
GEOMETRIC PROCESSING OF CAD

DATA AND MESHES AS INPUT OF

INTEGRAL EQUATION SOLVERS

by

Maharavo Randrianarivony

June 25, 2006

Supervisor: Prof. Dr. Guido Brunnett

COMPUTER SCIENCE FACULTY

TECHNISCHE UNIVERSITÄT CHEMNITZ

ii

iii

Acknowledgment

I would like to express my sincere appreciation to my advisor Prof.
Guido Brunnett for his guidance during the preparation of this thesis. The fre-
quent discussions with him have tangibly improved my knowledge in CAGD.
He has helped me a lot during the conception of most geometric approaches es-
pecially about decomposition of CAD surfaces into four-sided subsurfaces and
treatment of diffeomorphisms by means of transfinite interpolations using Coons
and Gordon patches. Special acknowledgment is granted to him for taking the
time to correct my ideas as well as my misspellings in several former drafts of
some chapters. The financial assistance that he offered me is also very much
appreciated.

I am also grateful to Prof. Reinhold Schneider who has developped his
explanations of the required surface representations for his mesh-free numerical
methods of integral equations. Thanks are equally due to Dr. Helmut Harbrecht
with whom I have had several discussions which greatly helped me to have a
deeper insight about the wavelet Galerkin scheme.

Special thanks go to the Computer Graphic Group which has pro-
vided me with computing equipments that helped me implement the proposed
approaches. Additional thanks are due to the Computer Science Faculty of the
Technische Universität Chemnitz for giving me an environment where I could
pursue my research.

Last but not the least, I thank my sister Lova who has given me
moral supports during the frustrating period of working on this thesis.

iv

v

Abstract

Among the presently known numerical solvers of integral equations, two main
categories of approaches can be traced:

• Mesh-free approaches

• Mesh-based approaches.

We will propose some techniques to process geometric data so that they can
be efficiently used in subsequent numerical treatments of integral equations. In
order to prepare geometric information so that the above two approaches can be
automatically applied, we need the following items.

• Splitting a given surface Γ into several four-sided patches Γi.

• Generating a diffeomorphism γi from the unit square to Γi.

• Generating a mesh M on a given surface.

• Patching of a given triangulation.

In order to have a splitting Γ = ∪N
i=1Γi, we need to approximate the surfaces

first by polygonal regions. We use afterwards quadrangulation techniques by
removing quadrilaterals repeatedly. We will generate the diffeomorphisms by
means of transfinite interpolations of Coons and Gordon types.

The generation of a mesh M from a piecewise Riemannian surface will use some
generalized Delaunay techniques in which the mesh size will be determined with
the help of the Laplace-Beltrami operator.

We will describe our experiences with the IGES format because of two reasons.
First, most of our implementations have been done with it. Next, some of the
proposed methodologies assume that the curve and surface representations are
similar to those of IGES.

Patching a mesh consists in approximating or interpolating it by a set of practical
surfaces such as B-spline patches. That approach proves useful when we want to
utilize a mesh-free integral equation solver but the input geometry is represented
as a mesh.

vi

Contents

Acknowledgment . iii
Abstract . v
List of notations . xi
List of figures . xii

1 INTRODUCTION 1
1.1 Brief reminder about integral equations 1

1.1.1 Wavelet Galerkin method 3
1.1.2 Mesh-based method . 4

1.2 Challenges of geometric processing 5
1.3 Main results . 6

1.3.1 Chapter 2: Building an adjacency model from an IGES
format . 7

1.3.2 Chapter 3: Decomposing a surface into four-sided patches . 8
1.3.3 Chapter 4: Constructing diffeomorphic reparametrization . 9
1.3.4 Chapter 5: Mesh generation 10
1.3.5 Chapter 6: Paving of meshes by four-sided patches 12

2 IGES FORMAT AND SURFACE STRUCTURES 13
2.1 Geometric storage and transmission 13

2.1.1 CAD interface usage . 13
2.1.2 IGES as a CAD neutral format 14

2.2 IGES file structure . 15
2.2.1 Entity classification and data types 15
2.2.2 IGES file organization . 16
2.2.3 Shortcomings and proposed remedies 18

2.3 Segment separators . 21
2.4 Features of the implementation . 21
2.5 Practical experiences and CAD flaws 22
2.6 Surface structures . 24

2.6.1 Topological structure . 24
2.6.2 Metric structure . 26

2.7 Other CAD interfaces . 27

vii

viii CONTENTS

3 FOURSIDED SPLITTING 29

3.1 Introduction . 29

3.2 Problem setting and general approach 31

3.3 Polygonal regions . 32

3.4 Removing a quadrilateral from a simple polygon 35

3.5 Toward multiply connected polygons 38

3.6 Quadrilating multiply connected polygons 46

3.7 Cut search . 49

3.7.1 Cuts having extreme vertices 50

3.7.2 Cuts having nonextreme vertices 50

3.7.3 Summary . 53

3.8 Conversion into convex quadrangulation 54

3.9 Cleanup . 55

3.9.1 Quality control . 56

3.9.2 Cleanup operations . 57

3.10 Converting a triangulation into a quadrangulation 58

3.11 Regions having curved boundaries 61

3.12 Structure of the polygonal model 61

3.12.1 Discretization of curved boundaries 62

3.12.2 Edge splitting . 62

3.12.3 Even polygonal approximation 63

3.13 Metric aspect of the polygonal model 65

3.13.1 Discretization artifact . 65

3.13.2 Edge quality . 66

3.13.3 Polygonal approximation 67

3.14 Postprocessing . 68

3.14.1 Boundary replacement . 68

3.14.2 Boundary interference . 69

3.14.3 Treating G1 vertices . 72

3.14.4 Subdivision for diffeomorphisms 74

3.15 Summarizing algorithm . 75

3.16 Special splittings . 75

3.16.1 All G1 vertices . 76

3.16.2 Simple polygons . 76

3.17 Numerical results . 81

4 MAPPING REGULARITY 91

4.1 Introduction . 91

4.2 Transfinite interpolation and problem setting 92

4.3 First sufficient condition . 95

4.4 Second sufficient condition . 99

4.5 Sufficient and necessary condition 100

4.5.1 Subdivision . 101

4.5.2 Adaptivity . 103

CONTENTS ix

4.6 Numerical results . 105

4.7 Mapping search . 108

4.7.1 Overspill phenomenon . 109

4.7.2 Gordon patch . 109

4.8 Generation of internal curves . 110

4.8.1 Finding the internal points xij 111

4.8.2 Generating the interpolating curves 113

4.9 Diffeomorphic Gordon and termination guarantee 114

4.10 Practical results . 119

5 MESH GENERATION 121

5.1 Introduction . 121

5.2 Definitions and problem setting . 122

5.3 Motivation for the planar case . 124

5.4 Meshing using the first fundamental form 127

5.4.1 Splitting according to first fundamental form 127

5.4.2 Flipping according to first fundamental form 128

5.5 Initial coarse mesh . 128

5.6 Nonsmooth boundary approximation 129

5.7 Determination of the edge size function 131

5.8 Meshing of a surface with multiple patches 133

5.9 Discretization of the curved boundaries 133

5.10 Theoretical discussion . 135

5.11 Numerical results . 139

6 C0-PAVING OF MESHES BY
QUADRILATERAL PATCHES 147

6.1 Introduction . 148

6.2 Problem formulation . 148

6.3 Handle decomposition . 149

6.4 Preliminary search for canonical curves 151

6.4.1 Normalized canonical form 151

6.4.2 Numerical realization . 154

6.4.3 Bases of the fundamental group 155

6.4.4 Homotopic transformation 156

6.5 Improvements of the canonical curves 158

6.5.1 Weighted split graph . 159

6.5.2 Improvement algorithm . 159

6.6 Paving into quadrilateral patches 160

6.6.1 Mesh parametrization . 161

6.6.2 Splitting into four-sided submeshes 163

6.7 Surface fitting with C0-joint . 164

6.8 Numerical results . 167

x CONTENTS

A NUMERICAL TOPOLOGY 173
A.1 Simplicial complexes . 173
A.2 Boundary operator and incidence matrix 174
A.3 Homology group . 175

B CURVES ON SURFACES 177
B.1 Topological surfaces . 177
B.2 Classification of surfaces . 179
B.3 Fundamental group . 180
B.4 Reidemeister moves . 180

BIBLIOGRAPHY i

List of Notations

Z,R : the integers, the reals.

(ab)+ : half plane on the right of
−→
ab.

(ab)− : half plane on the left of
−→
ab.

W(a) : wedge of a vertex a inside a polygon.
ker(P) : kernel of the polygon P .
δij : Kroenecker symbol.
Ker(A) : kernel of a linear operator A.
Im(A) : image of a linear operator A.
[u,v] : determinant of the 2D vectors u and v.
D(x) : Dirichlet energy of the function x.
σk : k-dimensional simplex.
∂k : k-th boundary operator.
Hk(C) : k-th homology group of a chain complex C.
π1(X,x0) : (first) fundamental group.
[σn+1 : σn] : incidence number of σn+1 and σn.
Ek : k-th incidence matrix.
βk(C) : k-th Betti number.
Bn

i : Bernstein polynomial.
Nn

i : B-spline basis function.
∆ : Laplace operator.
∆S : Laplace-Beltrami operator w.r.t. the surface S.
[a, b] : a commutator aba−1b−1 if a and b are members of an

alphabet.
L2(X) : set of all square integrable functions in X.
H1(Ω) : Sobolev space of order one in Ω.

H1/2(Γ) : set of all functions in L2(Γ) which are boundary values
of functions in H1(Ω) where Γ = ∂Ω.

< ·, · > : scalar product in Rn.
(·, ·)X : scalar product in L2(X).
[a, b, c] : triangle with apices a, b, c.
� : end of a proof.

xi

xii

List of Figures

Fig. 1.1: (a)Inadmissible mesh (b) Edge lengths . 4

Fig. 1.2: Flow diagram about geometric preparation . 6

Fig. 2.1: Sample of an IGES file . 20

Fig. 2.2: (a)Segment separators (b)Nonperiodic cylinder 23

Fig. 2.3: CAD imperfection . 24

Fig. 2.4: Three types of adjacent patches . 25

Fig. 2.5: (a)Nonadjacent surfaces (b)Adaptive search . 26

Fig. 2.6: (a)Metric information (b)Covered edge . 26

Fig. 3.1: Splitting into four-sided subregions . 30

Fig. 3.2: (a) Double edge (b) Internal domain of a polygon. 33

Fig. 3.3: Chopping off a quadrilateral . 36

Fig. 3.4: (a) Generate ω (b) xi+2 is reflex in Q̃. 36

Fig. 3.5: (a),(b)Positions of reflex vertex (c)Steiner point 37

Fig. 3.6: A ear and a quadrilateral are adjacent . 37

Fig. 3.7: (a)Initial polygon (b)Make simply connected (c)Make even 39

Fig. 3.8: Original and auxiliary polygons. 41

Fig. 3.9: Inadmissible polygons . 41

Fig. 3.10: Counter-example for multiply connected polygons 43

Fig. 3.11: (a) κ(xσ+2) ≤ κ(xσ) (b) κ(xσ) < κ(xσ+2) < κ(xσ+1). 44

Fig. 3.12: Chopping an ear off next to a shifted node. 45

Fig. 3.13: Double nodes: (a) xi and xj are convex (b) xi is reflex. 46

Fig. 3.14: Cuts joining the interior and the exterior boundaries 47

Fig. 3.15: Quadrilating a multiply connected polygon . 49

Fig. 3.16: Finding a cut and the possible directions . 51

Fig. 3.17: (a),(b)Segment rectangle intersection (c)Domain of interest 51

Fig. 3.18: Forming a hexagon from two quadrilaterals . 55

Fig. 3.19: Cleanup: (a) Shifting a node ω(b) Flipping an edge 57

Fig. 3.20: Effect of cleanup. 58

xiii

Fig. 3.21: Edge-graph of a mesh and sibling in a tree . 59

Fig. 3.22: Convert a triangulation into a quadrangulation. 60

Fig. 3.23: (a)Triangulation (b),(c)Two possible quadrangulations 60

Fig. 3.24: Initial polygonal approximation . 61

Fig. 3.25: New node insertion . 63

Fig. 3.26: Converting odd faces into even ones . 64

Fig. 3.27: Discretization artifacts. 65

Fig. 3.28: Edges of bad quality . 67

Fig. 3.29: Subregions with curved sides from quadrangulation 69

Fig. 3.30: First boundary interference and requadrangulation 70

Fig. 3.31: Second boundary interference and requadrangulation 70

Fig. 3.32: Illustration of G1 vertices . 73

Fig. 3.33: An edge should emanate from a G1 vertex . 73

Fig. 3.34: Refinement for diffeomorphism . 74

Fig. 3.35: Special splittings . 76

Fig. 3.36: Splitting: nonconvex quadrilaterals and pentagons 77

Fig. 3.37: Hexagon: one reflex vertex . 78

Fig. 3.38: Hexagon: two reflex vertices . 79

Fig. 3.39: Hexagon: three reflex vertices . 80

Fig. 3.40: Intersection of two convex polygons . 80

Fig. 3.41: First set of results. 82

Fig. 3.42: Second set of results. 83

Fig. 3.43: Third set of results. 84

Fig. 3.44: Fourth set of results. 85

Fig. 3.45: Fifth set of results. 86

Fig. 3.46: First set of four-sided splittings . 88

Fig. 3.47: Second set of four-sided splittings . 89

Fig. 4.1: A four sided domain for Coons patch . 93

Fig. 4.2: Diffeomorphic Coons patches . 94

Fig. 4.3: Undesired overspill phenomena . 95

Fig. 4.4: Tagent vectors for Coons patch . 97

Fig. 4.5: Multiple subdivisions: (a)uniform (b)adaptive 103

Fig. 4.6: Control polygons in Coons patch for σ = 0.216. 105

Fig. 4.7: Examples of diffeomorphisms . 107

Fig. 4.8: A network of curves for Gordon patch . 108

Fig. 4.9: Meshes M and N for point search . 110

xiv

Fig. 4.10: Distortion quantification . 111

Fig. 4.11: Image of Rij by a Gordon patch and an example 115

Fig. 4.12: Subdivision and termination guarantee . 118

Fig. 4.13: Examples of a diffeomorphic Gordon patch . 120

Fig. 5.1: (a)Inadmissible mesh (b) Edge lengths . 124

Fig. 5.2: Planar case: (a)boundary nodes (b)internal nodes 125

Fig. 5.3: Mesh on a trimmed surface and its 2D-correspondant 126

Fig. 5.4: (a)Splitting (b)Flipping . 127

Fig. 5.5: Selected steps in mesh recursive refinement . 128

Fig. 5.6: Nonsmoothness of first kind . 130

Fig. 5.7: Nonsmoothness of second kind . 130

Fig. 5.8: Nonsmoothness of third kind . 131

Fig. 5.9: (a)Boundary nodes (b)Surface mesh . 134

Fig. 5.10: Two-ear theorem . 136

Fig. 5.11: Computing the cotan formula . 139

Fig. 5.12: Mesh with 5424 elements and 2710 vertices . 140

Fig. 5.13: Mesh with 32310 elements and 16145 vertices 141

Fig. 5.14: Edge length . 141

Fig. 5.15: Mesh with 7314 elements and 3651 vertices . 142

Fig. 5.16: Results from CAD data in IGES files . 144

Fig. 5.17: Results from CAD data in IGES files . 145

Fig. 6.1: Triangulation paving . 147

Fig. 6.2: A surface with genus 2 and its four canonical curves. 150

Fig. 6.3: A genus zero surface and its flattened polygon 150

Fig. 6.4: (a)Homology (b)Node coincidence . 152

Fig. 6.5: Approach paths . 153

Fig. 6.6: Double nodes and homotopic shift . 156

Fig. 6.7: Loop shiftings . 156

Fig. 6.8: Common edges in loops . 157

Fig. 6.9: Loop intersections . 158

Fig. 6.10: Dual graph and undesirable canonical curves . 160

Fig. 6.11: parametrization of a pretzel . 160

Fig. 6.12: Parametrization of a torus . 161

Fig. 6.13: Triangular and quadrilateral decompositions . 163

Fig. 6.14: Edge cutting and triangle subdivision . 164

xv

Fig. 6.15: The B-spline curves CI , CJ CK , CL are interpolated by Sr 166

Fig. 6.16: Result 1: before Reidemeister moves . 167

Fig. 6.17: Result 1: after Reidemeister moves . 168

Fig. 6.18: Result 1: after combinatorial optimization . 169

Fig. 6.19: Result 2: before Reidemeister moves . 169

Fig. 6.20: Result 2: after Reidemeister moves . 169

Fig. 6.21: Result 2: magnification . 170

Fig. 6.22: Result 2: after combinatorial optimization . 170

Fig. 6.23: Example 1 of surface approximation . 170

Fig. 6.24: Example 2 of surface approximation . 171

Fig. 6.25: Example 3 of surface approximation . 171

Fig. B.1: A polygonal disk with code aba−1b−1cdc−1d−1 178

Fig. B.2: Two surfaces of genus unity. 178

Fig. B.3: A topological disk and a topological surface . 179

Fig. B.4: A surface of genus zero with its code ω = abb−1a−1 180

Fig. B.5: Equivalent and non-equivalent loops . 181

Fig. B.6: Unnecessary crossings and first Reidemeister move 181

Fig. B.7: Second and third Reidemeister moves . 182

xvi

Chapter 1

INTRODUCTION

In this introductory chapter, we will try to explain the importance of geometric
preprocessing in the context of integral equations. Thereto, we will describe the
standard forms in which surfaces have to be given to serve as input of integral
equation solvers. If the geometry of a particular application is given in a different
way, a geometric conversion process has to be performed. We will formulate the
challenges in the design of a semi-automatic conversion process and summarize
the main results of the thesis.

1.1 Brief reminder about integral equations

In order to fix the idea, we are going to solve the following Laplace problem with
Dirichlet boundary condition. For a given function g ∈ H1/2(Γ), search for some
U ∈ H1(Ω) such that {

∆U = 0 in Ω
U = g on Γ,

(1.1)

where Ω ⊂ R3 with boundary Γ := ∂Ω.

Since we deal with a 3D problem, this can be reduced [61] to the solving of the
following integral equation of the second kind on the 2D manifold Γ

u(x) +

∫

Γ
k(x, t)u(t)dt = −2g(x) ∀x ∈ Γ, (1.2)

in which the unknown is u ∈ H1/2(Γ) and the kernel function k is given by

k(x, t) :=
1

2π

ν(t) · (t − x)

‖t − x‖3
for x, t ∈ Γ, (1.3)

where ν(t) denotes the outward normal vector at a point t. Let us denote by K
the double layer operator which assigns to a function f the function Kf that is

1

2 INTRODUCTION

given by

(Kf)(x) :=

∫

Γ
k(x, t)f(t)dt for x ∈ Γ. (1.4)

The original unknown U of the Laplace problem (1.1) can therefore be deduced
from u by applying the double layer operator:

U = Ku. (1.5)

By multiplying the equation (1.2) with a function v ∈ H1/2(Γ) and by taking the
integral over Γ afterwards, we obtain

∫

Γ

{
u(x) +

∫

Γ
k(x, t)u(t)dt

}
v(x)dx =

∫

Γ
−2g(x)v(x)dx . (1.6)

With the double layer operator K in place, we can introduce a second operator
A defined by

(Af)(x) := f(x) + (Kf)(x) ∀x ∈ Γ. (1.7)

We obtain therefore the following variational formulation: search for u ∈ H1/2(Γ)
such that

(Au, v)Γ = (f, v)Γ ∀v ∈ H1/2(Γ) . (1.8)

In general, the approximation scheme consists in considering a finite dimensional
space Rh where we approximate the function u by uh ∈ Rh in which we solve the
following problem

(Auh, vh)Γ = (f, vh)Γ ∀vh ∈ Rh. (1.9)

There are many numerical methods to solve integral equations. They range from
Nyström [102, 103], collocation [25], to Galerkin [3] methods. That categoriza-
tion can be further sorted in subcategories and there are also mixed methods that
intend to combine the advantages of different approaches. For a comprehensive
in-depth study about convergence results and numerical treatments of integral
equations, see [61, 3]. The main problem in the treatment of integral equations
is that the resulting linear system is not sparse. Many methods have been pro-
posed to overcome this difficulty. These methods include the panel clustering
[62], wavelet compression [109, 63, 64], and fast multipole [59]. Some approach
about preconditioning the linear system from the wavelet Galerkin scheme is also
proposed in [26].

Regarding the assumptions made about the geometry, we can distinguish be-
tween methods that assume that Γ is represented as a polygonal mesh or as a
parametric surface composed of smooth polynomial patches. Examples of mesh-
free approaches include the works of R. Schneider, A. Kunoth, W. Dahmen, H.
Harbrecht [109, 63, 64, 28]. Examples of mesh-based methods include the works
of Hackbush [61] and Atkinson [3]. Due to our cooperation with Prof. Schneider
in the SFB 393, we were mainly interested in the wavelet Galerkin method.

INTEGRAL EQUATIONS 3

1.1.1 Wavelet Galerkin method

The wavelet Galerkin method [109, 63, 26] is a special case of (1.9) in which the
construction of the finite dimensional space Rh is done by means of multiresolu-
tion techniques. That method requires that one generates wavelets on a manifold
Γ. On that account, the manifold is given as

Γ =
⋃

i

Γi, (1.10)

where Γi is the image of a mapping

γi : [0, 1]2 −→ Γi. (1.11)

The splitting is also supposed to be conforming, i.e. the intersection of two
different patches Γi and Γj is either empty or it is the image of a whole edge of
the unit square or it is a vertex. Basically, the construction of wavelets on the
manifold Γ is performed in three steps:

1. Define wavelets on the unit interval [0, 1].

2. Use tensor products method to obtain wavelets on the unit square [0, 1]2

from the results on the unit interval.

3. Use parametric lifting with the help of the parametric function γi to carry
the results from the unit square over to the manifold Γi.

After that, one can deduce two families of nested linear spaces

{
Sj0 ⊂ Sj0+1 ⊂ · · · ⊂ Sj ⊂ Sj+1 ⊂ · · · ⊂ L2(Γ)

S̃j0 ⊂ S̃j0+1 ⊂ · · · ⊂ S̃j ⊂ S̃j+1 ⊂ · · · ⊂ L2(Γ),
(1.12)

known as primal and dual multiresolutions[63, 28]. Now the wavelet spaces Wj

(resp. W̃j) which are complements of Sj (resp. S̃j) in Sj+1 (resp. S̃j+1) [63, 28]
are introduced:

Sj+1 = Sj ⊕Wj and S̃j+1 = S̃j ⊕ W̃j. (1.13)

After a multiple applications of relation (1.13), one has the following direct sums
for any J > j0

SJ = Sj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕WJ−1. (1.14)

The discretization method for solving the integral equation (1.2) consists in using
SJ as finite dimensional space in (1.9).

On the other hand, one needs to use numerical quadratures to evaluate the inte-
grals involved in the entries of the stiffness matrix which results from the equation

4 INTRODUCTION

T1

T2

(a)

hmax

hmin
αmin

(b)

Figure 1.1: (a)Inadmissible mesh (b) Edge lengths

(1.9) when applied to the Wavelet Galerkin scheme. If the parametric function
γi is a diffeomorphism, then the following first fundamental tensor is symmetric
definite positive:

Ki(s) =

[(
∂γi(s)

∂sj
,
∂γi(s)

∂sk

)]

j,k=1,2

. (1.15)

As a consequence, integrations over the manifold Γ can be transformed on the
unit square:

∫

Γ
u(x)v(x) dσ(x) =

N∑

i=1

∫

[0,1]2
u(γi(s))v(γi(s))

√
det (Ki(s)) ds. (1.16)

1.1.2 Mesh-based method

There are some numerical solvers [3, 61] of integral equations which require the
input geometric information to be represented as a mesh Mh. In that case, the
finite dimensional space Rh is usually chosen to be piecewise polynomials. That
is, if we denote by Pk the set of polynomials of degree at most k, then

Rh ⊂ {p : p|T ∈ Pk ∀T ∈ Mh}. (1.17)

The two standard assumptions that one expects from the triangular elements of
the mesh Mh are the following:

(A1) The intersection of two triangles having nonempty intersection is either a
node or a complete edge.

