obtain the integrals
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a(ϕjϑ
m
j , ϕiϑ

n
i ) =

∫

Ωi,j

S−4GiGj ϑn
i ϑ

m
j dx+

∫

Ωi,j

S−2WiWj ∇ϑn
i ∇ϑm

j dx+

∫

Ωi,j

S−3
(

GiWj ϑn
i ∇ϑm

j +WiGj ∇ϑn
i ϑ

m
j

)

dx

(1.10)
for the stiffness matrix and the integrals

〈f, ϕiϑ
n
i 〉L2 =

∫

Ωi

S−1Wiϑ
n
i f dx (1.11)

for the right-hand side. Thus, we need to assess the regularity of the functions
S,Wj andGj for all ωj ∈ Ci to construct a decomposition {Tα} of the domain,
i.e. of each patch ωi, such that their restrictions to the interiors of the cells
Tα are smooth functions. In essence this means that all weight functions Wj

must be smooth on the cells Tα. Our weight functions Wj however are (tensor
products of) splines and therefore only piecewise smooth functions. Hence, our
decomposition {Tα} must resolve the overlapping supports of weight functions
as well as the piecewise character of the weight functions.

Recall that we obtained the patches ωi of our cover CΩ from a tree-
decomposition of a bounding box of the domain Ω. Thus, there is an ini-
tial pairwise disjoint decomposition {Ci}Ni=1 which covers the domain, i.e.

Ω ⊂
⋃N

i=1 Ci, available. Hence, we must only be concerned with the (minimal)
refinement of the cells Ci such that the restrictions of all weight functions Wj

(and local approximation functions ϑn
j ) are arbitrarily smooth on the refined

cells Ti,α. Observe that this refined decomposition is easily computable on
the fly since we must consider the intersections of axis-aligned rectangles only
due to our construction. Thus, we obtain a decomposition into axis-aligned
rectangular cells.

First we split a cell Ci into disjoint rectangular sub-cells according to its
intersections with ωj ∈ Ci, then we consider the piecewise character of the
respective spline weight functions Wj to define the decomposition {Ti,α}, see
Figures 1.2 and 1.3.4 Thus, all PU functions ϕj satisfy ϕj |Ti,α

∈ C∞(Ti,α).

Remark 1. This decomposition is sufficient if we employ polynomial local ap-
proximation space Vj = Ppj in our PPUM only. It only remains to select an
integration rule on the cells Ti,α considering the bilinear form and the maximal
polynomial degree pi + pj of the integrands.

In the case of a non-polynomial enrichment, i.e. Vj = Ppj + Ej , we must
also consider the discontinuities and singularities of the enrichment functions
either by the choice of appropriate integration rules or additional refinement
of the decomposition {Ti,α}.

Remark 2. Note that the construction above is suitable for all domain inte-
grals that involve the assembled shape functions ϕiϑ

m
i for a specific choice of

4 Observe however that for the flat-top region of our PU functions it is sufficient
to construct a single cell Ti,α.
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Fig. 1.2. Initial decomposition based on
the tree-cells Cj only (top: level 7, bot-
tom: level 5). The respective tree decom-
position was generated by sampling with
Halton points.

Fig. 1.3. Refined decomposition (top:
level 7, bottom: level 5).

α in (1.3) and weight function W . In the multilevel PPUM however we may
also need to compute certain operators locally; i.e. just using the local approx-
imation functions ϑm

i on ωi or on the subset ωFT,i := {x ∈ ωi |ϕi(x) = 1},
see [10, 22]. These local operators can be integrated with much less integra-
tion cells since they are independent of the PU functions ϕi. An appropriate
decomposition for these local integrals can be obtained easily with a variant
of the above construction where we consider only the overlapping patches but
not the weight functions.
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The rectangular cells Ti,α obviously cover the complete domain Ω and
its boundary ∂Ω, however, they are not aligned with ∂Ω since our PPUM
construction is completely independent of the geometry. For the definition
of a refined decomposition {Ti,α,∂Ω} with boundary aligned integration cells
Ti,α,∂Ω from the above decomposition {Ti,α} we must now be concerned with
the geometry of the domain and its representation in our meshfree PPUM
implementation.