(A2) The smallest angle αmin(T) inside each triangle T is larger than some pre-
scribed threshold α0 > 0.

As an illustration, the triangles in Fig. 1.1(a) does not fulfill condition (A1). Note
that if the lengths of the three edges in any triangle T ∈ Mh are proportional,
then condition (A2) follows. That is, if we have

hmax(T) ≈ hmin(T), (1.18)

GEOMETRY TREATMENT 5

where hmax(T) and hmin(T) are the lengths of the longest and shortest edges of
T respectively (Fig. 1.1(b)) then (A2) holds. A mesh having triangles satisfying
(1.18) is usually nicely shaped.

There are basically two types of approximation methods which use a mesh: h-
version and p-version. The degrees of the polynomials inside the triangles are
kept constant if one uses the h-version approaches. That is, if we want to have
more accurate approximation uh of the solution u to the integral equation, then
we have to refine the mesh Mh. For that case, we need an a-posteriori error
estimator εT (uh) which has the following property:

λ1

∑

T∈Mh

εT (uh) ≤ ‖u− uh‖ ≤ λ2

∑

T∈Mh

εT (uh), (1.19)

where λ1 and λ2 are positive constants independent of u and uh. There are
different methods of obtaining a-posteriori error estimators which can be used to
identify the parts of the mesh that need to be refined. The special property of an
a-posteriori error estimator εT (uh) is that it can be computed without knowing
the function u. If the value of the a-posteriori error estimator εT (uh) with respect
to the triangle T exceeds some prescribed value ε0, then we subdivide the triangle
T into several subtriangles. In the case of p-versions, the polynomial degrees are
allowed to be variable. In order to obtain a better accuracy, the mesh Mh does
not need to be refined. Instead, we increase polynomial degrees k of the piecewise
polynomials in relation (1.17). A combination hp-version also exists in order to
improve numerical performance.

1.2 Challenges of geometric processing

With the development of fast methods to solve integral equations, one became
interested to apply these methods to real world problems that usually come with
a non-trivial geometry. In this thesis, we consider 3D objects that have been
created with a CAD system. We assume that the boundary of such an object
is a closed 2D manifold of arbitrary genus. Since real world objects will contain
curved regions, we will focus on surfaces that are represented as collections of
parametric surface patches. However, we will also consider some aspects of the
processing of triangular meshes.

In order to be able to treat objects that have been created by different CAD
systems [67], we use the standard exchange format IGES as input description to
our geometry processing. All examples of 3D objects in this thesis have been
created with Pro-Engineer. We will consider three tasks to preprocess geometric
data for subsequent use in integral equations. The main task of this thesis can
be formulated as follows. Given an IGES file that describes a 2D manifold Γ of
arbitrary genus as a collection of possibly trimmed surface patches. Then, the
problem is to design and realize a program that outputs an exact representation

6 INTRODUCTION

TASK 1: TASK 2: TASK 3:

Input: patches Γ := ∪M
i=1Si Input: mesh M Input: patches Γ := ∪M

i=1Si

Foursided split Γ = ∪M
i=1Γi

Diffeomorphism generation

Mesh-free integral equation solver Mesh-based integral equation solver

Mesh decomposition

Surface fitting

Mesh generation

Figure 1.2: Flow diagram about geometric preparation

R of Γ as a collection of four-sided patches R = {Γi}n
i=1. Note that the decom-

position R has to be conforming. That is to say, the intersection of two different
four-sided patches Γi and Γj which is not empty must either a point or a complete
curved edge. Further, the parametrization γi : [0, 1]2 −→ Γi of each patch has to
be a C1-diffeomorphism. The number of patches n should stay reasonably small.
Angles and curve lengths below a user supplied threshold should be avoided. The
user interaction required to perform the conversion should be as low as possible.

Beside the main task described above, we will also consider two other tasks related
to the processing of geometry as input for integral equation solvers.

If a mesh-based solver is available [3, 61] but the surface is given in piecewise
parametric form, one needs to create a triangular mesh from the parametric
surface. In Chapter 5, an algorithm that creates a high quality discretization is
described. It uses a generalized Delaunay triangulation technique which invokes
the first fundamental form.

If a mesh free solver is available but the surface is given as triangular mesh, one
may consider to approximate the mesh by a collection of parametric surfaces. In
Chapter 6, we present a method for this task that consists of a mesh decomposi-
tion and a subsequent surface fitting step.

Fig. 1.2 illustrates the three different tasks of geometry processing as a flow chart
where the input is either a set of trimmed parametric surfaces or a mesh.

1.3 Main results

In this section, we will summarize our main results. There are three chapters
devoted to the solution of task 1 in this thesis.

1.3. MAIN RESULTS 7

1.3.1 Chapter 2: Building an adjacency model from an IGES

format

Since we defined IGES to serve as our exchange format, it was necessary to realize
routines that read IGES files. The implementation of the data extraction from an
IGES file is a very time-consuming and tedious task. First, we need to assemble
routines which can find information about the components of the stored geom-
etry. Special functions have to be implemented in order to locate the positions
of separators, IGES sections and IGES records which can be used to identify the
values pertaining to IGES entities. Besides, there are geometric entities which
need large memory storage. For instance, a B-spline surface having a large num-
ber of de-Boor points needs some treatment to reduce storage requirements. In
order to be able to withdraw those entities from IGES files, we need to have the
information about their size. This knowledge has to be there before data extrac-
tion, so that efficient memory allocation or deallocation become possible. On the
other hand, we have to implement a large number of extraction routines for the
different IGES entities. Since the IGES description varies from one IGES entity
to another, we need a set of routines for the loading of the record related to each
IGES entity. The IGES format contains geometric and nongeometric entities.
Since we want to preprocess geometric data for integral equations, we are only
interested in geometric entities. From all IGES entities, we have implemented
the 12 most important geometric ones for our applications. For each entity, a
conversion from the IGES records to the internal data structure has to be im-
plemented. There are entities which are combinations of other smaller entities.
For example, a composite curve can consist of different types of curves. As a
consequence, we must have efficient data structures to organize the components
of the stored geometry. Finally, we have to implement an evaluation routine for
each data structure to provide access to the needed information in the geometric
algorithms.

The main problem in the context of geometry processing is that the IGES file
does not contain information about the topological structure of the surface com-
ponents in general. Therefore, it was necessary to convert the IGES description
into an internal model that contains structural and metric information. For this,
we have developed a method which can be used to test coincidence between
two curves. We use an adaptive algorithm to efficiently characterize if a point
belongs to a given curve. The topological model is enhanced with metric infor-
mation. That is, we store not only the adjacency between surfaces but also the
parameter values of the intersections. That information could be useful to im-
prove the adjacency test and to perform an edge refinement process in polygonal
approximations. Furthermore, we describe CAD imperfections which often make
the implementations of geometric methods difficult. The presence of CAD flaws
might cause inaccurate or incomplete adjacency information.

8 INTRODUCTION

1.3.2 Chapter 3: Decomposing a surface into four-sided patches

We will consider the decomposition of a closed surface S given as a set of surfaces
{Si}i∈Λ into a collection of four-sided subsurfaces according to the constraints
stated in section 1.2:

S =

m⋃

i=1

Fi . (1.20)

We suppose that each Si is the image by a function ψi of a multiply connected
2D-region Di having possibly curved boundaries.

Our main approach to achieve (1.20) consists in splitting the 2D regions Di into
four-sided regions Qk,i:

Di =
⋃

k

Qk,i. (1.21)

Thereto for each Di, we create an even polygonal approximation P (i) which we de-
compose into a set of quadrilaterals qk,i. The four-sided domainsQk,i are obtained
from qk,i by replacing the straight boundary edges of qk,i by the corresponding
curve portion of Di. That process could generate boundary interferences which
need to be detected and repaired.

So as to have a decomposition which is conforming everywhere, we proceed as
follows. We approximate the curved boundaries of {Si} by straight line segments
separated by nodes {Xk} ⊂ R3. Then, we make the local splitting (1.21) in such
a way that it is conforming inside Di and that it uses only the preimages ψ−1

i (Xk)
of the nodes {Xk} as boundary vertices. That is, we do not use any additional
boundary nodes.

The method that we propose for the local split (1.21) tessellates a polygon with
n boundary vertices into O(n) convex quadrilaterals. Therefore, if the number
of its boundary vertices ni for all polygons P (i) is smaller than n, then the total
number of quadrilaterals is O(M · n). For all examples that we considered, we
found that the total number of quadrilaterals is quite small. However, we do not
examine how close our local approach comes in average to the globally optimal
solution.

In order to realize the above approach, we should solve the problem about quadri-
lating multiply connected polygons. We show that for a simply connected poly-
gon, either one can chop off a quadrilateral which is not necessarily convex by
inserting a cut or one can introduce an internal Steiner point to remove a convex
quadrilateral. In order to generalize this result about simply connected polygons
to multiply connected ones, the notion of double-edged polygons is introduced.
Such a polygon may contain different nodes having the same coordinates but its
interior is connected. We prove that the above result about the decomposition of
a simply connected polygon holds true for double-edged ones. In its proof, the
generalization of the two-ear theorem for double-edged polygons is used. In or-

1.3. MAIN RESULTS 9

der to generate a double-edged polygon from a multiply connected one, a cut per
internal boundary is inserted. Each cut is afterwards replaced by double edges
which are traversed in opposite direction.

By applying the above theoretical results, a quadrangulation technique is ob-
tained that repeatedly removes quadrilaterals. Since the process of removing
quadrilaterals by inserting cuts might generate a quadrangulation Q having non-
convex quadrilaterals, the resulting quadrangulation is converted into another
one which contains only convex quadrilaterals as follows. First, we merge every
pair of nonconvex quadrilaterals whose union is a quadrilateral. The second step
consists in forming the hexagon which is formed by the union of any nonconvex
quadrilateral Q and a neighboring quadrilateral P . After generating a convex
quadrangulation Qloc of the hexagon, the union Q ∪ P of Q is replaced by Qloc.

On the other hand, we do not want any four-sided domain which has G1-vertices
(i.e. smooth corners). Therefore, a repairing process is used in order to ensure
that some internal edges emanate from such vertices.

1.3.3 Chapter 4: Constructing diffeomorphic reparametrization

Here we address the following subproblem that arises after a closed surface has
been split into four-sided patches. We consider the generation and characteriza-
tion of diffeomorphisms originating from transfinite interpolations. Consider four
parametric curves α, β, γ, δ which are defined in [0, 1]. We would like to use the
corresponding Coons map with respect to the blending functions F0 and F1

x(u, v) = −




−1
F0(u)
F1(u)




T 


0 α(u) γ(u)
δ(v) α(0) δ(1)
β(v) β(0) β(1)






−1
F0(v)
F1(v)


 . (1.22)

We want to find some conditions to identify if x is a diffeomorphism. Apart from
theoretical exactness, we are mainly interested in finding criteria which are easy
to check in practice. We will suppose that the curves are given in Bézier form:

α(t) =

n∑

i=0

αiB
n
i (t), β(t) =

n∑

i=0

βiB
n
i (t), (1.23)

γ(t) =

n∑

i=0

γiB
n
i (t), δ(t) =

n∑

i=0

δiB
n
i (t). (1.24)

Further, our blending functions are also polynomials:

F1(t) = 1 − F0(t) =

n∑

i=0

φiB
n
i (t). (1.25)

We will present three main theoretical results about sufficient or necessary con-
ditions. The first result is related to the tangent vectors which can be expressed

10 INTRODUCTION

with the control points αi, βi, γi, δi of the bounding curves. The second approach
computes

Jpq :=
∑

i+k=p
j+l=q

C(i, j, k, l)

(n
i

)(n
k

)
(

2n
i+k

)
(
n
j

)(
n
l

)
(

2n
j+l

) > 0 (1.26)

for all p, q = 0, · · · , 2n where C(i, j, k, l) involves some determinant computation
related to the control points. That first condition is very easy to check but
it fails to give answers when the bounding curves become complicated. The
second approach is more reliable than the first one but it is more computationally
expensive because the above formula involves many computations.

In order to reduce the computational costs while retaining functionality, we use
subdivision techniques in the third approach. In fact, we use polar forms to
derive necessary and sufficient conditions. More precisely, the blossom function
corresponding to the Jacobian which is a polynomial for our chosen blending
functions provides an adaptive algorithm that allows us to locate positions where
we should apply subdivision.

From our three theoretical results, three practical methods follow. We will show
their performance in practical cases from which we observe that the method based
on subdivision is reliable and faster than the first two.

Coons patches may suffer from an overspill of the isolines. In order to get rid of
the overspill phenomenon, we use Gordon patches,

x(u, v) :=

M∑

i=0

gi(v)ϕi(u) +

N∑

j=0

fj(u)ψj(v) −
M∑

i=0

N∑

j=0

xijϕi(u)ψj(v). (1.27)

We will describe methods of finding the internal points xij and curves fj , gi

to be interpolated by the Gordon patch. Further, the theoretical results for the
Coons patch can be carried over to the Gordon patch if the blending functions ϕi

, ψj are properly chosen. If we do not obtain a diffeomorphic map yet after using
a Gordon patch, then we subdivide the four-sided domain into a few four-sided
subdomains.

1.3.4 Chapter 5: Mesh generation

We are interested in generating a surface mesh which approximates a set of para-
metric surfaces {Sr}r∈Λ. As we have discussed in section 1.1.2, we want to have
the properties (A1) and (A2). Additionally, we want to have nicely shaped tri-
angles as specified in (1.18). The ideal case would be to have a mesh such that
all triangles are equilateral. Since that ideal is generally impossible to obtain
because the discretizations of the boundary curves are not necessarily uniform,
we try to have triangles which are as equilateral as possible. In other words, the
edge lengths should change very smoothly. If we impose that the edge size is a

1.3. MAIN RESULTS 11

harmonic function, then that objective is obtained. We have chosen the Delaunay
technique for two reasons. First, it has a well-known nice property which tries
to have a triangulation which maximizes the smallest angles. Additionally, the
Delaunay triangulation can be used to control the size of the edges by splitting
all edges having lengths larger than the ideal edge sizes.

Each surface Sr is supposed to be the image of a parametric function of a 2D
domain Dr. The generation of a mesh on Sr consists in finding a 2D-mesh in
Dr ⊂ R2 which is then mapped to Sr. For every Sr, we start from an initial
coarse mesh on Dr which is refined recursively according to Delaunay techniques.
In other words, we split an edge [a,b] of a 2D mesh if the distance with respect
to the inner metric between a and b is larger than some ideal edge length ρ:

d(a,b) :=

√
−→
ab

T
T
−→
ab > ρ with T := 0.5(Ia + Ib), (1.28)

where Ia and Ib are the first fundamental forms at a and b.

Consider two triangles [a,b, c] and [a, c,d] of the 2D mesh. We flip the edge [a, c]
into [d,b] if the generalized Delaunay angle criterion with respect to the inner
metric is fulfilled:

‖−→bc ×−→
ba‖(−→da

T
T
−→
dc) < ‖−→da ×−→

dc‖(−→cbT
T
−→
ba). (1.29)

As for the generation of the initial coarse mesh, we use triangle chopping method.
That is to say, we chop off triangles repeatedly from a polygon by inserting
internal cuts. Therefore, the resulting coarse mesh has only nodes that lie on
the boundary. We will use the 2-ear theorem to show existence of such an initial
coarse triangulation.

Since the ideal edge length ρ in (1.28) is not known a-priori, we would like to
determine it by using the Laplace-Beltrami operator

∆Sρ = − 1√
g

∂

∂uj

(√
ggij

∂F

∂ui

)
. (1.30)

In order that the variation of the mesh size ρ is smooth, we will show the numerical
method of solving

{
−∆Sρ = 0 in S

ρ = ρbound on ∂S .
(1.31)

Since we have several surfaces Sr (r = 1, · · · , n), we apply the above technique to
each Sr. In order not to have hanging nodes in the interfaces of the surface Sr,
the polygonal approximation of the boundaries of {Sr}r has to be done before
the actual mesh generation.

12 INTRODUCTION

1.3.5 Chapter 6: Paving of meshes by four-sided patches

We will consider the approximation of a given surface mesh M by a set of B-
spline surfaces ∪M

r=1Sr. This method is very useful when we have a mesh-free
numerical solver of integral equations but the input 2-manifold that we have at
our disposal is given as a mesh. Our method consists in flattening the whole
surface M so that it becomes a single planar polygon. In other words, we need
a parameterization from a planar polygon P to M. After decomposing the mesh
M into several four-sided submeshes Mr, every submesh Mr is approximated
by a B-spline Sr given by:

Xr(u, v) =
n∑

i,j=0

dr
ijN

k
i (u)Nk

j (v). (1.32)

An important objective that we want is that the collection of surfaces {Sr} is
globally continuous. That is, two neighboring B-spline patches must have C0-
joint. Our method of achieving that goal consists in approximating the piecewise
linear curves DT which bound the submeshes by B-spline curves

CT (t) =

n∑

i=0

δT
i N

k
i (t). (1.33)

We use chord-length parameterization to have a mapping from an interval to
DT . We impose later that the curves CT are interpolated by the incident B-
splines. In other words, the boundary de-Boor points of Xr are taken from those
of the bounding B-spline curves. If any parameterization does not satisfy the
Schoenberg-Whitney condition, then we have to perform a resampling.

Chapter 2

IGES FORMAT AND

SURFACE STRUCTURES

Abstract: The purpose of this chapter is to address practical aspects about
geometric storage and exchange. First, we would like to give some description
of the CAD interface IGES because our approaches and our implementations
are mainly based on this format. Therefore, some understanding of the format
will help understand our future descriptions. It is impossible to describe the
IGES format thouroughly in the scope of this chapter. Therefore, we are only
going to describe the file organizations and some selected entities which we have
supported in our implementations. We will also report on our realizations of
loading and parsing of an IGES file along with the accompanying data structures.
Furthermore, we describe CAD flaws which often make the implementations of
geometric methods difficult. In the second part, we propose a method for finding
the structures of a given surface in which we distinguish topological and metric
information. Readers who are only interested in abstract geometric methods can
skip this chapter.

2.1 Geometric storage and transmission

2.1.1 CAD interface usage

Originally, technical drawings have been processed manually. Since the introduc-
tion of computer assisted modelling of 2D and 3D components, the digitization
of the produced parts has become a necessity. Nowadays, a CAD interface is
used for multiple purposes which can be sorted into three categories [118] that
we want to describe briefly:

(1) Interface between CAD systems,

13

14 IGES

(2) Automatic controls of CAM systems,

(3) Subsequent numerical computations.

First, a CAD interface is used to store and transmit technical drawings. In that
process, a CAD translator serves as digitizer of finished drawing from a CAD
system. Conversely, it is used to parse CAD interfaces so that they can be loaded
into CAD systems.

A CAD interface supports equally mechanical constructions or CAM (Com-
puter Aided Manufacturing). In other words, it plays an important role in
NC(Numerically Controlled) programming of 2-axis productions [68]. The stored
geometric models are transformed into NC programming languages.

Finally, one needs CAD interfaces for providing geometries which are needed in
numerical modelings. These methods include FEM, BEM or other solvers of
problems originating from engineering such as aerodynamics, structural mechan-
ics, electrical computations. Although specialists in numerical computations have
very efficient approaches to solve engineering problems, they often use manually
generated geometries. This fact restricts the performance of numerical methods
to the level of theories because it is very tedious to create practical geometries
manually.

2.1.2 IGES as a CAD neutral format

The storage and transmission of technical drawings have demonstrated them-
selves to be necessary. Furthermore, they should be feasible not only within an
individual organization but also to large communities. This requirement has led
to a way to transfer geometric components in neutral formats. That is, a format
which is not specific to any individual organization and which is understood and
acceptable by all CAD systems. The advantage of a neutral format over a direct
transmission is that the number of translations reduces considerably. Conceived
in 1979 by a combination of people including ICAM and NBS representatives [57],
IGES has become the first CAD interface. During its phase of conception, it was
termed ”Interim” Graphics Exchange Specification. The first release of IGES as
an approved ANSI standard took place in 1981 [127]. In the version IGES 1.0,
it was labeled Initial Graphics Exchange Specification. That first version mainl
contained supports for drafting of technical drawings and it included only 34 enti-
ties. More entities have been introduced in the version IGES 2.0 which supported
FEM (Finite Element Method) modelings and electronic printed wiring boards.
In the version 3.0, more applications about architectures and constructions [126]
were incorporated.

2.2. IGES FILE STRUCTURE 15

2.2 IGES file structure

In this section, we would like to give a description of an IGES file format. While
reading this short description, we recommend that the readers compare the ex-
planation with Fig. 2.1 which shows a simple example of an IGES file.

2.2.1 Entity classification and data types

We distinguish two main entity categories in an IGES file: geometric and nongeo-
metric entities. The first group contains information which is required to describe
shapes such as curves, surfaces, solids and relationships between them. The sec-
ond group is needed for other graphical or computational purposes that include
color properties in RGB, CMY, or HLS format, or physical units such as mea-
sures of mass, time, temperature, luminous intensity which are needed in physical
simulations or numerical applications. Descriptive properties such as text fonts
are also classified in the non-geometric entities. IGES standard supports sev-

Entity ID number IGES-code

Line 110 LINE

Circular arc 100 ARC

Polynomial/rational B-spline curve 126 B SPLINE

Composite curve 102 CCURVE

Surface of revolution 120 SREV

Tabulated cylinder 122 TCYL

Polynomial/rational B-spline surface 128 SPLSURF

Trimmed parametric surface 144 TRM SRF

Transformation matrix 124 XFORM

Table 2.1: Implemented curve, surface and transformation entities

eral data types which include strings, integers, and real numbers. Real numbers
are usually represented in the form rDs, a floating point number r followed by
the character ’D’ followed by a signed integer s as 9.807693D-1 or 1.5D2. This
represents a real number r multiplied by ten to the power of s. A string has
the format lHf in which the integer l determines the length of the string to be
described. The real string is shown after the letter H as 11HProEngineer. Such
a representation could prove very helpful if we use such formatted programming
language as FORTRAN.

In the IGES format, a parameter is a value which can be integer, string, or floating
point and which describes some information in the global section or parameter
data. Those parameters are separated by a symbol known as parameter delimiter

which can be specified or defined in the global section and which has comma (,)

16 IGES

as default value. Every entity which is found in the directory entry is detailed by
one record which is a sequence of parameters. The symbol separating two records
is the record delimiter whose default value is a semicolon (;).

2.2.2 IGES file organization

The number of lines of an IGES file depends on the geometric information to be
stored. The lines are generally partitioned into five main sections:

(1) Start section,

(2) Global section,

(3) Directory entry,

(4) Parameter data,

(5) Terminate section.

The structure of an IGES file is always organized in 80 columns whose corre-
sponding specific roles are split into three parts. First, columns 1 till 72 contain
the most valuable parameter and record values pertaining to the digitized geom-
etry. Those columns include information which varies according to the section to
be described. Second, column 73 contains one letter which specifies the current
section. Thus, the five IGES-sections that we have described above are identified
respectively by the letters ’S’, ’G’, ’D’, ’P’, and ’T’. Finally, columns 74 till 80
contain integer data which are right-justified and which indicate the line num-
bers of every section. In simple words, an IGES file has the structure displayed
in Table 2.2.

Now, we would like to summarize the purpose if each section of an IGES file. The
start section which should have at least one line is a human-readable section in
which you can write anything like the directory location of the file. This section
usually contains the comments of the sender to the receiver.

In the global section, we find general information such as how to read the current
file, where, when and by whom was the file generated. It can also specify the
parameter delimiter as well as the record delimiter.

The actual description of the entities takes place in the directory entry and pa-
rameter data sections. The directory entry gives in general an overview of the
different components of the stored geometry and it points to records in the Pa-
rameter Data section which contains the complete information about all param-
eters. For instance, in the directory entry we can see that we have to deal with
NURBS surfaces while the information about the control points, knot sequence
and weights cannot be found in the Directory Entry. Every entity has its own
identification number which can range from 0 to as many as 514. In Table 2.1,

IGES STRUCTURE 17

1 ... 72 73 74 ... 80

S 1
START SECTION S 2

S ...