1.3 Realization on General Domains

In this section we are concerned with the efficient application of the PPUM
approach on general multiply connected domains Ω in two space dimensions.
To this end, we will assume that the domain Ω is given as a CAD object de-
scribed by a collection of IGES entities and our PPUM discretization process
will essentially operate directly on this description of Ω. The fundamental
geometric operation needed for this approach is the efficient clipping of the
domain against an axis-aligned rectangle. Recall however that we will com-
pute the integration cells on the fly thus this operation must be rather fast.
Therefore, we employ a two-step procedure: First we perform a setup step
where we decompose the general multiply connected domain Ω into a collec-
tion of convex quadrilateral NURBS patches {P}. Note that this setup step
is independent of the discretization process and can be pre-computed. Based
on this collection of NURBS patches {P} we can now compute the intersec-
tion of an arbitrary axis-aligned rectangle R with the domain Ω simply via
the intersections of R with the NURBS patches {P}; an operation which is
substantially faster than directly computing the intersection R∩Ω.

1.3.1 Domain Representation

Let us first summarize the employed geometry representation in two dimen-
sions and its CAD digitization using the IGES format. Here, the fundamental
objects are B-spline and NURBS curves. In order to introduce the B-spline
basis, we consider any constant integer k ≥ 2 which controls the smoothness
of the spline and a knot sequence ζ0, ..., ζn+k such that ζi+k ≥ ζi. The usual
definition of B-spline basis functions [14,17] with respect to the knot sequence
(ζi)i is

Nk
i (t) = (ζi+k − ζi)[ζi, ..., ζi+k](· − t)k−1

+ (1.1)

where[ζi, ..., ζi+k] denotes the forward divided difference and (· − t)k+ is the
truncated power function

(x− t)k+ :=

{

(x− t)k if x ≥ t,
0 if x < t.

(1.2)

By induction, one can show that the above definition is equivalent to
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N1
i (t) :=

{

1 if t ∈ [ζi, ζi+1),
0 otherwise,

(1.3)

Nk
i (t) :=

(

t− ζi
ζi+k−1 − ζi

)

Nk−1
i (t) +

(

ζi+k − t

ζi+k − ζi+1

)

Nk−1
i+1 (t). (1.4)

A B-spline curve f with control points di ∈ R
2 with respect to the above knot

sequence is defined as

f(t) =

n
∑

i=0

diN
k
i (t) for all t ∈ [ζ0, ζn+k]. (1.5)

To ensure that the B-spline curve f is open, we assume that the knot sequence
is clamped; i.e. there holds

ζ0 = · · · = ζk−1 < ζk ≤ ζk+1 ≤ · · · ≤ ζn < ζn+1 = · · · = ζn+k. (1.6)

The above assumption (1.6) ensures that the initial and final control points
are interpolated such that the curve begins and ends at the control points.
The case of rational splines or NURBS is given as

f(t) =

∑n

i=0 widiN
k
i (t)

∑n

i=0 wiNk
i (t)

for all t ∈ [ζ0, ζn+k] (1.7)

and the weights {wi} are assumed to be in ]0, 1].
As a CAD input for the PPUM implementation, we accept a multiply

connected domain Ω. To this end, let us assume that there are univariate
smooth functions κ

j
i defined on [eji , f

j
i ] ⊂ R with Bi

j = κ
j
i ([e

j
i , f

j
i ]) which

encode the boundary ∂Ω; i.e. there holds

∂Ω =

N
⋃

i=0

ni
⋃

j=0

Bi
j . (1.8)

Moreover, we make the convention that the external boundary

Γ0 :=

n0
⋃

j=0

B0
j

is traversed in counter clockwise direction and the internal boundaries Γp :=
⋃np

j=0 B
p
j for p = 1, ..., N are traversed in clockwise direction, compare Figure

4(a). A realistic example of the above description is shown in Figure 4(b)
where the control polygons are identified by the dashed lines. The above rep-
resentation are practically realized with the help of the IGES format. It is a
CAD standard written in structured records specified as IGES entities which
are stored in five sections. Note that we have restricted ourselves to IGES
144 where the most important geometric items are summarized in Table 1.1
since a complete IGES implementation is rather cumbersome and usually not
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B0
k

B0
k+1

B1
iB1

i+1

B2
j

B2
j+1

Ω

(a) (b)

Fig. 1.4. (a) The boundary of Ω ⊂ R
2 is composed of the images Bi

j of several

curves κ
j

i . (b) A realistic CAD model where the control points are identified by
large dots.