G 1
GLOBAL SECTION G 2

G ...

D 1
DIRECTORY ENTRY D 2

D ...

P 1
PARAMETER DATA P 2

P ...

TERMINATE SECTION T 1

Table 2.2: IGES file structure

Field Columns Section

1 1-8 Start
2 9-16 Global
3 17-24 Directory entry
4 25-32 Parameter data

Table 2.3: Four fields in terminate section

18 IGES

we summarize the entity numbers of a few important geometries. It is in the
Parameter Data section that we can find the actual values of all parameters. The
content of the parameter data section varies from one entity to another but it
has in general the following structure

entity number,parameter1,parameter2,...,parameterN;

The terminate section consists only of a single line which does not use columns
33-72 and which describes the lengths of the former four sections as described in
Table 2.3.

2.2.3 Shortcomings and proposed remedies

In the following discussion, we summarize the two negative properties that CAD
specialists usually experience with the IGES format.

The first main problem with which many users complain [57, 118, 126] about
IGES is its volume. IGES files which store real-world geometries such as com-
plex mechanical parts are extremely large. It could take several hours to load
and interpret them. This problem about voluminous file is often attributed to
the structure of the IGES files which repeat in some cases the same information.
For instance, a curve is sometimes described several times. Parameters that are
described in the Directory Entry section are in some events still retrieved in the
Parameter Data section. Some remedies have already been proposed to overcome
such difficulties. One solution that is described in the IGES 5.3 [119] is the intro-
duction of compressed IGES. This avoids the redundancy in the Directory Entry
and the Parameter Data sections. Those two sections are merged into a single
one which is termed Data section. A new additional one line section, the Flag

section, is introduced in order to indicate that we deal with the compressed for-
mat. The compressed format has another way of storage which reduces the space
requirement and which facilitates the access to the entities. There is an interface
software [119] for converting from the initial IGES format to the compressed one
and conversely. Another proposed remedy [126] to the volume of the IGES file is
the IIF format (Internal IGES file) which is used in several IGES translators to
serve as an interface between the IGES file and the CAD/CAM system. The IIF
formats reorganize an IGES file into several Internal IGES files which have the
advantage of providing a more convenient way of accessing geometric entities.

The second shortcomming is related to selective implementations of the whole
IGES format. On account of the large number of entities in the IGES standard,
users often select some entities which are adapted to their own concerns. Thus,
they implement only their applications with those selected entities. Repeated
applications of such a process can cause loss of information. Further, IGES can
represent the same geometric information in a lot of ways which could accentuate
the problem of data loss.

IGES STRUCTURE 19

PTC IGES file: H:\IGES_files\open_cylinder.igs S 1
1H,,1H;,7HPRT0001,31HH:\IGES_files\open_cylinder.igs, G 1

49HPro/ENGINEER by Parametric Technology Corporation,7H2001150,32,38,7, G 2
38,15,7HPRT0001,1.,1,4HINCH,32768,0.5,13H021014.152641,0.00865991, G 3

86.6025,8Hmaharavo,7HUnknown,10,0,13H021014.152641; G 4
124 1 1 1 0 0 0 001000000D 1

124 0 0 1 0 XFORM 1D 2
100 2 1 1 0 0 1 001010000D 3
100 0 0 1 0 ARC 1D 4

124 3 1 1 0 0 0 001000000D 5
124 0 0 1 0 XFORM 2D 6

100 4 1 1 0 0 5 001010000D 7
100 0 0 1 0 ARC 2D 8
110 5 1 1 0 0 0 001010000D 9

110 0 0 1 0 LINE 1D 10
124 6 1 1 0 0 0 001000000D 11

124 0 0 1 0 XFORM 3D 12
100 7 1 1 0 0 11 001010000D 13

100 0 0 1 0 ARC 3D 14
124 8 1 1 0 0 0 001000000D 15
124 0 0 1 0 XFORM 4D 16

100 9 1 1 0 0 15 001010000D 17
100 0 0 1 0 ARC 4D 18

110 10 1 1 0 0 0 001010000D 19
110 0 0 1 0 LINE 2D 20
110 11 1 1 0 0 0 001010000D 21

110 0 0 1 0 LINE 3D 22
110 12 1 1 0 0 0 001010000D 23

110 0 0 1 0 LINE 4D 24
120 13 1 1 0 0 0 001010000D 25

120 0 0 1 0 SREV 1D 26
110 14 1 1 0 0 0 001010000D 27
110 0 0 1 0 LINE 5D 28

102 15 1 1 0 0 0 001010000D 29
102 0 0 1 0 CCURVE 1D 30

110 16 1 1 0 0 0 001010500D 31
110 0 0 2 0 LINE 6D 32
110 18 1 1 0 0 0 001010500D 33

110 0 0 2 0 LINE 7D 34
110 20 1 1 0 0 0 001010500D 35

110 0 0 2 0 LINE 8D 36
110 22 1 1 0 0 0 001010500D 37

110 0 0 2 0 LINE 9D 38
102 24 1 1 0 0 0 001010500D 39
102 0 0 1 0 CCURVE 2D 40

142 25 1 1 0 0 0 001010500D 41
142 0 0 1 0 UV_BND 1D 42

144 26 1 1 0 0 0 000000000D 43
144 0 0 1 0 TRM_SRF 1D 44

110 27 1 1 0 0 0 001010000D 45
110 0 0 1 0 LINE 10D 46
110 28 1 1 0 0 0 001010000D 47

110 0 0 1 0 LINE 11D 48
120 29 1 1 0 0 0 001010000D 49

120 0 0 1 0 SREV 2D 50
110 30 1 1 0 0 0 001010000D 51
110 0 0 1 0 LINE 12D 52

102 31 1 1 0 0 0 001010000D 53
102 0 0 1 0 CCURVE 3D 54

110 32 1 1 0 0 0 001010500D 55
110 0 0 2 0 LINE 13D 56

110 34 1 1 0 0 0 001010500D 57

20 IGES

110 0 0 2 0 LINE 14D 58
110 36 1 1 0 0 0 001010500D 59

110 0 0 2 0 LINE 15D 60
110 38 1 1 0 0 0 001010500D 61

110 0 0 1 0 LINE 16D 62
102 39 1 1 0 0 0 001010500D 63

102 0 0 1 0 CCURVE 4D 64
142 40 1 1 0 0 0 001010500D 65
142 0 0 1 0 UV_BND 2D 66

144 41 1 1 0 0 0 000000000D 67
144 0 0 1 0 TRM_SRF 2D 68

406 42 1 1 0 0 0 001000000D 69
406 0 0 1 15 PROP 1D 70
402 43 1 1 0 0 0 000000300D 71

402 0 0 2 7 LAYER 1D 72
406 45 1 1 0 0 0 001000000D 73

406 0 0 1 15 PROP 2D 74
402 46 1 1 0 0 0 000000300D 75

402 0 0 2 7 LAYER 2D 76
124,-1D0,0D0,0D0,7.5D1,0D0,-1D0,0D0,1.5D2,0D0,0D0,1D0,0D0; 1P 1
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 3P 2

124,1D0,0D0,0D0,7.5D1,0D0,-1D0,0D0,1.5D2,0D0,0D0,-1D0,-5D1; 5P 3
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 7P 4

110,5D1,1.5D2,0D0,5D1,1.5D2,-5D1; 9P 5
124,1D0,0D0,0D0,7.5D1,0D0,1D0,0D0,1.5D2,0D0,0D0,1D0,0D0; 11P 6
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 13P 7

124,-1D0,0D0,0D0,7.5D1,0D0,1D0,0D0,1.5D2,0D0,0D0,-1D0,-5D1; 15P 8
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 17P 9

110,1D2,1.5D2,0D0,1D2,1.5D2,-5D1; 19P 10
110,7.5D1,1.5D2,0D0,7.5D1,1.5D2,1D0; 21P 11

110,1D2,1.5D2,-5.1D1,1D2,1.5D2,1D0; 23P 12
120,21,23,3.078760800518D0,6.346017160251D0; 25P 13
110,5D1,1.5D2,-5D1,5D1,1.5D2,0D0; 27P 14

102,4,3,19,7,27; 29P 15
110,9.807692307692D-1,3.141592653590D0,0D0,9.807692307692D-1, 31P 16

6.283185307180D0,0D0; 31P 17
110,9.807692307692D-1,6.283185307180D0,0D0,1.923076923077D-2, 33P 18
6.283185307180D0,0D0; 33P 19

110,1.923076923077D-2,6.283185307180D0,0D0,1.923076923077D-2, 35P 20
3.141592653590D0,0D0; 35P 21

110,1.923076923077D-2,3.141592653590D0,0D0,9.807692307692D-1, 37P 22
3.141592653590D0,0D0; 37P 23

102,4,31,33,35,37; 39P 24
142,0,25,39,29,1; 41P 25
144,25,1,0,41; 43P 26

110,7.5D1,1.5D2,0D0,7.5D1,1.5D2,1D0; 45P 27
110,1D2,1.5D2,-5.1D1,1D2,1.5D2,1D0; 47P 28

120,45,47,-6.283185307180D-2,3.204424506662D0; 49P 29
110,1D2,1.5D2,-5D1,1D2,1.5D2,0D0; 51P 30

102,4,13,9,17,51; 53P 31
110,9.807692307692D-1,0D0,0D0,9.807692307692D-1, 55P 32
3.141592653590D0,0D0; 55P 33

110,9.807692307692D-1,3.141592653590D0,0D0,1.923076923077D-2, 57P 34
3.141592653590D0,0D0; 57P 35

110,1.923076923077D-2,3.141592653590D0,0D0,1.923076923077D-2, 59P 36
0D0,0D0; 59P 37
110,1.923076923077D-2,0D0,0D0,9.807692307692D-1,0D0,0D0; 61P 38

102,4,55,57,59,61; 63P 39
142,0,49,63,53,1; 65P 40

144,49,1,0,65; 67P 41
406,1,17H02___PRT_ALL_AXES; 69P 42

402,18,3,7,9,13,17,19,21,23,25,29,39,43,45,47,49,53,63,67,0,1, 71P 43
69; 71P 44
406,1,18H06___PRT_ALL_SURFS; 73P 45

402,18,3,7,9,13,17,19,21,23,25,29,39,43,45,47,49,53,63,67,0,1, 75P 46
73; 75P 47

S 1G 4D 76P 47 T 1

Figure 2.1: Sample of an IGES file

2.3. SEGMENT SEPARATORS 21

2.3 Segment separators

In this section, we would like to discuss about the way a planar multiply connected
region D is often organized with IGES. Such a region D is delineated by an
exterior boundary Bout and N internal boundaries Bj

in. The exterior boundary
Bout is traversed counter-clockwise while the interior ones clockwise. All curves
defining those boundaries are represented as composite curves. A point which
resides between two curved segments will be referred to as segment separators as
illustrated in Fig. 2.2(a). Later in our algorithms, we will have to insert more
nodes on Bout or Bj

in.

Now we would like to describe a nice property of the segment separators in IGES
representation. Consider two adjacent surfaces Si and Sj which are the images
of the planar multiply connected regions Di and Dj by the functions ψi and
ψj . Suppose that Si and Sj share a curve C which is bounded by two points
A, B ∈ R3. The IGES format represents Di and Dj such that there are segment
separators ai, bi ∈ Di and aj , bj ∈ Dj with

A = ψi(ai) = ψj(aj), B = ψi(bi) = ψj(bj). (2.1)

In the splitting into four-sided regions, segment separators which have smooth
joints will have to be treated as reflex vertices. That is, we have to insert cuts
emanating from these points so that we do not have any four-sided regions with
smooth corners.

2.4 Features of the implementation

This section will be occupied by the descriptions of the difficulties that we encoun-
tered during the implementations with IGES format. Although this section has
no direct theoretical interests, we would like to report on the practical treatments
of digitized geometries without which no theoretical methodology is applicable.
The problem about using an IGES file for storing the input geometric components
is related to the loading, parsing and evaluating processes. During the treatments
of the selected entities in Table 2.1, the following tasks have to be implemented.

(a) Automatic extraction of the size of the entities which require large storage: we
need the different integer values which indicate the volume required in the data
structures. That is a necessary step in order that accurate memory allocations
and deallocations can be feasible. This step has to happen before the real entity
extraction can take place.

(b) A large number of simple routines for transforming the IGES parameters to
acceptable inputs in the code: those routines include location of the parameter
delimiters and record delimiters so that appropriate records could be withdrawn
from IGES files. This is necessary in order to access a specified record in the

22 IGES

Parameter Data section which is pointed by an entity in the Directory Entry
section.

(c) Extraction of relevant entities from the IGES file: one has to write a single
routine for each entity because the IGES description of parameter sequences
varies from one entity to another in the Parameter Data section.

(d) Loading of the parameters of the entities from the IGES file to the C-data
structures: we need convertion of the IGES data formats into formats which are
understood by the C programming language. We have generated a data structure
for every entity. The following is for example the data structure that is used to
store a NURBS surface. The other entities can be structured in a similar way.

typedef struct nurbs_surface{

int nu; //order in u-variable

int nv; //order in v-variable

int ku; //smoothness in u-variable

int kv; //smoothness in v-variable

point **d; //3D coordinates of control points

double **w; //weights

double *tau_u; //knot sequence along u-direction

double *tau_v; //knot sequence along v-direction

double u0; //[u0,u1]=interval of def along u-dir

double u1; //[u0,u1]=interval of def along u-dir

double v0; //[v0,v1]=interval of def along v-dir

double v1; //[v0,v1]=interval of def along v-dir

int prop1; //open or closed in u-direction

int prop2; //open or closed in v-direction

int prop3; //rational or polynomial

int prop4; //periodic or not in u-direction

int prop5; //periodic or not in v-direction

}nurbs_surface;

(f) Evaluation functions: one step that cannot be neglected is the entity evalua-
tions because one has to evaluate the loaded entities repeatedly in our subsequent
geometric algorithms. We have to implement an evaluation routine for each and
every given data structure. For instance, we need a de-Boor algorithm [39] to
evaluate a B-spline surface.

2.5 Practical experiences and CAD flaws

We would like to describe in this section some important information that we
gained from the experience about implementing with the IGES format.

(a) There are situations where the input CAD data have imperfections [125].

CAD FLAWS 23

(a) (b)

Figure 2.2: (a)The large points represent segment separators, (b)A cylinder rep-
resented as two half-cylinders

That is, the digitized geometry does not represent exactly the theoretical ex-
pectation of the users. For instance, there are sometimes two surfaces which
are supposed to be theoretically adjacent but there is in practice a gap between
them. That is also the case for nodes or corner points which should be shared
by some neighboring surfaces but which do not coincide in practice as in Fig.
2.3. Those CAD flaws could cause numerical instabilities because adjacency in-
formation could become wrong or incomplete. One can read [86] for an in-depth
studies of CAD imperfections along with methodologies of repairing them. There
are commercial softwares which can detect such imperfections and which correct
them afterwards. In our implementations, the input CAD data have mostly been
generated by Pro-Engineer which usually produces good CAD geometries. There-
fore, our approach demonstrates itself to be very efficient for the 3D surfaces that
we created ourselves. There are however some geometries which we receive from
other sources and which present non-negligible CAD inaccuracies. Without the
dispositions of CAD repair softwares, those data have to be treated individually
by prescribing some threshold ε and by making some assumption that all curves
or points within ε-accuracy coincide. Such an approach makes our current im-
plementation only semi-automatic because such a threshold could vary from an
IGES file to another. Therefore, some user-interaction is sometimes unavoidable.

(b) For describing periodic geometric components such as surfaces of revolution, it
is theoretically conceivable to represent them as one single patch. By investigating
a large number of geometric data, we have noticed that IGES represents such
surfaces as non-periodic components in which they are already split. For instance,
a cylinder is represented as two half-cylinders as in Fig. 2.2(b). Therefore, we will
assume that no two edges of a single surface will coincide throughout this thesis.
This assumption will be implicitly useful during the topological description of
composite surfaces.

(c) According to the practical experiences that we have gained from implementing
with IGES format, both trimmed surfaces as well as theoretically untrimmed ones
are often represented as trimmed entities. That is, they are both assigned the
IGES entity number 144 with the code TRM SRF. If the theoretical expectation

24 IGES

Ω1

Ω2

Ω3

Ω4

Γ1

Γ2

Γ3

Γ4

(a)

Ω1

Ω2

Ω3

Ω4

Γ1

Γ2

Γ3

Γ4

(b)

Figure 2.3: CAD imperfection: the nodes Ω1, Ω2, Ω3, Ω4 are supposedly the
same: (a) theoretical expectation (b) practical stored geometry.

defines an untrimmed surface S on the parameter domain [a, b] × [c, d] then the
IGES descriptor extends this region as [a − ε, b + ε] × [c − µ, d + µ] and S is
considered as a trimmed surface such that the trimming curve is the rectangle
consisting of the following corners:

A := (a, c) B := (b, c) C := (b, d) D := (a, d). (2.2)

2.6 Surface structures

2.6.1 Topological structure

In this section, we would like to describe how to obtain the structure which
represents the adjacencies of the surfaces Si belonging to a given CAD model.
Our objective consists in finding some practical way of identifying if two surfaces
are adjacent.

In order that two surfaces Si and Sj are adjacent, three different cases can be
distinguished as in Fig. 2.4. The first one applies when two boundary curves
Ci and Cj belonging respectively to Si and Sj exactly coincide. The second case
occurs when the first endpoint of Ci coincides with an endpoint of Cj and the
second endpoint of Ci resides strictly within Cj . The third case is that the curve
Ci resides strictly inside Cj. We are interested in finding a practical way of
detecting those three cases.

In order to facilitate the presentation, we are only going to describe the first case.
The other two cases can be treated in a similar manner. We will suppose that the
curves Ci and Cj are defined parametrically from the intervals [ai, bi] and [aj , bj]

2.6. SURFACE STRUCTURES 25

(a) (b) (c)

Figure 2.4: Three types of adjacent patches

respectively. If Ci and Cj share two endpoints, the two surfaces Si and Sj are
already adjacent for most mechanical objects. But it is worth mentioning that it
is possible that only the two endpoints coincide while the surfaces Si and Sj are
not at all adjacent. Such a situation can be observed in Fig. 2.5(a) where one
half-cylinder and a toroidal portion only meet at two corners. In order to exclude
such a situation, we perform a further test. That is, we check if the two curves
share an internal vertex, i.e if there exists some point X ∈ R3 with

X = Ci(ti) = Cj(tj) ti ∈]ai, bi[and tj ∈]aj, bj [. (2.3)

Let us describe briefly how the condition (2.3) can be checked in practice. We
choose ti as the midpoint of the first interval [ai, bi] and we define as X the image
Ci(ti). Therefore, the test (2.3) amounts to determining the existence of tj . The
easiest way of finding that is to select some uniform samples {sk} in the interval
]aj , bj [and to verify if some images Cj(sk) approximate X within a prescribed
accuracy. But such a method is not quite efficient because it could require a lot
of function evaluations. Our preferred method is an adaptive one in which we
search for a sequence of decreasing subintervals Ik = [σk, τk]

I0 ⊃ I1 ⊃ I2 ⊃ · · · (2.4)

whose lengths µ(Ik) are geometrically decreasing:

µ(Ik+1) < λµ(Ik) with λ ∈]0, 1[. (2.5)

The approach consists first in initializing I0 to be the interval [aj , bj] itself and
in prescribing a splitting parameter M ≥ 2. If Ik = [σk, τk] is known, we split it
into M subintervals and we select as Ik+1 = [σk+1, τk+1] the subinterval which is
the closest one to X. We repeat this iteration until some prescribed accuracy ε
is obtained:

‖Cj(mk) − X‖ < ε where mk := 0.5(σk + τk). (2.6)

In general, we do not need to choose an accuracy ε which is too fine because the
objective is to detect adjacency and not to have an accurate solution of criterion

26 IGES

(a)

σ0 τ0σ1 τ1σ2τ2

(b)

Figure 2.5: (a)Two surfaces share two points but they are not adjacent
(b)Adaptively decreasing intervals

Si

Sj

Cj(bj)Ci(ai)

Ci(bi)
Cj(aj)

(a)

Sr(1)

Sr(2)

Sr(m)

Si

e

(b)

Figure 2.6: (a)Metric information (b)The edge e of Si is completely covered

(2.3). In our implementations, an accuracy ε of order 0.01 demonstrates itself to
be enough.

For the second case, we can proceed as in the first case to test for the curve mem-
bership. A further test of existence of an internal common point is theoretically
conceivable but in our practical tests we have observed that the two endpoints
suffice. The third case can be treated also in a similar manner with the exception
that you have to test for curve membership for the two endpoints of Ci.

2.6.2 Metric structure

Apart from topological information, it is also beneficial to store metric informa-
tion. While topological structures specify the interrelation between surfaces with
the help of integer entities, metric ones indicate point coordinates or parameter
values at which certain points are passed by curves. For two adjacent patches Si

and Sj we store the time intervals [ai, bi] and [aj , bj] which determine the super-
posing curve portions of the patches as in Fig. 2.6(a). That is, if Ci and Cj are
the curves which delineate the boundary parts of Si and Sj then Ci([ai, bi]) and
Cj([aj , bj]) coincide. The advantage of having such metric information is that it
is easy to verify whether an edge e of a given patch Si is completely covered by

2.7. OTHER CAD INTERFACES 27

other patches Sr(1), ..., Sr(m) as in Fig. 2.6(b). As a consequence, when we want
to perform an adjacency test, we do not need to verify the incidence of such a
completely covered edge e upon a patch Sj with j different from r(1),...,r(m).
Exploiting the metric structure has a considerable acceleration result in the de-
termination of adjacencies.

2.7 Other CAD interfaces

We have implemented our geometric algorithms with the IGES format but we
believe that they can be also used with other CAD interfaces with little modifi-
cations. We would like to briefly describe below some well-known CAD interfaces
other than IGES.

VDA-FS: The file format VDA-FS or Verband der Automobilindustrie-Flächen
Schnittstelle has [33] its origin from the German car manufacturers [105] associa-
tion VDA. The VDA-FS format is well known in its capability to manipulate free
form 3D surfaces which are very frequently involved in car designs. A VDA-FS
file can be recognized by its suffix ”.vda”. In contrast to IGES which has a lot
of entities, VDA-FS has only five entities [32].

SET: The file format SET (Standard d’Échange et de Transfert) started its
development in 1983 and it became a French standard for CAD data exchange
in 1985. This format has originated from the aircraft industry Airbus.

STEP: The International Organization for Standardization (ISO) has introduced
the STEP (STandard of the Exchange of Product model data) format [81] in
order to release a CAD exchange model which should be accepted as standard
worldwide. While IGES, VDA-FS, SET were mainly used as US, German and
French standards respectively, the STEP standard was [116] designed for interna-
tional use. That facilitates transfer between international partners and customers
[17]. Note that STEP is nowadays the most modern CAD interface.

DXF: The format DXF, which stands for Drawing eXchange Format [4], was
originally used to store 3D models created by the CAD-system autoCAD [14, 77].
DXF format represents information in tagged data mode. That is, an integer
precedes every data piece. DXF files are available in both ASCII and binary
formats. There are nowadays interesting tools for loading a DXF file and use the
data from it in OpenGL applications.

Save files: SAT (Standard ACIS Text) and SAB (Standard ACIS Binary) are
file formats that are used for storing and transferring data in ACIS [24] which
is a very flexible C++ and SCHEME library produced by Spatial Technologies
for geometry manipulation purposes. These two formats are also known as save
files. Although SAT files are introduced by ACIS, they can also be loaded by
some other CAD-systems.

28 IGES

Chapter 3

FOURSIDED SPLITTING

Abstract: The purpose of this chapter is the decomposition of a given trimmed
surface into several four-sided subregions. Before treating the general cases, we
will first focus on regions with polygonal boundaries. We aim at splitting a
given multiply connected polygon into a set of convex quadrilaterals. Then, we
will generalize our methods for regions having curved boundaries. Our approach
consists in repeatedly removing quadrilaterals from a given polygon. We will first
derive theoretical results pertaining to quadrangulation of simple polygons from
the usual 2-ear theorem. Unfortunately, the 2-ear theorem holds only for simply
connected polygons while we are interested in quadrangulation of polygons with
holes. As a consequence, we will introduce a special type of polygon which serves
as intermediate step to derive results for multiply connected polygons. For a
surface having curved boundaries, we approximate it first by a coarse polygonal
region. After quadrilating the resulting polygon, we replace the boundary edges
by the initial curves. Furthermore, we will show methods of avoiding boundary
interferences. Numerical results are reported to illustrate the approaches. Our
benchmarks include CAD objects which come directly from IGES files.

3.1 Introduction

We address the problem of design with trimmed surfaces which are fundamental
entities in CAGD. The majority of CAD objects, even among the simplest ones
such as closed cylinders, are partly or completely composed of trimmed surfaces.
Therefore, completely ignoring treatment of trimmed surfaces is an unacceptable
restriction if one wants to deal with real-world CAD data.

Since our splitting method is based upon quadrangulation, we will first focus on
quadrilating polygonal regions in the next sections. Decompositions of curved
regions will be treated after having a complete insight about multiply connected
polygons. There are generally two categories of numerical methods for quadri-

29

30 SPLITTING

(a) (b)

Figure 3.1: Splitting into four-sided subregions

lating a polygon. The indirect method (see [99, 100] and the references there)
consists in generating an initial triangulation which is then converted into a quad-
rangulation. On the opposite, the second approach generates a quadrangulation
directly from the initial polygon [88, 80, 78]. The methods that are mainly
discussed in this chapter fall in the second category. In simple words, the fun-
damental algorithms of our approach consist in removing a quadrilateral from
the given polygon by using the constructive proofs of our theorems. We repeat
the same process to the remaining polygon recursively until the whole polygon
is quadrilated. The process of removing a quadrilateral amounts to introducing
some cuts within the polygon. We will try to insert few cuts in order to eventually
obtain few quadrilaterals.

In the next sections, we will describe the problem setting more accurately and we
will introduce some important terminology. Our main contributions are found
in sections 3.4, 3.5 and 3.6 where we prove several theoretical results pertaining
to removal of boundary convex or nonconvex quadrilaterals by introducing only
internal Steiner points (additional nodes not belonging to the initial polygon).
As initial preparations, we will discuss about chopping procedure for simply con-
nected polygons in order to gain insight about the type of theoretical results
that are developed in this document. Unfortunately, many results which are
correct for simply connected polygons cannot be directly generalized to multiply
connected polygons. Even the 2-ear theorem will fail for multiply connected poly-
gons without additional assumption as we will show in the next discussion. As a
consequence, we will introduce in section 3.5 the notion of double-edged polygons
in order to carry the results over to multiply connected polygons. Those auxil-
iary polygons may contain double nodes and double edges which are traversed in
opposite directions.

In most theoretical results that can be found in the literature, quadrangulations

3.2. PROBLEM SETTING AND GENERAL APPROACH 31

may contain initially nonconvex quadrilaterals. Since a quadrilateral decompo-
sition having only convex members is very desired in practical cases, we will
describe in section 3.8 a method of converting a nonconvex quadrangulation into
a convex one.

For trimmed surfaces having curved boundaries, one takes coarse approximations
of the curves which bound the trimmed surface. Afterward, we quadrilate the
resulting multiply connected polygon. Finally, the quadrilateral cells are trans-
formed into four-sided regions by replacing the straight boundary edges by the
corresponding curved boundary portion of the original trimmed surface. Meth-
ods will be given in order to deal with boundary interference and local requad-
rangulations. At the end of this chapter, we present some numerical results of
quadrilating simply and multiply connected polygons of various complexity. We
will also give some benchmarks which are based on CAD data stored in IGES
files [119].

3.2 Problem setting and general approach

Let us consider a closed surface S ⊂ R3 given as a collection of M trimmed
parametric surfaces S1, · · ·, SM defined on the 2D-domains D1, · · ·, DM which
are multiply connected regions in R2. The external and internal (when relevant)
boundary curves of each domain Di are supposed to be composite curves. We
suppose further that the parametric functions defining Si

ψi : Di −→ Si (3.1)

are diffeomorphisms.

Furthermore, we do not allow the existence of cusps at the boundaries of any Di.
That is, if we suppose that the closed curve representing a boundary (exterior
or interior) of Di is given by the parametric curve κ, then we must have the
following.

(B1) For all τ , we have κ̇(τ) 6= 0.

(B2) For all κ(τ) belonging to the boundary of Di,

lim
t→τ−

κ̇(t) 6= −λ lim
t→τ+

κ̇(t) ∀λ > 0. (3.2)

Additionally, the curve κ is supposed to be bijective piecewise polynomial which
can only have corners (discontinuity of tangents) at the segment separators (see
former chapter about IGES).

The objective of this chapter is to (Fig. 3.1) tessellate S intom four-sided domains
Fi

S =
m⋃

i=1

Fi . (3.3)

32 SPLITTING

Furthermore, we will aim at having a splitting which is conforming. That is to
say, every two different subregions Fi and Fj share a complete edge or they share
a single corner or they are disjoint. Another objective is to keep the number m
of surfaces Fi small. However, we do not intend to compute the globally optimal
tessellation that minimizes m because the computational cost would be extremely
high. We will try to have quadrilaterals which are well-shaped. Therefore, we
will introduce techniques for measuring the quality of quadrilaterals in section
3.9. Since we want to construct diffeomorphisms, we show in section 3.14.4 the
relationship between this chapter and the next one.

Our general approach to achieve (3.3) consists in splitting the 2D regions Di into
four-sided regions Qk,i:

Di =
⋃

k

Qk,i. (3.4)

Thereto for each Di, we create a polygonal approximation P (i) which we tessellate
into a list of quadrilaterals qk,i. The four-sided regions Qk,i are obtained from
qk,i by replacing the straight boundary edges of qk,i by the corresponding curve
portion of Di.

In order to obtain a decomposition which is conforming everywhere, we proceed as
follows. We approximate the curved boundaries of {Si} by straight line segments
separated by nodes {Xk} ⊂ R3. Then, we make the local splitting (3.4) in such a
way that it is conforming inside Di and that it uses only the preimages ψ−1

i (Xk)
of the nodes {Xk} as boundary vertices. That is, we do not use any additional
boundary nodes.

The method that we propose for the local split (3.4) tessellates a polygon with
n boundary vertices into O(n) convex quadrilaterals. As a consequence, if the
number of its boundary vertices ni for all polygons P (i) is smaller than n, then the
total number of quadrilaterals is O(M · n). For all examples that we considered,
we found that the total number of quadrilaterals is quite small. However, we
do not investigate how close our local approach comes in average to the globally
optimal solution. In order to facilitate the presentation, let us use the following
set of indices throughout this chapter

Λ := {1, ...,M}. (3.5)

3.3 Polygonal regions

Before considering regions having curved boundaries, let us investigate polygonal
regions. For each i, decomposing Si amounts therefore to quadrilating the poly-
gon Di. In the next discussions, we will skip the subscript i which identify the
trimmed surface index. Thus, we consider a polygon P which has an even num-
ber of boundary vertices {xj} and which might have internal boundaries. The

3.3. POLYGONAL REGIONS 33

xi+1

xj

xi

xj+1

(a)

x

(b)

Figure 3.2: (a) Double edge (b) Internal domain of a polygon.

assumption that the number of boundary vertices is even can be made without
loss of generality because the internal angle at a vertex in a polygon is allowed to
be π. In section 3.12.3, we describe a method of making the number of boundary
vertices of each polygonal approximation even. Our objective is to find a list of
convex quadrilaterals Qk such that

P =
⋃

k

Qk (3.6)

with the following properties:

(P1) For any k, the vertices of Qk are taken from the set of boundary vertices
{xj} or they are generated strictly in the interior domain of P (only interior
Steiner points).

(P2) The intersection of two quadrilaterals is either empty or a complete edge.

Since the number of boundary nodes is even, the positive solvability of that
problem is discussed in several references (see for example [99, 38, 88]) related to
quadrangulation.

Let us now introduce a few definitions which are necessary for the understanding
of the subsequent discussions.

Definition 1 For two points x and y in the plane we will denote by [x,y] and
]x,y[the closed and open line segments defined by

[x,y] := {λx + (1 − λ)x, λ ∈ [0, 1] ⊂ R}, (3.7)

]x,y[:= {λx + (1 − λ)x, λ ∈]0, 1[⊂ R}. (3.8)

Definition 2 The line which passes through two given points a ∈ R2 and b ∈ R2

splits the plane into two half planes. We will define the positive (resp. negative)

34 SPLITTING

half plane (ab)+ (resp. (ab)−) as the half-plane on the right (resp. left) of the
line. Consider a polygon P and a vertex a. The wedge of a is defined to be the
region

W(a) := (pa)− ∩ (sa)+ , (3.9)

where p and s are vertices which denote respectively the predecessor and the
successor of a by following the polygon P counterclockwise. A vertex c of P is
visible from another vertex d of P if the open line segment]c, d[is located strictly
inside the polygon P (we say also that c sees d). We define the kernel ker(P) of
the polygon P to be the set of points from which all the vertices of P are visible.

Definition 3 Consider a polygonal domain P . A vertex v of P is called a reflex
vertex if the internal angle at v is greater than π.

Definition 4 Consider a polygon P having vertices xi. A cut is a line segment
[xt,xs] having endpoints from the vertices of P such that the open segment]xt,xs[
is located completely inside P . An ear E of the polygon P is a triangle such that
its apices are three consecutive vertices of P and that one edge of E is a cut.
Chopping off a subpolygon P ′ from P means introducing a cut e that splits P
into P ′ and the remaining polygon P̃ , i.e.

P = P ′ ∪ P̃ P ′ ∩ P̃ = e. (3.10)

Definition 5 For a simply connected polygon P , the kernel is the set of points
from which all vertices of P are visible.

Definition 6 Consider a periodic list of points {xs} in the plane. We say that
we have a double edge if there exist i 6= j such that:

{
coordinates(xi) = coordinates(xj+1)
coordinates(xi+1) = coordinates(xj).

(3.11)

As a consequence, the edge is traversed in two opposite directions as illustrated
in Fig. 3.2(a). Note that in the figures throughout this chapter, nodes which are
very close to one another such as those of Fig. 3.2(a) are supposed to have the
same coordinates. The nodes are only separated for the graphical illustration.

Definition 7 For any polygon P , we will denote by I(P) its internal domain
which is defined by

I(P) := {x ∈ R2 not on any edge ofP : the half-line [x, ~u)
intersectsP an odd number of times for any ~u}. (3.12)

As an illustration, we show in Fig. 3.2(b) the internal domain by the shaded
area.

3.4. REMOVING A QUADRILATERAL FROM A SIMPLE POLYGON 35

Since our theoretical development is partially based on the 2-ear theorem [84],
let us first recall its statement:

Theorem 1 (Meister, 1975) Every simple (simply connected, without inter-
secting edges) polygon having at least four vertices has two nonoverlapping ears.

Both the statement and the proof of the 2-ear theorem are very simple. It is yet a
very powerful tool for both theoretical and programming purposes. This theorem
is very useful in practice when we want to decompose a given polygon into a set
of triangles. A very fast algorithm can be easily devised to chop off recursively a
triangle from the polygon in order to form a triangulation. In this chapter, this
theorem will mainly serve as a tool to decrement the number of vertices in proofs
using induction.

3.4 Removing a quadrilateral from a simple polygon

With the above definitions in mind, we are now ready to state our first fundamen-
tal result about quadrilateral removal. The following statement can be used to
decompose a simple polygon into quadrilaterals which are not necessarily convex.

Theorem 2 Consider a simple polygon P having at least four vertices, one of
the following two statements must hold true:

(Op1) One can remove a quadrilateral which is not necessarily convex by inserting
a single cut as in Fig. 3.3(a).

(Op2) There exists a point ω located strictly within P such that one can remove
a convex quadrilateral by inserting two line segments emanating from ω to
two vertices of P (Fig. 3.3(b)).

Proof

We will proceed by induction with respect to the number n of the vertices xi of
the polygon. For n = 4, the theorem is evident. As hypothesis of induction, we
suppose that the claim holds for every polygon having n vertices.

Consider now a polygon P having n + 1 vertices and let us show that we may
chop a quadrilateral Q from P . First, let us apply the 2-ear theorem in order
to chop off a triangle E = [xi−1,xi,xi+1] from P and let us denote by P̃ the
remaining polygon which must have n vertices. That is,

P̃ := [x0, · · · ,xi−1,xi+1, · · · ,xn]. (3.13)

After applying the hypothesis of induction to the new polygon P̃ , we obtain a
quadrilateral Q̃. Let us now consider three cases according to the incidence of Q̃
upon the ear E and to the existence of Steiner point in Q̃.

36 SPLITTING

(a)

ω

(b)

Figure 3.3: (a) Chop off a quadrilateral with one cut (b) Remove a quadrilateral
with two cuts and one internal node.

xi

xi−1
xi+3

xi+2

xi+1

ω

(a)

xi+3

xi+2

xi+1

xi−1

xi

E

Q̃

(b)

Figure 3.4: (a) Generate ω (b) xi+2 is reflex in Q̃.

Case 1: If the quadrilateral Q̃ is not incident upon the edge [xi−1,xi+1] inside
the polygon P̃ , then we simply need to define Q := Q̃.

Case 2: Suppose now that Q̃ has [xi−1,xi+1] as edge and Q̃ has no internal
Steiner node. We will investigate a few subcases.

Case 2.a: Assume that Q̃ = [xi−2,xi−1,xi+1,xi+2] as in Fig. 3.6(a).

Inside the quadrilateral Q̃, xi−1 is visible from xi+2 or xi+1 is visible from
xi−2 (indeed, you can apply a simple 2-ear theorem inside Q̃). In the for-
mer situation, define Q := [xi,xi+1,xi+2,xi−1]. In the latter situation, define
Q := [xi+1,xi−2,xi−1,xi]. That is, we have just applied operation (Op1) to P in
case 2.a.

Case 2.b: Assume that Q̃ = [xi−1,xi+1,xi+2,xi+3].

If the quadrilateral Q̃ is convex, then we simply need to apply (Op1) by defining

Q := [xi,xi+1,xi+2,xi−1]. (3.14)

In the situation that Q̃ is nonconvex, we investigate four events according to the
position of its reflex vertex.

3.4. REMOVING A QUADRILATERAL FROM A SIMPLE POLYGON 37

xi

xi−1
xi+3

xi+2

xi+1

ω

(a)

xi+2

xi+1

xi

E

Q̃

(b)

xi

xi+1 xi−1

E

Q̃

ω̃

ω

(c)

Figure 3.5: (a)xi+3 is reflex in Q̃ (b)xi−1 is reflex in Q̃ (c)Introducing a Steiner
point ω in Q̃ ∩ Wedge(xi).

xi

xi+1

xi+2

xi−2
xi−1

E

Q̃

(a) (b)

Figure 3.6: (a) The ear [xi−1,xi,xi+1] and the removed quadrilateral are adjacent
(b) A doubly connected polygon from which one may not chop any triangle off.

• If the vertex xi+2 (resp. xi−1) is its reflex vertex as depicted in Fig.
3.4(b) (resp. Fig. 3.5(b)), we define Q := [xi−1,xi,xi+1,xi+2] (resp.
Q := [xi+2,xi−1, xi,xi+1]).

• In the case that xi+1 is the reflex vertex of Q̃, take any node ω on the open
segment]xi+3,xi−1[in the wedge of xi+2 as illustrated in Fig. 3.4(a) and
apply (Op2) by defining

Q := [xi+2,xi+3, ω,xi+1]. (3.15)

Note that the quadrilateral Q in relation (3.15) must be convex.

• If the vertex xi+3 is the reflex vertex, we proceed as in (3.15) but the
internal Steiner point ω is chosen strictly within the triangle (Fig. 3.5(a))
[xi−1,xi+1,xi+3] such that it is in the wedge of xi+2.

Case 2.c: In the case that Q̃ = [xi−3,xi−2,xi−1,xi+1], proceed as in case 2.b
but in opposite direction (clockwise).

Case 3: In the event that the segment [xi−1,xi+1] is an edge of Q̃ which has
a Steiner point ω̃ and which is convex (Fig. 3.5(c)), take any point ω that is

38 SPLITTING

strictly inside Q̃ and that is in the wedge of xi. On account of the convexity of
Q̃, both xi−1 and xi+1 are visible from the node ω. Therefore we may define

Q := [xi,xi+1, ω,xi−1] (3.16)

as a quadrilateral which can be removed from P .

�

Remark 1 One can observe that the number of vertices of the remaining polygon
is (n− 2) after applying operation (Op1) to a polygon having n vertices. On the
opposite, applying operation (Op2) as illustrated in Fig. 3.3(b) does not reduce
the number of vertices. At first sight, it may therefore seem that recursively
applying the above theorem does not split a polygon into a set of quadrilaterals
(convex or not). In other words, one may wonder if the following algorithm of
quadrilateral decomposition is guaranteed to terminate when applied to a polygon
having an even number of vertices.

step 0 : Initialize P0 := P and k = 0.
step 1 : If operation (Op1) can be applied to the polygon Pk, chop

off a quadrilateral. Else apply operation (Op2).
In both cases, let Q be the resulting quadrilateral.

step 2 : Define Pk+1 := Pk \Q.
step 3 : If the number of vertices of Pk+1 = 4, terminate.

Otherwise, set k := k + 1 and go to step 1.

If we inspect the above proof more closely, we notice that whenever we apply
operation (Op2), then a neighboring quadrilateral can be chopped off in the next
iteration by applying operation (Op1). As illustrated in Fig. 3.4(a), after remov-
ing the shaded quadrilateral, one may chop the quadrilateral [xi+1,xi+2,xi+3, ω]
off by applying operation (Op1). That is to say, after at most two iterations of
the above algorithm, the number of vertices must decrement twice. As a con-
sequence, the number of resulting quadrilaterals is O(n) for a polygon having n
vertices.

3.5 Toward multiply connected polygons

In this section we will present statements that will be used later for the case
of multiply connected polygons. Before going on, we note that the above proof
cannot be directly generalized for multiply connected polygons because of the
following observation.

Remark 2 (Counter-example for multiply connected polygons) The 2-ear
theorem does not hold true for general multiply connected polygons. As a counter

3.5. TOWARD MULTIPLY CONNECTED POLYGONS 39

B

A

C

D

(a)

B

A

C

D

PL

PR

(b)

B

A

C

D

PL

PR

ω

(c)

Figure 3.7: (a)Initial polygon (b)Make simply connected (c)Make even

example, we simply need to consider a doubly connected polygon whose exterior
and interior boundaries are squares as illustrated in Fig. 3.6(b). As one can
clearly observe, it is impossible to chop off a triangle by inserting a single cut.

We have proved a method of quadrilating any simply connected polygon in the
previous section. An obvious idea for quadrilating a multiply connected polygon
P is to split it first into simply connected ones by inserting two cuts for each
internal curve. Then, the previous quadrangulation approach can be applied to
each simply connected polygon. This method has severe drawbacks.

First, it is not efficient because two cuts are needed for each interior curve while
our approach requires only one cut per interior curve.

Second, it can happen that the simple polygons have an odd number of boundary
vertices. As an illustration, if we insert two cuts [A,B] and [C,D] in the polygon
of Fig. 3.7(b), then the polygon P is split into two odd polygons PL and PR.
To avoid this situation, one has to either include an additional condition about
the allowed number of vertices in a subpolygon which further complicates the cut
search or one has to introduce an additional node (Fig. 3.7(c)). The polygons
that we use in our approach (we call them double-edged polygons) have the
property that the number of vertices always remains even as long as the initial
polygon has an even number of vertices. Therefore, we can apply directly the
quadrangulation technique after converting a multiply connected polygon into a
double-edged one.

A further advantage of double-edged polygons is in the implementation aspect.
One does not need to have two computer programs to quadrilate a simply con-
nected polygon and a double-edged polygon. That is due to the fact that the
input of those kinds of polygon is given as a single sequence of 2D-vertices in
practice.

Definition 8 A polygon P with vertices x0, x1, · · ·, xN−1 is called double-edged
if it fulfills the following criteria:

40 SPLITTING

(C1) The boundary of P is the set of line segments [xN−1,x0], [xi,xi+1] for
i = 0, · · · , N − 2.

(C2) P may contain double edges but no consecutive double edges, i.e. the
following situation does not occur:





coordinates(xi) = coordinates(xj+2)
coordinates(xi+1) = coordinates(xj+1)
coordinates(xi+2) = coordinates(xj).

(3.17)

(C3) Any three pairwise different vertices of P are affinely independent.

(C4) All internal angles are different from zero (Fig. 3.9(b)).

(C5) The internal domain I(P) is connected.

Remark 3 In Fig. 3.9(a), we have a polygon which violates the criterion (C5)
because the internal domain has two connected components. Since criterion (C3)
is too restrictive to treat interesting practical situations, we are going to relax it
later on.

Theorem 3 From every double-edged polygon P having more than four vertices,
one may chop off two triangles.

Proof

We proceed by induction with respect to the number m of double edges. First of
all, let us consider the case where m = 1 and suppose that the edges [xσ,xσ+1]
and [xρ,xρ+1] coincide as displayed in Fig. 3.8. Define

~u := −−→xσxσ+1/‖−−→xσxσ+1‖ (3.18)

and denote by ~n the unit vector normal to the segment [xσ ,xσ+1] such that
det(~u, ~n) = 1. Denote by [κ(x), λ(x)] the coordinates of a point x in the reference
[0, ~u, ~n]. Let us introduce µ0 := α · λ0 where

λ0 := min{λ(xr) > λ(xσ) : xr vertex of P}, (3.19)

and α is a positive number whose value will be established later. Now we may
use an auxiliary polygon P̃ having the following vertices





x̃σ := xσ + µ0~n
x̃σ+1 := xσ+1 + µ0~n
x̃r := xr if r 6∈ {σ, σ + 1}.

(3.20)

3.5. TOWARD MULTIPLY CONNECTED POLYGONS 41

xσ

xσ+1

xρ

xρ+1

~u

~n

x̃σ

x̃σ+1

λ0

Figure 3.8: Original and auxiliary polygons.

I(P)

(a)

xi−1

xi+1

xi

(b)

Figure 3.9: (a) The interior domain is disconnected (b) Zero angle at xi is not
allowed.

42 SPLITTING

Since the auxiliary polygon P̃ does not contain any double edge, we may apply
the usual 2-ear theorem in order to obtain two triangles Ẽ1 and Ẽ2 from P̃ . For
every triangle Ẽi (i = 1, 2), we distinguish three cases according to the incidence
of Ẽi upon the nodes x̃σ and x̃σ+1.

Case 1: If Ẽi does not have any of the nodes x̃σ and x̃σ+1 as apex, we simply
define Ei := Ẽi.

Case 2: Let us now assume that the segment [x̃σ, x̃σ+1] is an edge of Ẽi. Without
loss of generality we may suppose that the third node of Ẽi is xσ+2 i.e. Ẽi =
[x̃σ, x̃σ+1,xσ+2] (the case where Ẽi = [xσ,xσ+1,xσ−1] can be treated exactly in
the same manner). Let us define Ei := [xσ,xσ+1,xσ+2].

Since no three vertices are located on one straight line as specified by criterion
(C3), we may introduce δ := min{δ1, δ2} where

δ1 := min {dist ([xσ ,xσ+2],xr) , r 6= σ r 6= σ + 2 r 6= ρ+ 1} > 0
δ2 := min {dist ([xσ+1,xσ−1],xr) , r 6= σ − 1 r 6= σ + 1 r 6= ρ} > 0.

(3.21)

Since dist ([xσ,xσ+2], x̃σ) tends to zero as α→ 0, there must exist α0 sufficiently
small such that

if α < α0 then dist ([xσ,xσ+2], x̃σ) < δ. (3.22)

Let us introduce the regions

S :=
{
x ∈ R2 : λ(xσ) < λ(x) < µ0

}
, (3.23)

R :=
{
x ∈ R2 : λ(x) > µ0

}
. (3.24)

According to the above definition of ~u and κ, we must have κ(xσ) < κ(xσ+1).
We will need three subcases according to the position of κ(xσ+2) with respect to
κ(xσ) and κ(xσ+1).