IGES Entities ID numbers IGES-codes

Line 110 LINE

Circular arc 100 ARC

Polynomial/rational B-spline curve 126 B SPLINE

Composite curve 102 CCURVE

Polynomial/rational B-spline surface 128 SPLSURF

Transformation matrix 124 XFORM

Table 1.1. Appropriate IGES entities for 2D curved multiply connected domains.

necessary. Moreover, we will describe our approach assuming that all κj
i are

B-spline or NURBS curves, since all practical curves including circular arcs
and lines can be represented as such.

Our geometric objective consists of the following two tasks when we are
given a rectangle R. First, we need to find the intersection I of R with the
multiply connected domain Ω. Second, if that intersection I is not empty,
then we decompose it into several four-sided patches πi and we find a mapping
from the unit square to each πi. In addition to those two points, we need that
those operations are very efficient and robust because they need to be applied
very often for the PPUM application. Since clipping a rectangle against a
NURBS patch is easier than clipping against the whole domain Ω, we adopt
the following two-stage approach. First, we determine the intersection of the
domain Ω with a a coarse subdivision G = ∪iRi of a bounding box of Ω
as illustrated in Figure 1.6 (compare section 1.2). That is, we intersect each
rectangle Ri of G against the domain Ω. We represent that intersection as a
union of NURBS patches P i

j such that Di := Ri∩Ω = ∪jP i
j and Ω = ∪iDi =

∪i,jP i
j. Second, upon availability of the results of this setup phase using G, the

clipping of any rectangle R against Ω amounts to the clipping of R against
Ri ∩Ω, thus against the relevant P i

j . Performing the setup phase has several
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B0
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B2
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B1
j

D

R

(b)

B1
j

D

R

I1 I2

(c)

Fig. 1.5. Clipped region: (a) D is simply connected, (b) D is disconnected and has
several connected components, (c) D is multiply connected.

advantages. First, it serves as a coarsest level in the PPUM method. Second,
it gives a fast location to determine which rectangles Ri are relevant to make
each clipping fast.

1.3.2 Clipping a curved multiply connected domain

Let us suppose that we have a rectangle R ∈ G which intersects the domain
Ω. We want to briefly discuss how to identify the boundary of the intersection
D = R∩Ω. Several situations regarding the connectivity of D may be encoun-
tered. First, D can be simply connected as illustrated in Figure 5(a) where
the shaded region defines the clipped domain D. On the other hand, it may
be disconnected. Note that this case can occur even if the original domain Ω
is simply connected as displayed in Figure 5(b). Moreover, the clipped region
D may contain some holes and is therefore multiply connected. Combinations
of these situations can also be encountered. That is, D has several connected
components and some of them are multiply connected.

The determination of the clipped region D is as follows. The first step
consists of finding the boundary curves Γs1 ,...,ΓsN which intersect R. Then,
we must identify the corresponding intersection points Ip as illustrated in
Figure 1.5 to which we assign an additional marker indicating whether the
respective curve is entering or leaving the clipping rectangle R ∈ G through
the point Ip. With this information at hand, we start from any intersection
point e.g. I1 and we distinguish two cases. First, if that intersection point
is of type leaving, we traverse the boundary of the rectangle R ∈ G counter
clockwise until another intersection point e.g. I2 is met. In the case that I1
is of entering type in which we suppose that I1 is the intersection of Γs1 and
R, we traverse Γs1 according to its original orientation. That is to say, the
traversal is counter clockwise if Γs1 encodes an external boundary whereas it is
in clockwise direction if Γs1 is an internal boundary of Ω. Again, this traversal
is done until we meet another intersection point. We repeat this process until
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Fig. 1.6. Setup phase on the coarsest level: intersection against a coarse decompo-
sition G in form of several NURBS patches.

we return to the initial intersection point I1. At this stage, we have generated
one connected component of D.

If all intersection points have been traversed already, the intersection is
completely determined and we terminate. Otherwise, we remove those inter-
section points which have been traversed and we repeat the same procedure
based on the remaining intersection points in order to find the other connected
components of D. After all intersection points have been dealt with, we have
constructed a collection of simply connected components of D. If the original
domain Ω contains some holes, we need to perform a few additional steps. For
each internal curve Γp of Ω, we test if it is completely located inside the rect-
angle R. If so, we test further whether Γp is inside one connected component
of D and we insert it there in the positive case. After those steps, we obtain
the correct intersection by the union of several possibly multiply connected
components of D.