Case 2.a: Assume that κ(xσ) < κ(xσ+2) < κ(xσ+1).

In this case as illustrated in Fig. 3.11(b), the line segment [x̃σ , x̃σ+1] must inter-
sect the two edges [xσ,xσ+2] and [xσ+1,xσ+2] of the triangle Ei. Because of the
definition of µ0, there could not exist any vertex in the stripe S. On the other
hand, we have (Ei ∩R) ⊂ Ẽi. As a consequence, the triangle Ei cannot contain
any vertex of P (other than the apices of Ei).

Case 2.b: Assume that κ(xσ+1) ≤ κ(xσ+2).

In Ei ∩ S, there could not exist any node. Additionally, no nodes lies strictly
inside Ei ∩ R. Indeed, if there was a node xθ in Ei ∩ R as illustrated in Fig.
3.10(b), then there would exist an edge traversing the cut [x̃σ, x̃σ+2] which is in
contradiction with the fact that Ẽi can be chopped off from P̃ .

3.5. TOWARD MULTIPLY CONNECTED POLYGONS 43

~n

x̃σ

xσ−1

xσ−2

xσ

φ

(a)

xσ+2

xσ+1
xσ

x̃σ

x̃σ+1

κ(xσ) κ(xσ+2)κ(xσ+1)

xθ

µ0

~u

(b)

Figure 3.10: (a)[xσ ,xσ−2,xσ−1] can be chopped off. (b) κ(xσ+1) ≤ κ(xσ+2).

Case 2.c: Assume that κ(xσ+2) ≤ κ(xσ).

Let τ be the intersection of the line (Fig. 3.11(a)) passing through [x̃σ, x̃σ+1]. As
above, there is no node of P which is located strictly inside Ei ∩ S. If we choose
the value of α as in (3.22), then there could not exist any vertex of P within the
region [τ, x̃σ ,xσ+2]. Therefore, the triangle Ei can be chopped from the polygon
P off.

Case 3: Let us now assume that Ẽi is not incident upon the edge [x̃σ, x̃σ+1]
but it has x̃σ or x̃σ+1 as apex. Let us only treat the situation where Ẽi :=
[x̃σ,xσ−2,xσ−1] because the other case where Ẽi = [x̃σ+1,xσ+2,xσ+3] can be
treated in a similar manner. Let us introduce

δ3 := min {dist ([xσ−2,xσ],xr) , r 6= σ r 6= σ − 2 r 6= ρ+ 1} > 0
δ4 := min {dist ([xσ+1,xσ+3],xr) , r 6= σ + 1 r 6= σ + 3 r 6= ρ} > 0.

(3.25)
By introducing δ′ := min{δ3, δ4}, we proceed the way we have done in (3.22) in
order to obtain an α1 > 0 sufficiently small such that

if α < α1 then dist ([xσ,xσ−2], x̃σ) < δ′. (3.26)

Thus, if α is chosen as in (3.26), the open triangle [x̃σ,xσ−2, φ] does not contain
any node where φ is the intersection of P̃ and [xσ,xσ−2] as displayed in Fig.
3.10(a). As a consequence, the triangle [xσ ,xσ−2,xσ−1] can be chopped off from
the polygon P .

All in all, if α is chosen so that α < min{α0, α1} where α0 and α1 are obtained
from relations (3.22) and (3.26) then the claim is true for m = 1. As hypothesis
of induction, we suppose that the claim holds for any m. For a polygon having
m + 1 double edges, we apply the same procedure as above in order to have an
auxiliary polygon P̃ having m double edges and apply the hypothesis of induction
to P̃ .

�

From the above proof, we see that the theorem holds even for polygons in which
the condition (C3) is relaxed. More precisely, we have the following result.

44 SPLITTING

xσ+2

xσ+1xσ

x̃σ
x̃σ+1

κ(xσ) κ(xσ+1)κ(xσ+2)

µ0

~u

τ

(a)

xσ+2

xσ+1xσ

x̃σ
x̃σ+1

κ(xσ) κ(xσ+1)κ(xσ+2)

µ0

~u

(b)

Figure 3.11: (a) κ(xσ+2) ≤ κ(xσ) (b) κ(xσ) < κ(xσ+2) < κ(xσ+1).

Corollary 1 Suppose that we have a polygon P fulfilling conditions (C1), (C2),
(C4) and (C5). Let us adopt the notations of the proof of Theorem 2. Further-
more, we suppose that we have the following condition:

(C̃3) The eight open segments]xs,xs+2[, s = σ, σ − 1, ρ, ρ − 1, σ − 2, σ + 1,
ρ− 2, ρ+ 1 do not contain any node.

Then one can remove two ears from the polygon P .

Proof

The proof can basically remain unchanged because the parameters δ1, δ2, δ3, δ4
from relations (3.21) and (3.25) are still strictly positive. Please note that we
do not penalize the existence of nodes inside the triangles which are next to the
double edge such as [xσ,xσ+1,xσ+2] in theorem 1.

�

We can even remove the condition (C̃3) completely as in the following statement.

Corollary 2 Suppose that a polygon P meets the four conditions (C1), (C2),
(C4), (C5). Then one can remove two ears from the polygon P .

Proof

Adopt the definition of the vectors ~n and ~u as in the previous proof. Now we
would like to shift some vertices in the direction of ~u. Let us define:

δs := min {dist([xs,xs+2],xr), xr 6∈ [xs,xs+2]} > 0. (3.27)

γ := 0.5 · min{δs : s = σ, σ − 1, ρ, ρ − 1, σ − 2, σ + 1, ρ− 2, ρ+ 1}.

3.5. TOWARD MULTIPLY CONNECTED POLYGONS 45

~u

xσ−1

xσ xσ+1
x̃σ x̃σ+1

(a)

~u

x̃σ

xσ−1

xσ−2

xσ

τ

(b)

Figure 3.12: Chopping an ear off next to a shifted node.

Let us introduce also an auxiliary polygon P̃ which has the following vertices in
place of xσ, xρ+1 xσ+1, xρ (the other vertices are the same as those of P):

x̃σ := xσ − γ.~u
x̃ρ+1 := xρ+1 − γ.~u
x̃σ+1 := xσ+1 + γ.~u
x̃ρ := xρ + γ.~u.

(3.28)

As a consequence, there could not exist any polygon vertex on the eight open
segment]x̃s, x̃s+2[, s = σ, σ−1, ρ, ρ−1, σ−2, σ+1, ρ−2, ρ+1 of the auxiliary
polygon P̃ .

Apply theorem 1 to the auxiliary polygon P̃ so that we can remove two triangles
Ẽ1 and Ẽ2. In the easy case that Ẽi (i = 1, 2) is not incident upon any double
node, we simply take Ei := Ẽi. For the situation that Ẽi is incident upon the
nodes x̃σ or x̃σ+1, we will consider the four next cases.

Case 1: Ẽi = [xσ−1, x̃σ , x̃σ+1]

In this case as illustrated in Fig. 3.12(a), the triangle Ei := [xσ−1,xσ,xσ+1] can
be chopped from the polygon P off because Ei must be included in Ẽi.

Case 2: Ẽi = [xσ−2,xσ−1, x̃σ].

Let us define by τ the intersection of the segment [x̃σ,xσ−2] and [xσ−1,xσ] as
illustrated by Fig. 3.12(b). According to the choice of δ from relation (3.27),
there cannot exist any node within the triangle [xσ−2, τ,xσ].

Case 3: If Ẽi = [x̃σ, x̃σ+1,xσ+2], proceed as in case 1.

Case 4: If Ẽi = [x̃σ+1,xσ+2,xσ+3], proceed as in case 2.

The cases where Ẽi is incident upon x̃ρ or x̃ρ+1 are treated exactly in the same
fashion.

�

Remark 4 From a simply connected polygon P which has more than four ver-
tices and which might have double nodes but without double edges such that the
internal domain is connected, one can chop off two triangles E1 and E2.

46 SPLITTING

xi xj

xi+1

xi−1

xj−1

xj+1

(a)

xi xj

(b)

Figure 3.13: Double nodes: (a) xi and xj are convex (b) xi is reflex.

Proof [sketch]

We will only sketch the proof in which we suppose that we have only one double
node xi and xj as illustrated in Fig. 3.13. The general case can be demonstrated
by induction. Let us denote by αs the internal angle made by xs−1, xs, xs+1.
At least one of the internal angles αi and αj must be smaller than π because it
is impossible that two reflex vertices coincide (Fig. 3.13). Thus, let us suppose
αi < π.

Let ~w be the normalized form of

−→xixi−1 + −→xixi+1. (3.29)

Choose a positive value µ so that the shifted vertex

x̃i := xi + µ.~w (3.30)

does not interfere with any other vertex. Apply the usual 2-ear theorem to the
new polygon with x̃i in place of xi in order to chop two triangles Ẽi. Then,
consider the following three cases. First, Ẽi is not incident upon x̃i. Second, the
segment [xi−1,xi+1] is an edge of Ẽi. Last, the segment [xi,xi+2] or [xi,xi−2] is
an edge of Ẽi.

�

Remark 5 By using a similar argument as in the above proof, one can easily see
that the claim in corollary 2 holds true even for polygons having double nodes
which are not incident to double edges.

3.6 Quadrilating multiply connected polygons

Lemma 1 Consider a multiply connected polygon P having E as exterior bound-
ary and Jj as interior ones j = 1, · · · ,m. Denote by the si the vertices of E and
by tj,i those of Jj. We suppose that E is a double-edged polygon.

3.6. QUADRILATING MULTIPLY CONNECTED POLYGONS 47

tk

t0
t1

sl

s0

s1

~u

(a) (b)

L
AB tk

~u

~n

(c)

Figure 3.14: (a) [sl, tk] is a cut joining the interior and the exterior boundaries
(b) cuts inside a multiply connected polygon. (c) the members of M are the bold
points above L

There must exist an interior curve Jj0 and two vertices sl and tj0,k which are
mutually visible. Thus, the segment [sl, tj0,k] is a cut inside the polygon P .

Proof

Consider any direction ~u such that ‖~u‖ = 1 and consider the axis [0, ~u) centered
at the origin and directed by ~u. Denote by λ(x) the coordinate of the projection
of a point x on the axis [0, ~u). Let nj be the number of vertices of Jj.

Denote by Jj0 the curve which contains the node tj0,k having the largest λ value:

tj0,k := argmax{λ(tj,i) : ∀j = 1, · · · ,m ∀i = 1, · · · , nj}. (3.31)

Define ~n the unit normal such that det(~u, ~n) = 1. The line L passing through tj0,k

and parallel to ~n must intersect the exterior boundary at least twice. Define A
and B the two closest intersections having opposite scalar product with respect
to ~n computed from tj0,k (ref Fig. 3.14(c)). Consider the set M of the exterior
vertices traversed from A to B in counter-clockwise orientation.

We would like to introduce now the set

κ := {si vertex of M : λ(si) > λ(tj0,k)} (3.32)

which must be nonempty because the polygonal boundary E is outside Jj0. There-
fore, we may define

sl := argmin{λ(si) : si ∈ κ}. (3.33)

We note that no edge of the polygon P can intersect the cut [sl, tj0,k] because
there is no internal node in the region

{x ∈ R2 : λ(x) > λ(tj0,k)}. (3.34)

�

48 SPLITTING

Theorem 4 From any multiply connected polygon P with h internal boundaries,
one can generate a double-edged polygon P̃ by inserting h cuts.

Proof

We will proceed by induction according to the number h of internal curves. Let
us adopt the notations si and tj,k of lemma 1 to denote the vertices on the
exterior and interior boundaries respectively. In the case that h = 1, let us
denote tk := t1,k and n := n1. According to lemma 1, we may insert a cut [sl, tk]
inside the polygon. In order to simplify the notation, let us extend the indices in
the following periodic manner:

sr := sr−m if r ≥ m (3.35)

tr := tr−n if r ≥ n. (3.36)

Let us now introduce the polygon P̃ whose vertices are defined by

yi := sl+i for i = 0, · · · ,m
ym+i := tk+i−1 for i = 1, · · · , n
ym+n := tk+n.

(3.37)

As one can easily observe, the polygon P̃ having (n+m+2) vertices is a double-
edged polygon in which the edge e := [sl, tk] is traversed twice in opposite direc-
tion.

Let us suppose that the theorem is true for a polygon with h holes. Consider a
polygon P with (h + 1) holes. Introduce a cut f by applying the former lemma
to P and generate a new exterior polygon Ẽ from E and Jj0 as we did in (3.37).
Now, define Q as the multiply connected polygon having Ẽ as exterior polygon
and Jj j 6= j0 as interior ones. Since the number of holes of the polygon Q is
h, we may apply the hypothesis of induction in order to get the double-edged
polygon Q̃ by inserting h cuts e1,· · ·,eh. Thus, we have generated a double-edged
polygon P̃ by inserting the following (h+ 1) cuts:

f, e1, · · · , eh. (3.38)

�

Theorem 5 Consider a double-edged polygon P having at least four vertices,
one of the following statements holds:

(F1) One can remove a quadrilateral which is not necessarily convex by inserting
a single cut as in Fig. 3.3(a).

(F2) There exists a point ω located strictly within P such that one can remove
a convex quadrilateral by inserting two line segments emanating from ω to
two vertices of P (Fig. 3.3(b)).

3.7. CUT SEARCH 49

tk

sl

(a)

tk

sl

(b)

tk

sl

(c)

Figure 3.15: Quadrilating a multiply connected polygon

Proof

Corollary 2 shows that the two-ear theorem holds true for double-edged polygons.
Therefore, we can repeat the proof of theorem 2 without any change because the
generalized two-ear theorem can be used to reduce the number of vertices in the
induction.

�

3.7 Cut search

Suppose we have a multiply connected polygon P having E as exterior boundary
and Ji as interior boundaries. We want to find a cut connecting an internal
boundary Ji and the exterior boundary E . It seems reasonable to prefer short
cuts from long ones. Therefore, we introduce a threshold L for the length of
an admissible cut. Since we aim at nicely shaped quadrilaterals we also want
to control the angles that are created by the introduction of a cut. For a cut
connecting an internal vertex x and an external vertex y, we introduce the four
angles α, β, γ, δ which are made with the boundary as depicted in Fig. 3.16(a).
In order to evaluate the angular quality of the cut [x,y], we use the minimum of
those four angles. That is, we will say that the cut [x,y] has an acceptable angle
if for some prescribed angle θ0 we have

θ := min{α, β, γ, δ} ≥ θ0. (3.39)

According to the definition of a cut from section 3.3, the most straightforward
approach to find a cut would be to perform intersection tests between every
possible segment connecting two vertices of P with all edges. Since that approach
is very costly, we will propose a more efficient method.

Our cut search proceeds in two phases. In the first phase, we search for cuts
which connect extreme vertices (see Definition in section 3.7.1) and the exterior
boundary. In most practical cases, this phase is enough to find a cut. But if

50 SPLITTING

it fails, then we must consider more general cuts in the second phase. That
means, we search for a cut which connects the exterior boundary and a non-
extreme internal vertex. After giving some details about those two phases, we
will summarize the process in form of an algorithm.

3.7.1 Cuts having extreme vertices

In the sequel, we will denote by E (resp. I) the set of all exterior (resp. interior)
vertices of a given polygon P .

Definition 9 Consider a direction specified by a unit vector W in the plane. An
extreme vertex with respect to W is a vertex xW ∈ I which maximizes the scalar

product
〈−→
0xW ,W

〉
, that is

xW := argmax
{〈−→

0x,W
〉

: x ∈ I
}
. (3.40)

Additionally, we define:

RW :=
{
y ∈ E :

〈−→
0y,W

〉
≥
〈−→
0xW ,W

〉}
. (3.41)

In order to test whether [xW ,y] is a cut for y ∈ RW , we do not need to do any
intersection test between the segment [xW ,y] and internal edges. Let us denote
by ζ the set of exterior edges which lie partly or completely inside RW . We
have only to make intersection tests of [xW ,y] with members of ζ. Thus, let us
introduce

SW := {y ∈ RW :]xW ,y[∩e = ∅ ∀e ∈ ζ}. (3.42)

In practical implementations, one will use four to eight directions (see Fig. 3.16(b))
specified by the following vectors T := (0, 1), B := (0,−1), R := (1, 0), L :=
(−1, 0), TR := (

√
2/2,

√
2/2), TL := (−

√
2/2,

√
2/2), BL := (−

√
2/2,−

√
2/2),

BR := (
√

2/2,−
√

2/2).

3.7.2 Cuts having nonextreme vertices

Finding a cut [xσ,y] connecting a non-extreme vertex xσ ∈ I and an exterior
vertex y ∈ E is difficult because intersections with internal boundaries may be
involved. In order to make the intersection tests more efficient, we introduce the
axiparallel bounding boxes Bi of the internal boundaries Ji. Before performing
intersection tests between [xσ,y] and edges belonging to the internal boundary
Ji, we do an intersection test with the bounding box Bi. If that fails, then the
line segment [xσ ,y] does not intersect any edge of Ji.

We only use cuts [xσ,y] such that xσ are reflex internal vertices. Suppose that we
want to test if a cut emanating from an internal reflex vertex xσ exists. Note that

3.7. CUT SEARCH 51

α

β

γ

δ

(a)

RL

T

B

TRTL

BRBL

(b)

xL

xT

xB

xR

SL

(c)

Figure 3.16: (a)Angles made by a cut (b)Eight directions for cut search (c)The
extreme vertex with respect to VL and the region SL

P(+)

P(−)

A B

CD

(a)

A

B

P

Q

~nAB

(b)

xσ

(c)

Figure 3.17: (a),(b)Segment rectangle intersection (c)Domain of interest

52 SPLITTING

we do not need to perform intersection tests with all existing bounding boxes.
Denote by xs and xp the successor and predecessor of xσ in the internal polygon
containing xσ. The relevant domain Rσ corresponding to the vertex xσ is the
complement of the intersection of the half-planes (xσxp)

+ and (xσxs)
−. As an

illustration, we identify by a shaded region in Fig. 3.17(c) the relevant domain of
xσ. We need only to perform intersection tests with the bounding boxes which
intersect the relevant domain Rσ. Let us also introduce the set Tσ which is the
list of exterior vertices y ∈ Rσ ∩ E such that the line segment]xσ,y[has no
intersection with any exterior edge.

For the polygon P , let (r(i))q
i=1 be the indices of the extreme vertices with respect

to a considered set of directions. Define

X := {xr(i) : i = 1, · · · , q} (3.43)

One way of searching for a cut emanating from a nonreflex vertex xσ ∈ I \X is to
traverse the set I \X in a random order. As an alternative to that, we would like
to assemble a priority queue (wk)

K
k=1 which is a sequence of non-reflex vertices

xσ ∈ I that are not extreme ones. Before defining (wk)
K
k=1 recursively, let us

introduce some notations. Let a be an internal vertex belonging to an internal
curve Jw which has a clockwise orientation. We will denote by a(s) the reflex
vertex following a along Jw in clockwise direction. Similarly a(p) is the reflex
vertex following a along Jw in counter-clockwise direction. The superscripts (s)
and (p) are descriptive abbreviations of ’predecessor’ and ’successor’ respectively.
Let N be the set of internal reflex vertices which do not belong to X . Before
introducing the sequence (wk)

K
k=1, let us define a sequence zk,i for every i =

1, ..., q. Initialize

z0,i := x
(p)
r(i) z1,i := x

(s)
r(i). (3.44)

The sequence zk,i is defined recursively by

zk+1,i := z
(p)
k−1,i zk+2,i := z

(s)
k,i . (3.45)

We stop the above updating as soon as z
(p)
k,i and zk−1,i coincide. The set N0 :=

N \ {zk,i} is the collection of internal reflex vertices which come from curves
that do not contain extreme vertices. The sequence (wk)

K
k=1 is defined to be the

lexicographical ordering of zk,i followed by the vertices of N0.

Since segment-rectangle intersection operations are frequently used, we are going
to briefly describe a good method to perform them. The process of intersection
between a rectangular domain [A,B,C,D] and a segment [P,Q] is very well-
known in computer graphics as a clipping operation. As a first step, we can
consider the infinite line which is generated by the segment [P,Q]. That line
splits the plane into two half-planes P(+) and P(−) which are supposed to be
closed (thus, the line belongs to both of them). As necessary condition so that
there is an intersection, every half-plane must contain at least one vertex from

3.7. CUT SEARCH 53

among A, B, C, D. If that first step succeeds, we use a simplified Liang-Barsky
method for testing the intersection of [P,Q] and the four edges of the rectangle.
While the original Liang-Barsky algorithm which treats rectangles having edge
parallel to the axes aims at determining the coordinates of intersection points,
we need only a Boolean answer of whether or not the segment intersects the
rectangle. In order that [P,Q] intersects [A,B], the following two products have
to be nonnegative (see Fig. 3.17)

<
−−→
BQ, ~nAB > · < −−→

BP, ~nAB >, <
−−→
QA, ~nPQ > · < −−→

QB, ~nPQ >, (3.46)

where ~nXY denotes the unit normal vector to the segment [X,Y].

3.7.3 Summary

Now we will describe our cut search algorithm. The following algorithm EX-
TREME() searches for a cut e which emanates from an extreme vertex. Its input
includes a length threshold L and an angle threshold θ0. We will say that an
edge has the desired quality if it fulfills the angle criterion on (3.39) with respect
to the angle threshold θ0 and if its length is smaller than the length threshold L.

Algorithm (EXTREME)

step 0 : Initialize the list of directions: D :={T,B,R,L} or
D :={T,B,R,L, TL, TR, BL, BR}

step 1 : For every direction D ∈ D,

• Find the extreme vertex xD ∈ I,

• Find the set SD as defined in (3.42),

• For every member yD of SD, consider e = [xD,yD]. If
e has the desired quality it is an acceptable cut and we
terminate. Otherwise, e is included into a list C.

step 2 : If no acceptable cut is found, return FAILURE.

If the algorithm EXTREME() succeeds, we have found a cut. Otherwise, we need
the assembled list C for the following algorithm NONEXTREME() which needs
also an angle threshold θ0 and a length threshold L.

Algorithm (NONEXTREME)

step 0 : Find the bounding boxes Bi of the internal curves Ji.
step 1 : Determine the priority queue (wk)

K
k=1 from (3.45).

step 2 : For every k = 1, ...,K define xσ := wk and do the following:

54 SPLITTING

step 2.1 : Find the relevant domain Rσ of xσ and the set Tσ.
step 2.2 : For every yσ ∈ Tσ define e := [xσ ,yσ], find J with Bi ∩Rσ 6= ∅

for i ∈ J , then

• Test if Bi ∩ e = ∅ (i ∈ J). If not, test intersection with
the edges of the internal curves Ji (∀i ∈ J).

• If all intersection tests with relevant internal curves fail
and if e has the desired quality, it is an acceptable cut
and we terminate. Otherwise, e is included into C.

step 3 : If no acceptable cut is found, return FAILURE.

The cut search can then be summarized as combination of the above two algo-
rithms.

Algorithm (Single cut search)

step 0 : Prescribe an angle threshold θ0 of relation (3.39) and a length
threshold L. Initialize the list of cuts C as the empty set

step 1 : Invoke EXTREME(C,θ0,L). If it succeeds in finding an accept-
able cut, we terminate the algorithm.

step 2 : Invoke NONEXTREME(C,θ0,L). If it succeeds in finding an
acceptable cut, we terminate the algorithm.

step 3 : If step 2 fails because the prescribed angle θ0 from step 0 is too
large, reduce its value by a positive factor (say θ0 := .75 ∗ θ0)
and go back to step 0.

Note that most cuts are found based on extreme vertices in practice.

3.8 Conversion into convex quadrangulation

The purpose of this section is to describe (see also [16, 100]) how to convert
a quadrangulation which has non-convex quadrilaterals, such as those obtained
from former sections, into another quadrangulation whose members are exclu-
sively convex quadrilaterals. Before giving details about the conversion, let us
consider the following remark. Two adjacent quadrilaterals q and p form a single
quadrilateral or a hexagon. In the first case, the quadrilaterals q and p share two
edges and it is possible that the union q ∪ p is a nonconvex or a convex quadri-
lateral as illustrated in Figs. 3.18(a) and 3.18(b). In the second case, only one
edge is shared by q and p as illustrated in Fig. 3.18(c).