The above description requires the process of intersection between a
NURBS curve C and a rectangle (see Figure 7(a)) which we briefly summarize
now. Obviously, this task can be reduced to intersecting an infinite line L and
a curve C. Without loss of generality, we suppose that the line L is horizontal.
We denote by H

+ (resp. H−) the half-plane having positive (resp. negative)
ordinates. The search for the intersections consists in examining the position
of the control points with respect to H

+ and H
−. If the first and the last

control points of C are located on different half-planes, then there is surely an
intersection. If all control points are in one half-plane, no intersection point
exists. Note that it is possible that there are some control points on both
half-planes while the curve is completely inside one half-plane. To treat that
ambiguous case, we apply a subdivision which is the process of splitting a
NURBS curve C at a parameter value t0 so as to obtain two curves which are
again described in NURBS representation. One way of doing this is by means
of discrete B-splines [6]. If the knot sequence of the original curve is defined
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(a) (b)

Fig. 1.7. (a) Fast clipping operation which works even in the case where only a little
part is inside or outside the rectangle. (b) A B-spline curve split into two B-spline
curves.

in [a, b], then those of the resulting curves are respectively in [a, t0] and [t0, b].
An illustration is shown in Figure 7(b). A repeated application of subdivisions
then yields the coordinates of the intersections.

1.3.3 Decomposition and parametrization

Now, we assume that we have a multiply connected domain D = Ω ∩ R
as in Figure 1.5 and we would like to briefly describe the way of obtaining
its decomposition into four-sided patches Pj. It is beyond the scope of this
paper to completely describe that decomposition. We will summarize only
the most important steps and refer the reader to [18] for details. First, we
take a coarse polygonal approximation P of the domain D. For the case of a
simply connected polygon P, we have shown that it is always possible to chop
off one quadrilateral (which is not necessarily convex) by inserting at most
one internal node. By recursively applying this approach, one can generate a
quadrangulation of P. In the case of a multiply connected polygon P, we need
to insert cuts. That is, we join two vertices which are located on an interior
curve and on an exterior one respectively. Note that in most cases, several
possible cuts can be inserted. We have devised an algorithm [18] for choosing
the optimal direction and the position of cuts to be inserted automatically. A
drawback of this approach is that we may obtain some quadrilaterals which
are non-convex so that we must employ some additional steps to convert the
nonconvex quadrilaterals into convex ones. To obtain the decomposition of D
from P, we simply replace every straight boundary edge of the quadrilaterals
by the corresponding curvilinear part from D. Note however that we must
be concerned with issues like corner smoothing or boundary interference [18].
The number of the our-sided patches Pj such that D = ∪jPj constructed by
this approach is not minimal but small.
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(a) (b) (c)

Fig. 1.8. (a) Tangents on a four sided domain for Coons patch. (b) Diffeomorphic
Coons patches. (c) Undesired overspill phenomena.

Now, we want to generate a mapping onto the four-sided subdomains Pj

which result from the above process. Let α, β, γ, δ : [0, 1] −→ R2 be four
C1[0, 1] curves that satisfy the compatibility conditions at the corners such
as α(0) = δ(0), α(1) = β(0), γ(0) = δ(1), γ(1) = β(1). We assume that
besides those common points, there are no further intersection points. Since
our method of generating a map from the unit square to the four-sided domain
S bounded by α, β, γ, δ is based on transfinite interpolation, we briefly recall
some basic facts about this technique.

We are interested in generating a parametric surface x(u, v) defined on the
unit square [0, 1]2 such that the boundary of the image of x coincides with
the given four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(1.9)

This transfinite interpolation problem can be solved by a first order Coons
patch whose construction involves the operators

(Q1x)(u, v) := F0(v)x(u, 0) + F1(v)x(u, 1) (1.10)

(Q2x)(u, v) := F0(u)x(0, v) + F1(u)x(1, v) (1.11)

where the so-called blending functions F0 and F1 denote two arbitrary smooth
functions satisfying

Fi(j) = δij i, j = 0, 1 and F0(t) + F1(t) = 1 ∀ t ∈ [0, 1], (1.12)

i.e. form a univariate PU. Obviously, there is much freedom in the choice of
F0 and F1, throughout this paper we employ a linear blending. Now, a Coons
patch x can be defined [7] by the relation

Q1 ⊕Q2(x) = x, where Q1 ⊕Q2 := Q1 +Q2 −Q1Q2. (1.13)

It follows that x is of the form
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x(u, v) = −





−1
F0(u)
F1(u)





T 



0 x(u, 0) x(u, 1)
x(0, v) x(0, 0) x(0, 1)
x(1, v) x(1, 0) x(1, 1)









−1
F0(v)
F1(v)



 . (1.14)

The above Coons representation can be converted into B-spline or NURBS
form provided that the four boundary curves are B-spline or NURBS curves.
In Figure 1.8, we illustrate that for simple cases a Coons patch is already
diffeomorphic. However, when the boundary curves become too wavy, like
in Figure 8(c), we observe overlapping isolines indicating that the mapping
is not invertible. We will need the notion of discrete B-splines to formulate
some of our subsequent results. If t = (ti) is a subknot of τ = (τi), then

Nk,t
j =

∑

i b
τ ,t
j,k (i)N

k,τ
i where bτ ,tj,k are the discrete B-splines given by the

recurrence relations:

bτ ,tj,1 (i) := N1,t
j (ti)

bτ ,tj,k (i) := ωi,k,t(τi+k−1)b
τ ,t
j,k−1(i) + (1− ωj+1,k,t(τi+k−1))b

τ ,t
j+1,k−1(i)

(1.15)

where ωi,k,t(u) := (u − ti)/(ti+k−1 − ti). Below, we present some conditions
on the boundary curves that guarantee the regularity of the Coons map.
The linear independence of tangents on opposite curves (see Figure 8(a))
in conjunction with a second condition that controls the curvatures of the
boundary curves, are sufficient for the regularity of x. We suppose first that
the boundary curves α, β, γ, δ are B-spline curves with control points αi,
βi, γi, δi. The opposite curves α and γ are supposed to be defined on the
knot sequence tu = (tui ) while β and δ on tv = (tvi ) :

α(t) =

nu
∑

i=0

αiN
ku

i (t), β(t) =

nv
∑

i=0

βiN
kv

i (t), (1.16)

γ(t) =

nu
∑

i=0

γiN
ku

i (t), δ(t) =

nv
∑

i=0

δiN
kv

i (t). (1.17)

Since the orders of opposite curves are different in general, we use the discrete
B-spline techniques in (1.15) to obtain equal order representations. To ensure
that the first and the last control points are interpolated, we assume that the
knot sequences tu = (tui ) and tv = (tvi ) are clamped as in (1.6). Moreover, let
us assume that the blending function F1 is expressed in Bézier form such that
F1(t) =

∑n
i=0 φiB

n
i (t) = 1− F0(t) and introduce F := max{S1, S2} where

S1 := max
i=0,··· ,nv

{

ρ‖βi−δi‖
}

and S2 := max
i=0,··· ,nu

{

ρ‖γi−αi‖
}

. (1.18)

Furthermore, we define

λi := (ku − 1)/(tui+ku
− tui+1) and µj := (kv − 1)/(tvj+kv

− tvj+1) (1.19)

for all i = 1, · · · , nu, j = 1, · · · , nv and introduce the expressions
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(a) (b) (c)

Fig. 1.9. (a) Special case where S2 intersects C1 and C4 and k1 in P . (b) Special
case where k1, k2, k4 are inside P while C2 ∩ S2 6= ∅ and C3 ∩ S2 6= ∅. (c) Nodal
coincidence.

Aij := λiµj det[αi+1 −αi, δj+1 − δj ] , Bij := λiµj det[αi+1 −αi,βj+1 − βj ] ,
Cij := λiµj det[γi+1 − γi, δj+1 − δj ] , Dij := λiµj det[γi+1 − γi,βj+1 − βj ] ,

and
τ := min

i,j
{Aij , Bij , Cij , Dij}. (1.20)

Let M be a constant such that

λi‖(1− φj)(αi −αi−1) + φj(γi − γi−1)‖ ≤ M
µl‖(1− φj)(δl − δl−1) + φj(βl − βl−1)‖ ≤ M,

(1.21)

for all i = 1, · · · , nu; l = 1, · · · , nv and j = 0, · · · , n. Suppose that Aij , Bij ,
Cij , Dij are all positive for all i = 0, · · · , nu − 1 and j = 0, · · · , nv − 1. Then
the condition 2MF + F 2 < τ is sufficient [13] for x to be a diffeomorphism.
More efficient results for checking regularity are detailed in [13, 18] by using
adaptive subdivisions. We used a method [13] for treating curves which are
not necessarily in the form (1.16) and (1.17).