Now, let us recall the following result about hexagon quadrangulations which are

3.9. CLEANUP 55

(a) (b) (c)

Figure 3.18: The union of two quadrilaterals is (a) a nonconvex quadrilateral (b)
a convex quadrilateral (c) a hexagon.

needed in the description of the conversion algorithm.

Theorem 6 (Bremner et. al[16]) Every hexagon (which may include reflex
vertices) can be decomposed into a set of convex quadrilaterals by using at most
three internal Steiner points.

Remark 6 There are a lot of different cases in the proof and implementation of
this theorem . Those cases are listed in section 3.16.2 about special splittings.

Based on those facts, we may describe the conversion algorithm in two steps:

Step1: For every nonconvex quadrilateral p having a neighboring quadrilateral q
such that p∪q is a quadrilateral, replace p by p∪q and remove the quadrilateral q
from the quadrangulation. We repeat this step until such a union does not exist
any more. After this step, there can only exist nonconvex quadrilaterals whose
union with a neighboring quadrilateral forms a hexagon.

Step2: We merge a nonconvex quadrilateral q of Q with a neighboring quadri-
lateral p in order to have a hexagon (q ∪ p) . If we have the choice then we select
a nonconvex neighbor p. Then, we re-quadrilate the resulting hexagon by using
the hexagon quadrangulation method from theorem 6 in order to obtain a local
convex quadrangulation Qloc. Afterwards, we substitute the union (q∪p) by Qloc

in the quadrangulation Q.

3.9 Cleanup

In many decomposition techniques [78, 91, 48], cleanup is the process of gen-
erating a polygon tessellation by improving an available one according to some
quality criteria. Some cleanup procedures aim at obtaining quadrilateral quality
enhancement by introducing new nodes and edges. Contrary to this approach,
we are going to keep the numbers of nodes and edges unchanged but we change

56 SPLITTING

the position of nodes and edges in order to enhance the quadrangulation qual-
ity. Before describing our method, let us note that before cleanup operation, we
have already a quadrangulation which fulfills our desired properties in four-sided
splitting: we use only boundary nodes and all quadrilaterals are convex. All
that we want to achieve with cleanup operations is to enhance the quality of the
quadrangulation.

3.9.1 Quality control

Before describing the cleanup operations, let us review the way qualities of a
quadrilateral, a node or an edge can be evaluated. We consider two techniques
of assessing the quality of a quadrilateral [A,B,C,D]. The first one requires the
introduction of the following distortion coefficient [80] of any triangle [a, b, c]:

α := 2
√

3
‖−→ca ×−→

cb‖
‖−→ca‖2 + ‖−→ab‖2 + ‖−→bc‖2

∈ [0, 1]. (3.47)

We can easily see that the triangular distortion α is unity if the triangle [a, b, c] is
equilateral. From a convex quadrilateral [A,B,C,D], we may derive four triangles
[A,B,C], [A,C,D], [A,B,D] and [D,B,C]. Let us denote by αi the triangular
distortions of those four triangles such that α1 ≥ α2 ≥ α3 ≥ α4. We define the
first quality measurement of the quadrilateral [A,B,C,D] to be

β := (α3α4)/(α1α2) ∈ [0, 1]. (3.48)

Effectively, the value of β is unity for rectangles and it approaches zero as a
quadrilateral becomes triangular shaped. The second way of measuring qualities
of quadrilaterals is by means of the smallest internal angle in the above four
triangles. In the following discussion, we will denote by µ(q) a quality measure
of a quadrilateral q.

We would like to consider quality measurements of a node and an edge inside a
quadrangulation. To that end, let us consider an internal node ω which is shared
by the quadrilaterals qi i ∈ J . We may now evaluate the quality of the node ω
by

µ(ω) :=
1

card(J)

∑

i∈J

µ(qi). (3.49)

Similarly, for an internal edge e upon which two quadrilaterals q1 and q2 are
incident, its quality can be measured by

µ(e) :=
1

2
[µ(q1) + µ(q2)]. (3.50)

3.9. CLEANUP 57

ω

(a) (b)

Figure 3.19: Cleanup: (a) Shifting a node ω(b) Flipping an edge

3.9.2 Cleanup operations

We will treat two types of cleanup operations: node repositioning and edge flip-

ping. The first one consists in shifting an internal node to another position in
order to improve the quality of the neighboring quadrilaterals. In the course
of node shifting, we have to make sure that all incident quadrilaterals remain
convex. The second operation modifies the endpoints of an internal edge.

Let us first show how to find the region inside which a node ω can be shifted.
Consider the region R which is formed by the kernel of the union of the surround-
ing quadrilaterals. On account of the convexity of the incident quadrilaterals, we
note that R is nonempty because at least ω itself is a member of this region.
The node repositioning consists in moving ω inside the interior of R in order to
minimize µ(ω).

Since determining the set R is expensive in practice, we want to propose now
another method which executes faster. Let us denote by Eω the set of edges
which emanate from the node ω. Then we take the shortest edge ẽ from among
Eω and consider a circle centered at the node ω and having radius ρ := λ ·
length(ẽ) where λ is a user defined parameter (say λ=0.25) from]0, 1[. The new
position of ω is then searched inside this circle. The practical realization of such a
shifting is to pick p (say p = 5) positions qi inside the circle. For every qi, we test
if by replacing ω by qi, we would still have incident convex quadrilaterals. That
can be easily checked by testing if the new angles made with edges emanating
from qi are smaller than π. We replace then ω by qi which gives new incident
quadrilaterals and which minimizes µ(qi). If none of the qi fulfills those desirable
properties, then we keep ω in its current position.

The second operation consists in flipping an edge in order to improve the qualities
of the neighboring quadrilaterals. In the best case, there are two possibilities
for flipping an edge by considering the union of the incident quadrilaterals as

58 SPLITTING

(a) (b)

Figure 3.20: The numbers of nodes and edges are unchanged: (a)Before cleanup
(b)After cleanup

explained in Fig. 3.19(b). We flip an internal edge e to a position which keeps
the two incident quadrilaterals convex and which improves the value of µ(e).

In Fig. 3.20, we can see a result of the applications of the cleanup operations.
There is no exact rule about where to start but the method that many people
[34, 122, 78, 91, 48] use in such a retouching technique is to start from the worst
entities. That means, one measures the qualities µ(ωi) of all internal nodes. One
searches for the m (say m = 5 or m is the number of all internal nodes) nodes
having the largest µ values. Then one applies the cleanup operations to those
nodes. One can repeat that operation, a few number of times. One can do also
the same thing for edges. It is also possible to alternate the edge and node quality
improvements.

3.10 Converting a triangulation into a quadrangula-

tion

Now we would like to describe briefly another quadrangulation method that can
be used as an alternative to the one that we presented before. It starts by gen-
erating a triangular mesh M on the initial multiply connected polygon. Now we
want to discuss how to transform the triangular mesh M into a quadrangulation
Q. The simplest method is to generate three quadrilaterals from one triangle τ
by inserting Steiner points in the edges of τ and at its center of gravity as graph-
ically illustrated in Fig. 3.22(a). We do not favor that idea because it introduces
unnecessarily many Steiner points which creates too many quadrilaterals. In ad-
dition, Steiner points can be located on the boundary of the mesh M. We need
a conversion technique [16] that only inserts very few Steiner points which all
reside in the interior of M.

MESH CONVERSION 59

(a)

v1w1

p1

v2

p2

(b)

Figure 3.21: (a) Edge-graph of a mesh (b) w1 is the sibling of the vertex v1

Conversion approach:

Let us consider the edge-graph G (Fig. 3.21(a)) of the triangular mesh M which
is supposed to have an even number of triangles. Readers are warned because the
terms vertex or node could become confusing when considering the mesh M and
the graph G since a vertex in the graph G corresponds to a triangle in the mesh
M. The fundamental idea in the conversion is to merge neighboring triangles to
form quadrilaterals. First, we initialize Q as an empty quadrangulation which has
a zero number of quadrilaterals. From the graph G, we can consider a spanning
tree T whose root is supposed to have only one child. We note that every vertex
of the tree T has at most a valence three because a triangle in the mesh M has
at most three neighbors. The algorithm of conversion considers a bottom leave v
of the spanning tree T . We need to distinguish two cases according to the nature
of the parent vertex p of v in the spanning tree T .

Case 1: If the vertex p has valence three, we consider the sibling w of the vertex
v in the tree T . Let us denote by P := [b, d, e], V := [a, b, e], W := [b, c, d] the
triangles (Fig. 3.22(b)) which correspond to the vertex p, v, w respectively. We
generate a node ω inside the triangle P and we define two new quadrilaterals q1 :=
[a, b, ω, e] and q2 := [d, ω, b, c] as illustrated in Fig. 3.22(c). After incorporating
the quadrilaterals q1 and q2 in the quadrangulation Q, we update the spanning
tree T by removing the two leave vertices v and w. Thus, the vertex p becomes
a node vertex of T and we substitute the vertices of P by [ω, d, e].

Case 2: If the parent vertex p has a valence two or if it is the root of the spanning
tree T , then we merge the triangles P := [b, d, e] and V := [a, b, e] in order to have
a single quadrilateral q := [a, b, d, e] which we incorporate in the quadrangulation
Q. As before, we update T by removing the bottom vertex v.

Minimum spanning tree:

Note that a bad choice of the spanning tree T affects the quality of the ultimate
quadrangulation Q. That can be illustrated by considering the simple triangu-
lar mesh in Fig. 3.23(a). Both of the quadrangulations in Fig. 3.23(b) and

60 SPLITTING

(a)

V
W

P

a

b

c

de

(b)

q1
q2

P

a

b

c

de

ω

(c)

Figure 3.22: (a)Simplest conversion method (b),(c)Form two quadrilaterals
[a, b, ω, e] and [d, ω, b, c] and modify the triangle P .

(a) (b) (c)

Figure 3.23: (a)Triangulation (b),(c)Two possible quadrangulations

Fig. 3.23(c) result from the former conversion algorithm by using two different
spanning trees. One can immediately observe that Fig. 3.23(b) displays a bad
quadrangulation whose quadrilaterals are all nonconvex. In order to properly se-
lect a spanning tree, we assign weights to the edges of the graph G in the following
way. Consider a mesh-edge E which is incident upon two triangles P and Q. If
the union P ∪Q forms a convex quadrilateral, we assign a small weight (say 0.1)
to the graph-edge e corresponding to E. Otherwise, a heavy weight (say 10) will
be assigned to e. Thus, the selection is performed by searching the spanning tree
Tmin with minimal weights. That way, the likelihood that a nonconvex quadrilat-
eral appears in the quadrangulation Q is minimized. In order to determine the
minimum spanning tree (MST) of a weighted graph, several algorithms such as
Prim or Kruskal methods [83] can be used.

Although MST algorithms minimize the occurrence of nonconvex quadrilaterals,
it is still possible that there are very few ones in the final quadrangulation Q. In
such a rare case, we merge a nonconvex quadrilateral q of Q with a neighboring
quadrilateral q. Then, we requadrangulate the hexagon composed of q ∪ q by
using the hexagon quadrangulation method that we described in section 3.16.2
in order to obtain a local convex quadrangulation Qloc of q ∪ q. Afterwards, we
substitute the union q ∪ q by Qloc in the quadrangulation Q.

Apart from the cost of generating an initial triangulation, the main drawback of
the triangular conversion is that the process of finding the minimal spanning tree

3.11. REGIONS HAVING CURVED BOUNDARIES 61

is computationally expensive.

3.11 Regions having curved boundaries

In the preceding sections, we have focused on multiply connected regions having
polygonal boundaries. From this section on, we would like to describe a method of
splitting a multiply connected trimmed surface D ⊂ R2 having curved boundaries
into several four-sided domains:

D =
⋃

k

Qk. (3.51)

(a) (b)

Figure 3.24: (a)Given model in IGES format (b)Initial polygonal approximation

Basically, the decomposition method is performed as follows. First, we take a
coarse polygonal approximation P of the curved boundaries of D. Then, we
generate a quadrangulation of the resulting polygon P in order to have P = ∪kqk
where qk are convex quadrilaterals. In order to generate the four-sided subregion
Qk in (3.51) from the quadrilateral qk, we keep internal edges of qk and we
replace boundary edges of qk by the corresponding curved boundary portion. At
this point, there could exist intersections between boundary curves and internal
edges of the quadrangulation. We will show a method of repairing such boundary
interferences. In the following sections, we will give details of the above process
one by one.

3.12 Structure of the polygonal model

Consider a set of surfaces {Si}i∈Λ such that each Si is the image by ψi of a 2D
multiply connected domain Di having curved boundaries. A direct application
of the above polygonal approximation to each Di may generate hanging nodes.
That is, there might exist two adjacent surfaces Si and Sj such that an image
by ψi of a vertex of the polygonal approximation of Di does not coincide to the
image by ψj of any vertex of the polygonal approximation of Dj .

62 SPLITTING

3.12.1 Discretization of curved boundaries

The discretization of the domain Di which maps to Si involves the other surfaces
Sj that are incident upon Si. Therefore, let us introduce the following notion of
adjacency graph.

Definition 10 Consider a given set of surfaces {Si}i∈Λ whose union forms a
closed surface S. The surface Si will be called the i-th face of S. We can
generate a graph G which stores the adjacency of the faces Si. That is, for every
face Si, we generate a node ni in the graph G and we add a graph edge [ni, nj]
if the corresponding faces Si and Sj are adjacent. Such a graph will be called
adjacency graph corresponding to {Si}i∈Λ.

Before giving any description of the discretization method, let us explain explicitly
the process of having polygonal approximations (Fig. 3.24) of a set of domains
{Di}i∈Λ.

Definition 11 Suppose that we have trimmed surfaces Si which are given as
images of

ψi : Di −→ Si. (3.52)

Finding polygonal approximations of {Di}i∈Λ amounts to doing the following.

For each trimmed surface Si, find a polygon P (i) whose nodes x
(i)
k are taken from

the curved boundary of the 2D domain Di such that for two adjacent different

surfaces Si and Sj which share a curve C, if ψi(x
(i)
k) ∈ C, then there must exist a

vertex x
(j)
l ∈ P (j) with

ψi(x
(i)
k) = ψj(x

(j)
l). (3.53)

Remark 7 As we have mentioned in section 2.3 of chapter 2, the segment sep-
arators which are provided by the IGES files already satisfy the condition in
(3.53). Therefore, it is a good choice to select the segment separators of Di as
initial vertices of its polygonal approximation P (i).

3.12.2 Edge splitting

The process of generating a polygonal approximation P (i) of Di consists in start-
ing from a very coarse polygon having vertices from the boundary of D. Then,
one refines the polygonal approximation by inserting new nodes repeatedly (see
Fig. 3.25). In this section, we show the tasks that have to be performed in order
to generate new nodes on polygonal approximations . The most difficult process
is to ensure that there are no hanging nodes at the interfaces of the surfaces Si. In
order to facilitate the presentation, we suppose that each Di is simply connected
and its boundary is given by a parametric curve κi. Consider the polygon P (i)

3.12. STRUCTURE OF THE POLYGONAL MODEL 63

x(i)
s = κ(i)(ts)

x(i)
r = κ(i)(tr)

e

(a)

x(i)
s = κ(i)(ts)

x(i)
r = κ(i)(tr)

x(i)
m = κ(i)(tm)

(b)

Figure 3.25: Inserting a new node x
(i)
m between the endpoints of the edge e.

which approximates the domain Di. Let e = [x
(i)
s ,x

(i)
r] be an edge of P (i) and let

us suppose that x
(i)
s = κ(i)(ts) and x

(i)
r = κ(i)(tr). Refining the edge e amounts

to doing the following:

(S1) Define x
(i)
m := κ(i)(tm) with some tm ∈]tr, ts[, say tm := 0.5(tr + ts).

(S2) Replace the edge e by two edges [x
(i)
s ,x

(i)
m] and [x

(i)
m ,x

(i)
r] in the polygon

P (i).

(S3) Consider the face Sj which is incident upon Si and which contains ψi(x
(i)
m).

In order that the condition in (3.53) is fulfilled, search for τ ∈ R such that

ψi(x
(i)
m) = ψj [κ

(j)(τ)].

(S4) Insert the point x
(j)
m := κ(j)(τ) in the polygonal approximation P (j) of Dj

as we have done in (S2).

3.12.3 Even polygonal approximation

In this section, we suppose that we have polygonal approximations {P (i)}i∈Λ of
the 2D domains {Di}i∈Λ. Let us assume further that the set of polygonal ap-
proximations {P (i)}i∈Λ contains some odd polygons. Since having even polygons
is a prerequisite for quadrangulation, we will show how to make all polygonal
approximations even.

Definition 12 Suppose that we have polygonal approximations {P (i)}i∈Λ. We
will say that the face Si is odd (resp. even) if the corresponding polygon P (i) has
an odd (resp. even) number of boundary vertices.

64 SPLITTING

(a)

ODD EVEN EVEN EVEN ODD

EVEN EVEN EVENEVEN EVEN

(b)

Figure 3.26: (a)We have to insert more nodes to make every face even (b)Process
of making two odd faces even

Before introducing an important theorem, the following observation is worth
mentioning. Suppose that we have two odd faces Si and Sj that are separated
by k faces Sr(1), Sr(2), · · ·, Sr(k) which are all even. Adding one extra vertex
into the common curve of each pair (Si, Sr(1)), (Sr(1), Sr(2)), (Sr(2), Sr(3)), · · ·,
(Sr(k−1), Sr(k)), (Sr(k), Sj) will make the parities of Si and Sj even (see Fig.
3.26(b)). The parities of the intermediate faces Sr(i) are kept unchanged (i.e.
even). That is due to the simple fact that adding a vertex in a face will toggle
its parity.

Theorem 7 Let us assume that the set of faces {Si}i∈Λ defines a closed surface.
Suppose further that we have polygonal approximations {P (i)}i∈Λ of {Si}i∈Λ.
Denote by ν the number of odd faces Si. Then, ν must be an even number.

Proof

We will prove this theorem by contradiction. Suppose that the number ν of
odd faces Si were odd. Without loss of generality we may assume that ν = 1
and we denote by Sσ the odd face. Because of the 2-ear theorem and the cut
insertion techniques that we discussed in former sections, it is possible to generate
a triangulation µ(i) for each polygon P (i) without using additional boundary
nodes. Let M (i) be the triangulation which is the image of µ(i) by ψi. Let E(i)

be the set of boundary edges of M (i), i.e. each edge if E(i) has only one incident
triangle from M (i). Introduce p(i) := card(E(i)). Since, every face Si is even for
i 6= σ, the number p(i) must be even for i 6= σ.

Consider now two adjacent faces Si and Sj such that i 6= σ and j 6= σ. On
account of the condition in (3.53), some boundary edges of M (i) and M (j) must
coincide. Let q be the number of common boundary edges of M (i) and M (j). Let
us consider the mesh Q which is obtained by merging the meshes M (i) and M (j).

3.13. METRIC ASPECT OF THE POLYGONAL MODEL 65

a
b

c

d

Di

(a) (b)

Figure 3.27: Discretization artifacts: (a)The edge [c,d] interferes with the curve
portion which is approximated by [a,b] (b)The polygonal approximations do not
form the boundary of a multiply connected polygon

The number of boundary edges of Q is therefore

p(i) + p(j) − 2 · q. (3.54)

That means that the mesh Q has an even number of boundary edges.

By repeating the former technique in which we merge Q with every Sk with
k 6= σ, k 6= i, k 6= j, we obtain a mesh R which has an even number of boundary
edges. That is in contradiction with the fact that Sσ is an odd face because the
boundaries of R and Sσ coincide.

�

For a pair of odd faces (Si, Sj), we can find a path p from the adjacency graph G
such that p connects the graph nodes ni and nj which correspond to the faces Si

and Sj. Suppose that the path p is a sequence of N graph-nodes nr(s) s = 1, ..., N
such that nr(1) = ni and nr(N) = nj. In order to make Si and Sj even, we insert
a node between each pair (Sr(k), Sr(k+1)) for each k = 1, ..., N − 1. The above
theorem ensures that the odd faces can be converted into even faces two by two.

3.13 Metric aspect of the polygonal model

This section will be occupied by the description of the actual problems that one
encounters in polygonal approximations if we want to use them as input in a
quadrangulation process.

3.13.1 Discretization artifact

Consider a multiply connected domain D having curved boundaries. Let us de-
note by Bout and Bj

in its exterior and interior boundaries respectively. By picking

66 SPLITTING

some vertices xk
out and xj,k

in from Bout and Bj
in, some polygons Pout and P j

in are

generated. We want to mention that Pout and P j
in may not form the boundary of a

multiply connected polygonal region as illustrated in Fig. 3.27(b). The following
reasons may cause such a problem:

• A vertex of some P j
in may lie outside the exterior polygon Pout.

• Some edges e and f which belong respectively to P k
in and P l

in with k 6= l
may intersect.

• A tiny internal polygon P j
in may even be located completely outside the

external polygon Pout.

On the other hand, it is possible that Pout and P j
in form acceptable polygons

but the curve portion between the endpoints of some edge [a,b] of Pout or P j
in

intersects another edge [c,d] 6= [a,b] as in Fig. 3.27(a).

Such discretization artifacts often occur when some of the polygons Pout and P j
in

are too coarse at some positions. The only remedy is to refine those polygons
by inserting more nodes from Bout and Bj

in. The main difficulty in treating
discretization artifacts is the detection of such problems. One needs to know if a
point lies outside a polygon which might be nonconvex. The detection may also
involve polygon-polygon intersections. The solution to those problems is very long
and difficult especially if one wants to achieve efficiency. For further discussion
about point locations techniques or polygon intersections, see [90, 29, 75] and the
references there.

The way we avoid discretization artifacts is the use of ε-length closeness which
we introduce now.

Definition 13 Let P be a polygonal approximation of a domain D having curved
boundaries. We say that P has an ε-length closeness when the difference between
the length of each straight edge of P and the length of the corresponding curved
boundary portion from D is smaller than some prescribed parameter ε > 0.

Throughout this chapter, we suppose that in any polygonal approximation P , the
value of ε is chosen sufficiently small so that the ε-length closeness guarantees
that problems related to discretization artifacts do not occur.

3.13.2 Edge quality

The number and positions of vertices of a polygon P may affect the shapes of the
quadrilaterals which are members of a quadrangulation of P . In this section, we
will see the notion of edges of bad quality which are very undesired in practice.

3.13. METRIC ASPECT OF THE POLYGONAL MODEL 67

v

A

B

e

α

β

(a)

v

A

B

e

α

β

(b)

v

A B
e

α β

(c)

Figure 3.28: Edges of bad quality

Definition 14 Consider a polygon P which can be multiply connected. Let
(e,v) be a pair of an edge e = [A,B] and a reflex vertex v of P . We will say that
the pair (e,v) is of bad quality if:

• None of the vertices A and B is located in the wedge W of v.

• The intersection W ∩ e is not empty.

• The angle δ := max{α, β} is smaller than some user defined parameter
δ0 > 0, where α and β are the angles (Fig. 3.27) made respectively by
(e,A,v) and (e,B,v).

In Fig. 3.28, we see three kinds of vertices of bad quality where the edge e may
be on the external or the internal boundary of the polygon P . In practice, we
use only a pair (e,v) where v is an extreme vertex as introduced in section 3.7.1.

The quadrangulation of a polygon having edges of bad quality generally contains
badly shaped quadrilaterals which are long and thin. If we have an edge e of bad
quality on a polygonal approximation P (i) of Di which maps to Si, we have the
option of inserting a new node w inside it. It is worth mentioning that inserting a
new node w in e will affect the boundary approximation of a neighboring trimmed
surface Sj which is incident upon e. Consider the preimage f by ψj of ψi(e):

ψj(f) = ψi(e)

If the edge f is not of bad quality in P (j), then inserting the new node w on e
may deteriorate the quality of Sj. Therefore, one can take a convention that a
node w is inserted only if both e and f are of bad quality with respect to the
polygonal approximations P (i) and P (j) respectively.

3.13.3 Polygonal approximation

Now that we have seen all components that are required in polygonal approxima-
tions, we can describe the generation of {P (i)}i∈Λ from {Di}i∈Λ. The discretiza-

68 SPLITTING

tions are performed as follows.

1. For every i ∈ Λ, initialize the nodes of P (i) to consist only of the seg-
ment separators of the domain Di. Choose some ε > 0 and determine the
adjacency graph G (see Definition 10).

2. For every i ∈ Λ (start from those P (i) having many boundary edges), refine
the edges of P (i) repeatedly until ε-length closeness is attained such that
each P (i) does not have any discretization artifacts. In this step, we have to
make sure that condition (3.53) is met by using the edge splitting process
introduced in section 3.12.2.

3. This step is optional. Insert additional nodes at edges of bad quality.

4. Convert the odd polygons among {P (i)}i∈Λ into even ones by using the
adjacency graph G as described in section 3.12.3.

3.14 Postprocessing

Since we know how to obtain even polygonal approximations {P (i)}i∈Λ, we can
apply a quadrangulation process to each of them. We will describe here the tasks
that have to be performed if one wants to deduce decompositions of the domains
Di from quadrangulations. Additionally, we mention the problems that arise by
using that deduction method. Further problems about diffeomorphism from the
unit square are described.

3.14.1 Boundary replacement

Suppose that we have a quadrangulation Q of the polygonal approximation P (i):

P (i) =
⋃

k

qk,i

where either the nodes of qk,i are taken from the vertices of P (i) or they are
located strictly inside P (i). Let us describe how to generate the splitting into
four-sided subregions of the domain Di which has curved boundaries:

Di =
⋃

k

Qk,i.

That is, we show how to deduce the region Qk,i having curved sides from the
convex quadrilateral qk,i as in Fig.3.29. In order to facilitate the presentation,
we will drop the index i when there could be no confusion. For any straight edge
f = [xr,xs] of the quadrilateral qk, we distinguish two cases. If the edge f is an

3.14. POSTPROCESSING 69

q1

q2

q3 q4

q7 q6 q5

xr xsf

(a)

Q1

Q2

Q3 Q4

Q7 Q6 Q5

xr xsCf

(b)

Figure 3.29: Subregions with curved sides from quadrangulation

internal one in the quadrangulation Q, then f becomes an edge of Qk. Otherwise,
we consider the boundary curve C which contains xr and xs. In the sequel, we will
denote by Cf the portion of the curve C which is located between the endpoints
xr and xs of f . That is, if C is defined as the image of a parametric curve κ and
xr = κ(tr), xs = κ(ts) then Cf = κ([tr, ts]) (we suppose that the edge f follows
the orientation of the curve C). Then, the edge of Qk which corresponds to f is
the curve Cf . In practice, not only we store the coordinates of the vertices xl of
the polygon P (i), but also the parameters tl at which those vertices are traversed
i.e. xl = κ(tl).

3.14.2 Boundary interference

In this section, we would like to describe the problem of boundary interference
and its possible remedies. The above process of replacing a boundary edge f by a
portion of curve Cf can cause a problem. More accurately, it may happen that the
boundary curve Cf intersects an (internal) edge e other than f if the polygonal
approximation (see Fig. 3.30(a)) is not fine enough. It is even possible that
a node ω of the quadrangulation Q becomes exterior to the curved boundaries
after replacing the edge f by Cf as in Fig. 3.31(a). This situation happens
typically for trimmed surfaces having holes or for boundary curves which are
highly nonconvex.

The most obvious approach of removing such boundary interferences is to consider
a finer polygonal approximation of the trimmed surface D. Then, one repeats
the whole process to the resulting finer polygon. Since that approach could be
inefficient when dealing with many patches, we would like to propose a method
of modifying only a part of the quadrangulation Q as follows.

1. Generate two points P1 and P2 on the curve Cf (Figs. 3.30(b), 3.31(b))
which is bounded by xr and xs.

70 SPLITTING

Cf

f

e

xr

xs

(a)

C

P1

P2

(b)

Figure 3.30: (a)Boundary curve C interferes with internal edge e
(b)Requadrangulation

Cf

ω

xr
xsf

(a)

C
P1 P2

(b)

Figure 3.31: (a)The vertex P of the quadrangulation resides outside the curved
boundary C. (b)Requadrangulation

3.14. POSTPROCESSING 71

2. Find the set of quadrilaterals Z which have nonempty intersection with
Cf \ {xr,xs}.

3. Find the polygon Ploc which consists of the boundary of Z and the points
P1 and P2 as follows. Consider the polygonal region P̃loc which is formed by
the boundary of the union of the quadrilaterals of Z. We define the polygon
Ploc to have the edges of P̃loc except that we replace the edge [xr,xs] by
three edges [xr, P1], [P1, P2] and [P2,xs].

4. Quadrilate Ploc to have the quadrangulation Qloc.

5. Replace the quadrilaterals of Z in the large quadrangulation Q by Qloc.

Since we keep the quadrangulation which is far from the edge f intact, we believe
that this method is more efficient than repeating the whole quadrangulation on
a finer polygon. The reason for introducing two new vertices (and not just one)
is that we must have an even number of vertices in the local polygon Ploc.

Remark 8 It is obvious that the above process of introducing P1 and P2 should
not be done on one single face Si. In order to have splitting without hanging
nodes, we have to modify also the surface Sj which is incident upon Si and which
contains the image of Cf by ψi. That means, we consider the boundary curve C′

g

of Dj and we insert two nodes Q1 and Q2 on C′
g such that

ψi(Ps) = ψj(Qs) s = 1, 2. (3.55)

Afterwards, we repair the quadrangulation of P (j) in the neighborhod of C′
g just

as we have done it to Cf .

The determination of the set of quadrilaterals Z of the second step is done as
follows. We are interested in finding the edges of Q which intersect the curve
Cf . We do not need to test intersections with all edges of the quadrangulation
Q. Since we have made an assumption about the polygonal approximation that
the curve Cf cannot intersect a boundary edge other than f , the curve portion Cf

could only have an intersection with an edge of Q if Cf enters through quadrilat-
erals. As a consequence, the process of finding Z is summarized in the following
algorithm.

step 0 : Define f (0) := f and t(0) is the quadrilateral which is incident
upon t(0). Initialize Z := {t(0)} and set k = 0.

step 1 : Take a discretization Cdisc
f of the curve portion Cf .

step 2 : Find the three edges e(1), e(2), e(3), of t(k) such that e(s) 6=
f (k) s = 1, 2, 3.

step 3 : For every e(s) with s = 1, 2, 3:

72 SPLITTING

• If Cdisc
f ∩ e(s) 6= ∅, define f (k+1) := e(s) and let t(k+1)

be the quadrilateral which is incident upon f (k+1) and
which is different from t(k) and go to step 4.

• Else terminate.

step 4 : Z := Z ∪ {t(k+1)} set k := k + 1 go to step 1.

Remark 9 The previous algorithm about finding Z can be improved in various
ways. First, one can consider the bounding box of the curve Cf in order to
accelerate the intersection tests. Second, one can take a coarse discretization
Cdisc

f of Cf initially. We stop if it is enough to find Z. Otherwise, one refines the

approximation Cdisc
f . We can also make an assumption that if the cardinality of

Z exceeds some number m (say m = 4), then we give up local repairing. Instead,
we refine the whole polygonal approximation P (i) by using a smaller value of ε
in the ε-length closeness and we repeat the whole quadrangulation.

3.14.3 Treating G1 vertices

Definition 15 Consider a parametric curve C(t) which is supposed to be a com-
posite curve. A point x = C(t0) on the curve is called a G1 vertex if we have G1

geometric continuity [68, 39] there and x does not reside strictly within a line
segment. In Fig. 3.32(a) B and D are G1 vertices while A and C are not.

We do not want to have a four-sided subregion R in which one (or more) of its
four vertices is a G1 vertex (as in Fig. 3.32(b)). This is because of the fact that
we cannot find any diffeomorphism ϕ from the unit square D = [0, 1] × [0, 1] to
such a subregion R where ϕ transforms the four vertices of D to those of R.

After replacing the boundary straight edges of a quadrangulation by the corre-
sponding curve portion as described in section 3.14.2, there could exist some G1

vertices which have no emanating internal edge. This section will be occupied by
the reparation of such problems. Suppose we have a quadrangulation such that
if we replace the edges of the quadrilateral Q = [A,B,C,D] by boundary curves,
then we obtain a four-sided region having a G1 vertex at B. In this section, we
want to describe two methods of repairing the quadrangulation so that an edge
emanates from B.

The first method consists in refining the regions Q into five four-sided sub-regions
as depicted in Fig. 3.33(a). Since that approach could yields too many quadri-
laterals, we propose the following method. We take a neighboring convex quadri-
lateral P of Q and we form the hexagon H := P ∪ Q. Let us denote by E and
F the nodes of P which do not belong to Q as shown in Fig. 3.33(b). Our

3.14. POSTPROCESSING 73

B A

D

C

(a)

R

(b)

Figure 3.32: (a) B and D are G1 vertices while A and C are not (b) a four sided
domain having a G1 vertex

A

BC

D

(a)

A

B

C

D

Q

P

E

F

(b)

A

B

C

D
E

F

ω

(c)

Figure 3.33: Treating a G1 vertex. An edge should emanate from the G1 vertex
B

second method consists in generating a quadrangulation Qloc of the hexagon H
in such a way that an edge emanates from the G1 vertex B. Note that simply
quadrilating the hexagon H may generate a quadrangulation having no edge em-
anating from B. In order to guarantee that an edge emanates from B, we pick
any point ω strictly inside the triangle [A,B,D]. Then, we form the quadrilateral
[D,ω,B,C] which must be convex because Q is convex. Now we quadrilate the
auxiliary hexagon H̃ := [F,A,B, ω,D,E] by using Bremner’s method which is
summarized in Theorem 6:

H̃ = ∪sqs. (3.56)

As a consequence, the quadrangulation Qloc of the hexagon H is given by

H = [D,ω,B,C] ∪ (∪sqs) . (3.57)

Note that in the quadrangulation of (3.57), the edge [ω,B] emanates from the
node B. We need to note that after doing those two processes, we may obtain
boundary interference which we have to repair by using the method described in
section 3.14.2.

74 SPLITTING

3.14.4 Subdivision for diffeomorphisms

In the former sections, we have shown a method of splitting a multiply connected
domain Di having curved boundaries into four-sided subdomains Qk,i. After the
splitting, one can distinguish three types of four-sided domains:

(Tp1) Those which are convex quadrilaterals,

(Tp2) Those which have only one curved side,

(Tp3) Those which have several curved sides.

In any case, the corners of a four-sided domain form a convex quadrilateral.

A

B C

DE
F

(a)

A

B

C

D

(b)

Figure 3.34: Refinement: (a)Inserting two nodes E and F between A and D (b)
Every quadrilaterals has at most one curved side

Since the function ψi defined on the trimmed surface Di (see relation (3.1)) is sup-
posed to be a diffeomorphism, the generation of a diffeomorphism from the unit
square to the image ψi(Qk,i) ⊂ R3 amounts to generating a diffeomorphism onto
the four-sided 2D-domain Qk,i. In the next chapter, we develop theoretical and
practical approaches using transfinite interpolation related to diffeomorphisms for
2D-domains. For a convex quadrilateral, the generation of a diffeomorphism can
be done with the help of a Coons patch as stated in Corollary 3 of the following
chapter. That means, problems could only arise to four-sided domains having
curved sides. Thus, we need to mention now the treatment of four-sided domains
of second and third types. In section 4.8 of the following chapter, we introduce a
method of generating internal curves for Gordon patches. That method may fail
to directly yield a diffeomorphism if the bounding curves are too complicated. In
such a case, the remedy that we will propose in section 4.9 of the following chap-
ter is to subdivide the four-sided region in order to simplify the bounding curves.
On that account, we would like to show now a method of splitting a four-sided
domain so that the bounding curves become less complicated. Let us consider a
four-sided domain q which has [A,B,C,D] as corners and which has one curved
side C bounded by A and B. In order to make the curve C less complicated, we
insert two nodes E and F inside it as illustrated in Fig. 3.34(a). Afterwards,
we quadrilate the hexagon [A,B,C,D,E, F]. As we have done in section 3.14.2,

3.15. SUMMARIZING ALGORITHM 75

we replace the four-sided domain q by the resulting quadrangulation. For a four-
sided domain having several curved edges (of third type), one can use similar
techniques by introducing new nodes on the curved sides. Another possibility is
to try to split it into a few four-sided domains having single curved side (i.e. of
second type) as in Fig. 3.34(b).

3.15 Summarizing algorithm

The former long discussion about splitting 2D-domains {Di}i∈Λ into four-sided
subdomains can be summarized in form of an algorithm whose input includes
polygonal approximations {P (i)}i∈Λ.

1. Quadrilate each polygon P (i) in oder to have a quadrangulation Qi which
uses only the vertices of P (i) as boundary nodes:

P (i) =
⋃

k

qk,i.

The quadrangulation approach from section 3.6 which uses no boundary
Steiner points fits well that objective.

2. Deduce from the quadrangulation Qi a decompositions of Di into four-sided
subregions with curved sides.

Di =
⋃

k

Qk,i.

3. Repair the decomposition in the neighborhood of the remaining G1 vertices.

4. Repair boundary interference.

5. Check diffeomorphism from [0, 1]2 onto each Qk,i as described in the next
chapter.

6. Subdivide each four-sided region Qk,i yielding no diffeomorphisms and go
back to the above fifth point.

3.16 Special splittings

There are a few special situations which often occur in practice. Treating these
cases in a special way will be much more efficient than applying the general
procedure. In this section, we would like to describe a case study of those special
splittings.

76 SPLITTING

Ḋ v1

v2v3

v4

v5 vN

Q1

Q2

Q3

Q4

Q5

QN

(a)

v1

v2v3

v4

v5

v6 v7

vN

Ḋ

Q1

Q2
Q3

Q4

Q5
Q6

Q7

QN

(b)

a b c

d

(c)

Figure 3.35: (a),(b)Special splittings: all vertices are G1. (c) Quadrilate a
triangular-shaped quadrilateral without using additional boundary nodes

3.16.1 All G1 vertices

The first splitting is applied to a domain D in which all boundary vertices are
G1-vertices and they form a convex polygon P (see Fig. 3.35(b)). This situation
occurs very often for mechanical parts which contain closed smooth curves such
as circles. Let us denote those vertices by v1, · · ·,vN . Our method consists in
constructing another polygon Ḋ which is inside P and which has the same shape
as P . For example, one can define the vertices of Ḋ by

wi := λG + (1 − λ)vi, (3.58)

with G being the center of gravity of P and λ ∈]0, 1[. The tessellation of D is
constituted of the four-sided regions Q1,...,QN by introducing the line segments
[vi,wi] and the quadrilaterals resulting from the quadrangulation of the internal
polygon Ḋ (see Fig. 3.35(b)).

3.16.2 Simple polygons

The second group of special splittings is devised for the quadrangulation of simple
polygons. We will consider only simple polygons with at most six vertices and
we will distinguish a few cases according to the number of reflex vertices. Let us
observe the simple fact that an n-gon has at most (n−3) reflex vertices. Although
our aim is to have a small number of quadrilaterals, we do not claim that these
are the only (nor the optimal) way of splitting those polygons.

Non-convex quadrilateral

In the following discussion, we describe the way a non-convex quadrilateral [a, b, c, d]
can be split into convex ones. We suppose that b is the reflex vertex. The ap-
proach consists in generating one internal Steiner point ω and two boundary
ones e and f . The splitting is then processed as it is graphically described in

3.16. SPECIAL SPLITTINGS 77

a

b

c

d

ω

e

f

(a)

a

b

c

d

e

f

(b)

a r b

c

d

e

ω

(c)

c

dea
b

ω1

ω2

r

(d)

Figure 3.36: Special splittings: (a)Nonconvex quadrilateral, (b) Pentagon with
one reflex vertex, (c,d) Pentagon with two reflex vertices.

Fig. 3.36(a). We need only to explain how the coordinates of the Steiner points
are chosen. The vertex e and f should lie respectively on the segments [d, a] and
[d, c] and the internal node ω is chosen in the triangle [e, f, b]. We require further
that the point e (resp. f) is visible from the corner c (resp. a). Otherwise, the
point w could reside outside the initial quadrilateral.

Pentagon

For the quadrangulation of a pentagon P := [a, b, c, d, e] , we are going to describe
three cases according to the number and the positions of the reflex vertices.

Suppose there is only one reflex vertex which we suppose to be a. Let us observe
that intersection of the segment [c, d] and the wedge of a is never empty. We need
therefore to take one Steiner point f from that region and the quadrangulation
results by inserting one cut [a, f] as depicted in Fig. 3.36(b). This ensures that
the two resulting quadrilaterals are convex.

If we have two reflex vertices, then we have to distinguish two cases according
to whether those reflex vertices are separated by one non-reflex vertex or they
are consecutive. Observe that if they are separated by two non-reflex vertices,
then following the pentagon in the opposite direction (clockwise) reduces it to
the former case.

Let us first consider the first case in which e suppose without loss of generality
that the reflex vertices are c and e as in Fig. 3.36(c). We need to insert one
boundary Steiner point r which is chosen so that it resides on the segment [a, b]
and that it is visible from the vertex d. Then, an internal Steiner point ω is
selected inside the triangle [r, c, e]. The splitting is then done as explained in Fig.
3.36(c).

Suppose now that the reflex vertices are consecutive. Further, let us assume that
they are a and e (Fig. 3.36(d)). We are now explaining how an internal Steiner
point ω1 is chosen. In order to ensure convexity, we choose ω1 inside P ∩ (ac)−.
The new pentagon [a, ω1, c, d, e] has two reflex vertices (namely ω1 and e) which

78 SPLITTING

a

b

c

d

e

f

(a)

ω

a

b

cd

e

f

(b)

b̃

a

b

cd

e

f

(c)

Figure 3.37: Hexagon: one reflex vertex

are separated by one reflex vertex. Therefore, we can apply the former case in
order to determine the remaining Steiner points ω2 and r.

Hexagon

The quadrangulation of a hexagon P = [a, b, c, d, e, f] that we present below has
two remarkable properties [16]. First, we do not introduce any new boundary
node. Second, all resulting quadrilaterals are strictly convex.

We distinguish three cases according to the number of reflex vertices of the
hexagon P . Those cases are listed below and they can be seen graphically in
Fig. 3.37 through Fig. 3.39.

Case 1: one reflex vertex

Without loss of generality, we suppose that the reflex vertex is a. We need now
to consider a few subcases.

Case 1.1 : If the vertex d belongs to the wedge W(a), we simply need to insert
a cut [a, d] to have the quadrangulation as illustrated in Fig. 3.37(a).

Case 1.2 : If d 6∈ W(a) and c sees e, we generate a Steiner point ω ∈ [a, c, e] ∩
ker(P) and we quadrilate P as described in Fig. 3.37(b).

Case 1.3 : If d 6∈ W(a) and c does not see e, we generate a point b̃ ∈ W(a) ∩
W(c) ∩ (ac)− and we apply Case 1.2 to the new hexagon P̃ = [a, b̃, c, d, e, f].

Case 2: two reflex vertices

Case 2.1: Suppose that the two reflex vertices are separated by a non-reflex one.
We assume that the reflex vertices are a and c. If a sees e and c sees e, then we
pick a ω ∈ [a, c, e] ∩ ker(P) and perform the splitting in Fig. 3.38(a). Otherwise,
we search some b̃ in W(a) ∩W(c) ∩ (ac)− as in Fig. 3.38(b) and we apply Case
1 to the new hexagon P̃ = [a, b̃, c, d, e, f].

Case 2.2: If the two reflex vertices are consecutive as in Fig. 3.38(c), we find b̃

3.16. SPECIAL SPLITTINGS 79

ω

a

b

c d

e

f

(a)

b̃

a

b

c d

e

f

(b)

b̃

a

b

cd

e

f

(c)

a

bc

d

e f

(d)

b̃

a

bc

d

e f

(e)

Figure 3.38: Hexagon: two reflex vertices

in ker(Q)∩ (ab)− where Q denotes the quadrilateral [a, c, d, f]. Then, apply Case
2.1 to the new hexagon P̃ = [a, b̃, c, d, e, f].

Case 2.3: Suppose that the two reflex vertices a and d are located between two
non-reflex vertices. Test if a sees d and if the two quadrilaterals resulting from
inserting the cut [a, d] are convex as in Fig. 3.38(d). If so, then insert the internal
edge [a, d]. Otherwise, proceed as in case 2.2 (see Fig. 3.38(e)).

Case 3: three reflex vertices

Case 3.1 : Suppose that we have alternation of reflex and non-reflex vertices. If
the vertices a, c and e are mutually visible, then find ω ∈ [a, c, e] ∩ ker(P) and
split as in Fig. 3.39(a). Otherwise, find d̃ such that [d, e, d̃, c] is convex and c is
non-reflex in the new hexagon P̃ = [a, b, c, d̃, e, f] (Fig. 3.39(b)). Then, apply
Case 2 to P̃ .

Case 3.2 : Suppose that two of the reflex vertices are consecutive and that they
are a and b. If e sees a or e sees b, then apply Case 3.1 to the new hexagon
P̃ = [a, b, c, d, e, f̃] where f̃ is chosen in (ae)+ ∩ (bd)− ∩ ker(P) as in Fig. 3.39(c).
Otherwise, choose ẽ such that [d, e, f, ẽ] is convex as in Fig. 3.39(d) and apply
case 3.1 to the new hexagon P̃ = [a, b, c, d, ẽ, f].

Case 3.3 : Suppose that the three reflex vertices are consecutive. Choose f̃ such
that [a, f̃ , e, f] is convex and c sees e in the new hexagon P̃ = [a, b, c, d, e, f̃] (Fig.
3.39(e)). Then, apply Case 3.1 to the new hexagon P̃ .

Coordinates of the Steiner points:

The real difficulty in realizing the above simple quadrangulation in practice is the
determination of the exact coordinates of the Steiner points ω, b̃, d̃, ẽ , f̃ . Let
us observe that the determination of the Steiner points can be done by repeated
applications of convex polygon intersections. That is due to the fact that all the
involved regions such as ker(P), wedge, triangle, half-plane, can be derived from
intersections of convex polygons. In practice, it is advisable to determine first a
bounding box B of the hexagon and to represent a half-plane as a large rectangle
which does not interfere with points outside B. Therefore, we would like to
present below [29, 90] a simple intersection algorithm of two convex polygons P
and Q. We will classify the intersection points of P and Q in two categories. An

80 SPLITTING

ω

a
b

c

d

e

f

(a)

d̃

a
b

c

d

e

f

(b)

f̃

a b
c

d

e

f

(c)

ẽ
a b

c

d

e

f

(d)

f̃

a

b

c
d

e

f

(e)

Figure 3.39: Hexagon: three reflex vertices

intersection of first kind is I ∈ P ∩Q such that the following (in counterclockwise
orientation) edges of P and Q coincide. An intersection which is not of first kind
is of second kind. Observe that an intersection of first kind is always a corner of
P or Q. As an illustration, in Fig. 3.40 the point I2 is an intersection of first
kind and the other intersection points are of second kind.

I1
I2

I3

IN
P

Q

Figure 3.40: Intersection of two convex polygons P and Q: I2 is an intersection
of first kind.

3.17. NUMERICAL RESULTS 81

Algorithm: Convex polygon intersection

step 1 : Find all the intersection points I1, · · ·, IN of the convex poly-
gons P and Q. Determine also their types (first or second).

step 2 : Define L to be the list of vertices of P∩Q; initialize L[0] := I1
and set k = 0.

step 3 : So as to find L[k + 1], distinguish three cases:

case 1 : If L[k] is an intersection point of first kind Is, the next entry
of L is the following intersection point: L[k + 1] := Is+1.

case 2 : If L[k] is an intersection point of second kind Is, define B ∈
{P,Q} as the internal polygon after Is in counterclockwise
orientation and find its next vertex B[r]. By following the
polygon B from the point Is counterclockwise, determine
which is closer B[r] or Is+1. Set L[k+1] := B[r] or L[k+1] :=
Is+1 whichever is closer.

case 2 : If L[k] is a polygon vertex: say L[k] = B[r] where B = P or
B = Q. Find the next intersection point Iq by following B
counterclockwise. And choose again from B[r+ 1] and Iq as
in the previous point.

step 4 : If all the intersection points have been traversed then termi-
nate. Otherwise, increment k and go back to step 3.