1.3.4 Rectangle-NURBS clipping

This section will discuss the fast process of NURBS-decomposition of the
intersection between a rectangle R and a NURBS patch P which does not
present an overspill phenomenon as in Figure 8(c). Note that the process here
is different from the one in Section 1.3.2 and Section 1.3.3. Of course, one
can apply the method there but our main objective here, apart from finding
a result, is to make that intersection process fast because it has to be applied
very often in PPUM simulation. Let the four curve sides of P be S1, S2, S3,
S4 and its corners be c1, c2, c3, c4. Similarly, the sides and the corners of R
are respectively Ci and ki. The process consists in distinguishing many special
cases depending on several factors: (1) intersection of Si with Cj , (2) position
of the corner ci with respect to R, (3) position of the corner ki with respect
to P . We need to implement a program where each special case is individually
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(a) (b) (c)

Fig. 1.10. Recursively applying some special cases.

treated. It is beyond the scope of this paper to describe all possible special
cases. In Figure 9(a) and Figure 9(b), we display two special cases. For the
first situation, the patch side S2 intersects rectangle sides C1 and C4 while no
corners ci are included in R and the corner k1 ∈ P . For the second situation,
three corners ki are inside the patch while S2 intersects C2 and C3. In practice,
about 15 cases are sufficient if none of the corners ci, kj coincide as in Figure
9(c) and if we have ci 6∈ Cj and ki 6∈ Sj for all i, j = 1, ..., 4. More cases must
be implemented to treat those latter cases which are not a rare situation for a
simulation on practical CAD models. The practical difficulty is to come up to
a fast and efficient point location method inside a NURBS patch and curve-
curve intersections. If the rectangle R is too large then we split it into two
rectangles R1 and R2 and apply the same method to each subrectangle Ri.
One chooses between vertical or horizontal splitting whichever gives the better
shape (closer to a square) for the sub-rectangles. Some results of such recursive
splitting are displayed in Figure 1.10. Note that the resulting NURBS patches
are not globally continuous [19] but that does not create any problem for the
PPUM approach. Problems related to curvature may occur in those special
cases if the curves are too wavy. In such a situation, one has to apply NURBS
subdivisions.

1.4 Numerical Experiments

The former geometric processing has been implemented in C/C++ and was
integrated in our PPUM implementation. As a reference example of a CAD
model, we use the exterior domain of an aircraft, see Figure 1.11. Let us now
show some numerical results about the clipping of a NURBS patch P by a
rectangle R as described in Section 1.3.4. To quantify the distortion of the
bounding curves from being straight, we used the following distortion gauge
G(P). For a NURBS curve S which has control points di for i = 0, ..., n and
which starts at A and terminates at B, we define

G(S) :=
∣

∣

∣
ℓ(S)− ‖A−B‖

∣

∣

∣

n
∑

i=0

proj[di,L(A,B)] (1.1)

where ℓ(S) designates the chord length of the control polygon while proj
[x,L(A,B)] denotes the projection of a point x ∈ R2 onto the line L(A,B)
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Fig. 1.11. Setup phase for an exterior domain.

Table 1.2. Performance of clipping oper-
ations for 2000 intersections with respect
to average number of patches np (Fixed
distortion gauge=7.693015).

Size of rectangles np

0.00-0.10 1.009
0.10-0.20 1.041
0.20-0.30 1.103
0.30-0.40 1.146
0.40-0.50 1.179
0.50-0.60 1.246
0.60-0.70 1.295
0.70-0.80 1.338
0.80-0.90 1.390
0.90-1.00 1.441

Table 1.3. Performance of clipping
operations for 2000 intersections with
respect to average number of patches np.

Distortion gauge np

0.000000 1.000000
0.095194 1.329500
0.734081 1.571786
2.347471 1.945000
5.220395 2.069104
9.528208 2.331331
15.386027 2.413327

passing throughA andB. For a NURBS patch P having four boundary curves
S1,...,S4, we define the distortion gauge to be G(P) :=

∑4
i=1 G(Si). That is,

for a NURBS patch P which is a perfect convex quadrilateral, the distortion
gauge G(P) is zero.

First, we would like to examine the number of resulting NURBS patches.
Table 1.2 gathers some numerical results from 2000 clipping operations. The
first column presents the ratio of the area of the rectangle R with respect to
the area of the original NURBS patch P . The rectangles are chosen randomly
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Fig. 1.12. Wireframe representation of integration cells for two different reference
domains on level 4. All interior cells are affine.

Fig. 1.13. Contour plot of approximation to problem (1.2) with homogeneous
Dirichlet boundary conditions and f = 1 on level 8 (left). Contour plot of com-
puted pressure for a potential flow problem (1.2) with inflow boundary conditions
at the left boundary on level 8.

using the condition that the intersections are not empty. We observe that the
average number of resulting patches are significantly small.

As a second test, we generate a NURBS patch P whose distortion coeffi-
cient G(P) can be changed. We investigate the average number of patches in
clipping operations in terms of the distortion coefficient. The NURBS patch
is chosen so that when G(P) vanishes, P coincides to a rectangle. In Tab. 1.3,
we display the results of such tests. We observe that the number of patches for
the intersections is reasonably small even when the distortion gauge is already
practically large.

Finally, we present some approximation results with the PPUM on general
domains. To this end, we consider a simple diffusion problem

−∆u = f in Ω,
u = gD on ΓD ⊂ ∂Ω,

∂nu = gN on ΓN := ∂Ω \ ΓD

(1.2)

on three different realistic domains in two space dimensions, see Figures 1.13
and 1.14, and a linear elasticity model problem

−divσ(u) = f in Ω,
u = gD on ΓD ⊂ ∂Ω,

σ(u) · n = gN on ΓN := ∂Ω \ ΓD,
(1.3)

see Figure 1.15.
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Fig. 1.14. Contour plot of approximation to problem (1.2) with homogeneous
Dirichlet boundary conditions and f = 1 on level 9.

Fig. 1.15. Computational domain and particle distribution on level 5 considered in
(1.3) (left). Here, we apply tangential tractions on the outer ring and homogeneous
Dirichlet boundary conditions along the inner ring. Contour plot of the computed
von Mises stress on the deformed configuration on level 9 (right).

We consider a sequence of uniformly refined coversCk
Ω with α = 1.3 in (1.3)

and local polynomial spaces Ppi,k on all levels k = 1, . . . , J in this paper. From
the plots depicted in Figure 1.12 we see that only a small number of integration
cells must be intersected with the boundary and that the total number of
integration cells is increased only slightly. Thus, the compute time spent in the
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assembly of the linear system is almost unaffected by the geometric complexity
of the domain. However, the compute time spent in the processing of the
domain, i.e. in the computation of the intersections, is currently the most
time consuming step; it takes about 70% of the total compute time — which
is comparable with the situation in FEM.

Recall that we construct a cover patch ωi, i.e. a PU function ϕi, for each
tree-cell Ci which satisfies Ci∩Ω 6= ∅. Thus, close to the boundary we may have
to deal with PU functions ϕi whose support ωi intersects the domain ωi ∩Ω
barely. Due to this issue we cannot ensure that all the PU functions have
the flat-top property and we may experience a deterioration of the condition
number of the stiffness matrix. How to overcome this issue is the subject of
current work and will be discussed in a forthcoming paper. Here, we simply
employ our multilevel solver [9] as a preconditioner for a conjugate gradient
solver applied to the possibly ill-conditioned arising linear system.

The measured asymptotic convergence rate of a V (1, 1)-preconditioned CG
solver in our experiments varies between 0.25 and 0.80 depending e.g. on the
number of patches ωi with very small intersections Ci∩Ω. The respective rate
using a V (5, 5)-cycle as a preconditioner however was already very stable at
roughly 0.1 up to level 9 with about 500.000 degrees of freedom.

1.5 Concluding Remarks

We presented a general approach to the treatment of arbitrary domains in
two space dimensions with meshfree Galerkin methods in this paper. We have
implemented the proposed scheme in the PPUM and presented some first
numerical results which clearly demonstrate the viability of our approach.

There are two main challenges which are currently being investigated. The
compute time for the processing of the geometry must be further reduced to
allow for an on the fly use of the presented approach which is essential for
a direct coupling of the simulation engine to a CAD system. Moreover, the
impact of very small intersections on the conditioning of the basis and stiffness
matrix must be analyzed in detail.
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