3.17 Numerical results

In this section, we present results of the formerly discussed methods. First, we
will show results about splitting simply and multiply connected polygons. Then,
we will see results from real CAD data. We investigate five sets of polygons
whose quadrangulations are to be found in Fig. 3.41 through Fig. 3.45. We
display there different polygons with various complexities . Some polygons are
highly nonconvex while others are only slightly nonconvex. In the first three sets,
we display only results about simply connected polygons. The next two sets are
devoted for multiply connected polygons. Please note that the boundaries of the
multiply connected polygons are drawn with bold lines in order not to confuse
internal four-sided boundaries and quadrilaterals.

Now we would like to present some numerical results of decomposing CAD objects
which are taken from IGES files. We consider eight objects which are displayed in
Fig. 3.46 and Fig. 3.47 showing the initial CAD-surfaces and the final four-sided
tessellations which have been obtained by using the afore mentioned methods.

We want particularly to present the runtimes of the approaches. The following
tests have been done with an Intel Pentium 4 processor 2,66 GHz running Win-

82 SPLITTING

(a) (b)

(c) (d)

(e) (f)

Figure 3.41: First set of results.

3.17. NUMERICAL RESULTS 83

(a) (b)

(c) (d)

(e) (f)

Figure 3.42: Second set of results.

84 SPLITTING

(a) (b)

(c) (d)

(e) (f)

Figure 3.43: Third set of results.

3.17. NUMERICAL RESULTS 85

(a) (b)

(c) (d)

(e) (f)

Figure 3.44: Fourth set of results.

86 SPLITTING

(a) (b)

(c) (d)

(e) (f)

Figure 3.45: Fifth set of results.

3.17. NUMERICAL RESULTS 87

Objects Trim. surf Nb. 4-sided patches Extraction Tessellation

1-(a)(b) 28 94 0.391 sec 3.696 sec
1-(c)(d) 40 96 0.461 sec 3.395 sec
1-(e)(f) 58 120 0.431 sec 7.581 sec
1-(g)(h) 46 90 0.291 sec 5.137 sec
2-(a)(b) 22 62 0.380 sec 1.712 sec
2-(c)(d) 54 135 0.481 sec 5.257 sec
2-(e)(f) 35 104 0.401 sec 4.176 sec
2-(g)(h) 58 144 0.401 sec 7.781 sec

Table 3.1: Runtimes for parsings and tessellations

dows XP. In Table 3.1 we gather the time needed to parse the corresponding
IGES files and to perform the tessellation. The information extraction includes
automatic loading of the files, establishment of the information pertaining to
the trimmed surfaces and conversion into C-data structures. We can find in the
same table the numbers of initial multiply connected surfaces as well as the final
numbers of four-sided subregions.

88 SPLITTING

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.46: First set of four-sided splittings

3.17. NUMERICAL RESULTS 89

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.47: Second set of four-sided splittings

90 SPLITTING

Chapter 4

MAPPING REGULARITY

Abstract: We consider the problem of characterizing whether a Coons map
is a diffeomorphism from the unit square onto a planar domain delineated by
four given curves. We aim primarily at having not only theoretically correct
conditions but also practically efficient methods. Throughout the chapter we
suppose that the given four boundary curves are presented in Bézier forms. We
will prove three sufficient conditions: the first one is based upon the tangents of
the boundary curves, the second one exploits the representation of the Jacobian
in Bézier surface with a degree elevation when relevant, and the last one invokes
the subdivision and polar forms techniques. Further, we will prove that the last
condition is also necessary for sufficiently many subdivisions. We present a way
of adaptive subdivision so as to make it efficient. On the other hand, we aim
at having a diffeomorphism which is easy and fast to evaluate. Our attempt to
generate a diffeomorphism from [0, 1]2 to a four-sided domain having curved sides
is based upon Gordon patches. We will describe an automatic manner to specify
internal cubic Bézier-spline curves that are to be subsequently interpolated by a
Gordon patch. If we cannot find a diffeomorphism, then we subdivide the four-
sided domain into simpler subregions. Numerical results are reported in order to
illustrate the approaches.

4.1 Introduction

Determining whether a Coons map is a diffeomorphism is not just an interesting
problem but it could have interesting applications. We would like to mention the
numerical solution of integral equations on CAD objects [26, 27]. If the wavelet
Galerkin scheme [109, 63] is used to solve the integral equation then the surface of
the CAD object has to be split into patches, each having four sides, and we need a
diffeomorphism from the unit square onto each patch. In an earlier work [101], we
utilized transfinite interpolation in order to generate a parametric mapping from
the unit square to a four-sided domain. It is on that account that we need to have

91

92 MAPPING REGULARITY

an efficient method to characterize if a Coons map is a diffeomorphism. For given
four curves α, β, γ, δ which enclose a planar domain (Fig. 4.1), the purpose of
this chapter is to recognize if the corresponding Coons map is a diffeomorphism.
We will suppose throughout that the boundary curves are Bézier curves.

In fact, we will prove three sufficient conditions which are mainly expressed with
the help of the control points of the boundary curves and the blending functions.
This chapter is organized as follows. In the next section, we will make some
excursus on transfinite interpolation and state our problem more clearly. The
first sufficient condition which is based on the tangents of the boundary curves
will be described in section 4.3. We will discuss there also some interesting case
in which the blending functions take only positive values. In section 4.4, we
will propose and prove a sufficient condition based on the control points of the
Jacobian of the Coons patch. We do not present any necessary condition until
section 4.5 where we use subdivision methods to express our condition and where
we have both low computational cost and efficiency as objective . We will propose
an adaptive strategy to accomplish adaptive subdivision. Based on that, we will
present an algorithm whose termination is ensured by a theorem which will also
investigate. Finally numerical results are presented in the last section to test the
performance of the proposed approaches in practice.

4.2 Transfinite interpolation and problem setting

Let us consider four continuously differentiable parametric curves α, β, γ, δ
defined on the interval [0, 1] and taking values in R2. They are supposed to fulfill
the compatibility condition (see Fig. 4.1) at the corners:

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (4.1)

Since our method of generating a mapping from the unit square to the four-
sided domain bounded by the four curves is based on transfinite interpolation,
we would like now to briefly recall some basic facts about this technique. For
a more in-depth understanding regarding transfinite interpolation in general we
direct the readers to [47, 54, 55, 56, 111].

We are interested in generating a parametric surface x(u, v) defined on the unit
square [0, 1]2 such that the boundary of the image of x coincides with the given
four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(4.2)

This transfinite interpolation problem can be solved by a first order Coons patch
whose construction involves the operators

(Px)(u, v) := F0(v)x(u, 0) + F1(v)x(u, 1) (4.3)

(Qx)(u, v) := F0(u)x(0, v) + F1(u)x(1, v) (4.4)

TRANSFINITE INTERPOLATION 93

α

β

γ

δ

θ1

θ2

θ3

θ4

Figure 4.1: A four sided domain for Coons patch

where F0 and F1 denote two arbitrary smooth functions satisfying

Fi(j) = δij i, j = 0, 1 and F0(t) + F1(t) = 1 ∀ t ∈ [0, 1]. (4.5)

Now, a Coons patch x can be defined by the relation

P ⊕Q(x) = x, where (4.6)

P ⊕Q := P + Q−PQ. (4.7)

The functions F0, F1 which are better known as blending functions can be chosen
in several ways (see [39, 47, 68, 111]). On account of the fact that we need to verify
diffeomorphisms, we choose in the sequel blending functions which are sufficiently
smooth. The simplest case that one can take as bilinear blending function is

F0(t) = 1 − t, F1(t) = t. (4.8)

We will see in our following discussion that the theoretical results that we derive
are valid for a large range of blending functions. According to (4.7) we can express
the solution to (4.2) in matrix form as:

x(u, v) =
[
F0(u) F1(u)

] [δ(v)
β(v)

]
+

[
α(u) γ(u)

] [F0(v)
F1(v)

]
−

[
F0(u) F1(u)

] [α(0) γ(0)
α(1) γ(1)

] [
F0(v)
F1(v)

]
.

(4.9)

From (4.6) it follows that x is of the form

x(u, v) = −




−1
F0(u)
F1(u)




T 


0 x(u, 0) x(u, 1)
x(0, v) x(0, 0) x(0, 1)
x(1, v) x(1, 0) x(1, 1)






−1
F0(v)
F1(v)


 . (4.10)

This construction is due to S. M. Coons and it has been developed for free
form surface modeling. The Boolean sum character of a Coons patch has been

94 MAPPING REGULARITY

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

−2.5 −2 −1.5 −1 −0.5 0

−2.5

−2

−1.5

−1

−0.5

0

(b)

Figure 4.2: Diffeomorphic Coons patches

discovered by W. Gordon. The differentiability of a Coons map is guaranteed if
all curves and blending functions involved are themselves differentiable. In Figs.
4.2(a) and 4.2(b), we illustrate that for most practical cases a Coons patch is
already a diffeomorphism. However, when the boundary curves become too wavy,
like in Fig. 4.3, we observe overlapping isolines indicating that the mapping is
not invertible.

The purpose of this chapter is to analyze under which conditions the Coons map
(4.10) is a diffeomorphism . For that we need sufficient and necessary conditions
which characterize the diffeomorphisms. Our fundamental aim is not only con-
ditions which are theoretically valid. We aim also at having conditions which
we can check in a fast and efficient way practically. Throughout the chapter
we suppose that the boundary curves α, β, γ, δ for the Coons map are Bézier
curves of degree n and that their Bézier points are αi, βi, γi, δi with i = 0, · · · , n
respectively. That is,

α(t) =

n∑

i=0

αiB
n
i (t), β(t) =

n∑

i=0

βiB
n
i (t), (4.11)

γ(t) =

n∑

i=0

γiB
n
i (t), δ(t) =

n∑

i=0

δiB
n
i (t). (4.12)

The blending function is supposed also to be a polynomial which is represented
in its Bézier form as

F1(t) = 1 − F0(t) =

n∑

i=0

φiB
n
i (t). (4.13)

Further we introduce the following constants.

q := inf{F1(t) : t ∈ [0, 1]},
Q := sup{F1(t) : t ∈ [0, 1]},
ρ := sup{|F ′

1(t)| : t ∈ [0, 1]}.
(4.14)

4.3. FIRST SUFFICIENT CONDITION 95

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.3: Undesired overspill phenomena

4.3 First sufficient condition

Before we introduce our first result, let us adopt some more notations. First, for
u, v ∈ [0, 1] and ζ, χ ∈ [q,Q], we will denote the combination of opposite tangents
by

Ku,ζ := (1 − ζ)α′(u) + ζγ′(u) (4.15)

Lv,χ := (1 − χ)δ′(v) + χβ′(v). (4.16)

Then we introduce

M := max

{
sup

(u,ζ)∈[0,1]×[q,Q]
‖Ku,ζ‖ , sup

(v,χ)∈[0,1]×[q,Q]
‖Kv,χ‖

}
. (4.17)

Besides, we have the following maxima

S1 := max
i=0,···,n

{ρ‖(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)‖}

S2 := max
i=0,···,n

{ρ‖(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)‖}.

Finally F is defined to be S1 or S2, whichever has the largest value.

Theorem 8 If there exists some κ > 0 such that

det(Ku,ζ , Lv,χ) ≥ κ (4.18)

and
2MF + F 2 < κ, (4.19)

then the Coons patch with respect to α, β, γ, δ is a diffeomorphism.

96 MAPPING REGULARITY

Proof

Some few computations reveal that the partial derivatives of the Coons patch are

xu(u, v) = F ′
1(u)Su + Cu , xv(u, v) = F ′

1(v)Sv + Cv where (4.20)

Su := β(v) − δ(v) + [F0(v)α(0) + F1(v)γ(0)] − [F0(v)α(1) + F1(v)γ(1)]

Sv := γ(u) − α(u) + [F0(u)α(0) + F1(u)α(1)] − [F0(u)γ(0) + F1(u)γ(1)]

Cu := F0(v)α
′(u) + F1(v)γ

′(u)

Cv := F0(u)δ
′(v) + F1(u)β

′(v) .

Therefore we obtain

Su =
n∑

i=0

(βi − δi)B
n
i (v) + F1(v)(γ0 − γn + αn − α0) + (α0 − αn) (4.21)

Sv =

n∑

i=0

(γi − αi)B
n
i (u) + F1(u)(αn − γn + γ0 − α0) + (α0 − γ0) (4.22)

After a few rearrangements

Su =
n∑

i=0

[(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)]Bn
i (v) (4.23)

Sv =

n∑

i=0

[(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)]B
n
i (u) (4.24)

By using the definition of F , one obtains

|F ′
1(u)|.‖Su‖ ≤ F and |F ′

1(v)|.‖Sv‖ ≤ F. (4.25)

Because of multilinearity of the determinant function, we have

det(xu,xv) = F ′
1(u)F

′
1(v)det(Su, Sv) + F ′

1(u)det(Su, Cv)+
+F ′

1(v)det(Cu, Sv) + det(Cu, Cv).
≥ det(Cu, Cv) − {|F ′

1(u)F
′
1(v)det(Su, Sv)|+

+|F ′
1(u)det(Su, Cv)| + |F ′

1(v)det(Cu, Sv)|}
≥ κ− (F 2 + 2FM) > 0 due to (4.25) (4.18) and (4.19).

That means the Jacobian is nowhere zero. The inverse function theorem ensures
therefore that the Coons patch is a diffeomorphism.

�

Remark 10 Condition (4.18) has some geometric interpretation. Suppose the
bounds q and Q from relation (4.14) are 0 and 1 respectively. So, if one considers
any convex combination K of the tangent vectors α′(u) and γ′(u) and L of δ′(v)

4.3. FIRST SUFFICIENT CONDITION 97

α(u)

β(v)

γ(u)

δ(v)

α′(u)

β ′(v)

γ′(u)

δ′(v) Ku,ζLv,χ

θ

Figure 4.4: Tangents on a four sided domain for Coons patch

and β′(v), then K and L are bounded away from being collinear and they are
never zero in norm. Observe in Figure 4.4 the angle θ which represents with some
respect the scaled determinant. If (q,Q) 6= (0, 1) one can draw a similar figure
after some rescalings.

Remark 11 A direct computation of M from relation (4.17) could be expensive
or inaccurate in practice because it involves non-discrete information. In fact,
the constant M could just as well be replaced by another constant that verifies
for all i = 0, · · · , n− 1 and j = 0, · · · , n

n‖φj(γi+1 − γi + αi − αi+1) + (αi+1 − αi)‖ ≤ M
n‖φj(βi+1 − βi + δi − δi+1) + (δi+1 − δi)‖ ≤ M,

(4.26)

which is easier to check. The idea of the proof remains fundamentally unchanged.
Indeed, relation (4.26) implies in particular the following bounds

‖Cu‖ ≤M ‖Cv‖ ≤M,

where
Cu := F0(v)α

′(u) + F1(v)γ
′(u)

Cv := F0(u)δ
′(v) + F1(u)β

′(v).
(4.27)

Remark 12 In the previous theorem we have treated the very general case in
which the blending functions F0 and F1 could take any sign. Still, more can be
stated if they are to take only positive values as we will see in the next remark.
That is for example the case if we choose the following blending functions:

F0(t) := 2t3 − 3t2 + 1 = B3
0(t) +B3

1(t) (4.28)

F1(t) := −2t3 + 3t2 = B3
2(t) +B3

3(t). (4.29)

98 MAPPING REGULARITY

Interestingly, we will see that condition (4.18) could be replaced by another one
that takes a discrete form which is of course of practical concern.

Remark 13 Suppose that the blending functions are positive:

F0(t) ≥ 0, F1(t) ≥ 0 ∀ t ∈ [0, 1]. (4.30)

If we replace condition (4.18) of the previous theorem by

n2 det[αi+1 − αi, δj+1 − δj] > 0 ,
n2 det[αi+1 − αi, βj+1 − βj] > 0 ,
n2 det[γi+1 − γi, δj+1 − δj] > 0 ,
n2 det[γi+1 − γi, βj+1 − βj] > 0 ,

(4.31)

for all i, j = 0, · · · , n− 1 and define κ > 0 to be the minimum of them , then we
can deduce the same claim.

Proof

According to the multilinearity of the determinant again, we have (see also defi-
nitions from relation (4.27))

det[Cu, Cv] = F0(v)F0(u) det[α′(u), δ′(v)] + F0(v)F1(u) det[α′(u), β′(v)]+
F1(v)F0(u) det[γ′(u), δ′(v)] + F1(v)F1(u) det[γ′(u), β′(v)].

On account of the fact that

α′(u) =

n−1∑

i=0

n(αi+1 − αi)B
n−1
i (u)

and similar relations for β, γ, δ, we deduce from (4.31) that

det[Cu, Cv] ≥
n−1∑

i=0

n−1∑

j=0

κBn−1
i (u)Bn−1

j (v).

Since the Bernstein polynomials form a partition of unity, we deduce the result.

�

Now, we would like to state a simple corollary which is very important for the
next chapter.

Corollary 3 One can generate a diffeomorphism from the unit square onto a
planar strictly convex quadrilateral.

4.4. SECOND SUFFICIENT CONDITION 99

Proof

Consider a strictly convex quadrilateral [A1, A2, A3, A4] and let us denote by θi

the internal angles at the corners. One can generate four Bézier curves α, β, γ,
δ as

α(t) := A1B
1
0(t) +A2B

1
1(t) (4.32)

β(t) := A2B
1
0(t) +A3B

1
1(t) (4.33)

γ(t) := A4B
1
0(t) +A3B

1
1(t) (4.34)

δ(t) := A1B
1
0(t) +A4B

1
1(t). (4.35)

Since the quadrilateral is strictly convex, we have αi < π. Thus, the conditions
in (4.31) are satisfied. By choosing positive blending function as in (4.30), we
deduce the claim.

�

Lemma 2 Suppose the boundary curves α, β, γ, δ and the blending function
are given as before. Then the Coons patch is a Bézier surface

x(u, v) =

n∑

i=0

n∑

j=0

EijB
n
i (u)Bn

j (v) (4.36)

where the control points are

Eij := δj − α0 + αi + φj(γi − αi + α0 − γ0)
φi[α0 − αn + βj − δj + φj(αn − γn + γ0 − α0)]

(4.37)

Proof

Obvious. See also ([40]) for a similar discussion.

�

4.4 Second sufficient condition

Theorem 9 Consider the assumption above and define

D(i, j, k, l) := n2det[Ei+1,j −Eij ,Ek,l+1 − Ekl] (4.38)

C(i, j, k, l) := l
n

[
i
nD(i− 1, j, k, l − 1) + (1 − i

n)D(i, j, k, l − 1)
]
+

(1 − l
n)
[

i
nD(i− 1, j, k, l) + (1 − i

n)D(i, j, k, l)
] (4.39)

If for all p, q = 0, · · · , 2n

Jpq :=
∑

i+k=p
j+l=q

C(i, j, k, l)

(
n
i

)(
n
k

)
(2n
i+k

)
(n

j

)(n
l

)
(2n
j+l

) > 0 (4.40)

then the Coons patch is a diffeomorphism.

100 MAPPING REGULARITY

Proof

The partial derivatives are

xu(u, v) =

n−1∑

i=0

n∑

j=0

n(Ei+1,j − Eij)B
n−1
i (u)Bn

j (v) (4.41)

xv(u, v) =

n∑

k=0

n−1∑

l=0

n(Ek,l+1 − Ekl)B
n
k (u)Bn−1

l (v) (4.42)

Therefore we obtain the determinant

det(xu,xv) =

n−1∑

i=0

n∑

j=0

n∑

k=0

n−1∑

l=0

D(i, j, k, l)Bn−1
i (u)Bn

j (v)Bn
k (u)Bn−1

l (v) (4.43)

After application of degree elevation with respect to the indices i and l we obtain

det(xu,xv) =
n∑

i=0

n∑

j=0

n∑

k=0

n∑

l=0

C(i, j, k, l)Bn
i (u)Bn

j (v)Bn
k (u)Bn

l (v) (4.44)

By using the product formula

Bn
i (t)Bn

k (t) =

(n
i

)(n
k

)
(

2n
i+k

) B2n
i+k(t) (4.45)

the Jacobian can be written as

J(u, v) := det(xu,xv) =

2n∑

p=0

2n∑

q=0

JpqB
2n
p (u)B2n

q (v) (4.46)

Therefore the Coons patch x is a diffeomorphism.

�

4.5 Sufficient and necessary condition

In the previous theorems we have presented two methods for verifying whether a
Coons patch describes a diffeomorphism. In fact, they give only sufficient condi-
tions. Let us describe a short contrast between those two approaches. As far as
computational cost is concerned, the second approach is more computationally

CHARACTERIZATION 101

intensive than the first one as it will be observed in the numerical experiments
from section 4.6. On the other hand, the second approach is also more sensitive.
That is, it can provide some response whereas the first one fails. Additionally,
as we degree-elevate the boundary Bézier curves, the second approach becomes
more and more sensitive. Computational cost is of course a trade-off to consider
if one chooses n large during the degree elevation of the second test. In the next
discussion, we will propose a method to achieve at the same time low computa-
tional cost and effective results. We will demonstrate a condition, based upon
subdivision methods, which is both necessary and sufficient.

4.5.1 Subdivision

Before we see a necessary condition, let us see the following fact. A Bézier surface
F defined on [a, b]× [c, d] can be subdivided into four Bézier surfaces A, B, C, D
which are respectively defined on

IA := [a, 0.5(a + b)] × [c, 0.5(c + d)] (4.47)

IB := [a, 0.5(a + b)] × [0.5(c + d), d] (4.48)

IC := [0.5(a + b), b] × [c, 0.5(c + d)] (4.49)

ID := [0.5(a + b), b] × [0.5(c + d), d] (4.50)

by using the following recursions. Suppose the control points of F are Fij i, j =
0, · · · , n. We define

{
F

[0]
ij := Fij and

F
[k]
ij := 0.5(F

[k−1]
i−1,j + F

[k−1]
ij)

(4.51)

{
P

[0]
ij := F

[i]
ij and

P
[k]
ij := 0.5(P

[k−1]
i,j−1 + P

[k−1]
ij)

{
Q

[0]
ij := F

[n−i]
nj and

Q
[k]
ij := 0.5(Q

[k−1]
i,j−1 +Q

[k−1]
ij).

(4.52)

The control points of A, B, C and D are respectively Aij := P
[j]
ij , Bij := P

[n−j]
in ,

Cij := Q
[j]
ij , Dij := Q

[n−j]
in . We have in particular

F (u, v) = Q(u, v) if (u, v) ∈ IQ,

where Q = A,B,C, or D.

Theorem 10 Let us adopt the same notations as in the previous statement.
Suppose that the Coons patch x defined with α, β, γ, δ is a diffeomorphism.
Suppose further that we have subdivided J into σ2 Bézier surfaces J ij which are
defined on

102 MAPPING REGULARITY

Iij := [(i− 1)/σ, i/σ] × [(j − 1)/σ, j/σ] i, j = 1, · · · , σ. (4.53)

Denote by J ij
pq, p, q = 0, · · · , 2n the control points of the Bézier surface J ij.

We claim that if σ is sufficiently large then J ij
pq is of constant sign uniformly on

i, j = 1, · · · , σ and on p, q = 0, · · · , 2n.

Proof

On the one hand, the Jacobian J(u, v) must be of constant sign because it is
never zero. Without loss of generality we suppose that it is positive:

J(u, v) > 0 ∀(u, v) ∈ [0, 1] × [0, 1]. (4.54)

Since the function J is continuous on the compact [0, 1] × [0, 1], there must exist
some ρ > 0 such that

J(u, v) ≥ ρ ∀ (u, v) ∈ [0, 1] × [0, 1]. (4.55)

On the other hand, let us fix (i, j) and let us denote by [a, b] × [c, d] the interval
Iij in order to simplify the notation. We are going to use the notation s, ..[m].., s
in order to stress that s is to be repeated m times. Further, let us introduce
the blossom [113, 98] function P ij(u1, · · · , u2n; v1, · · · , v2n) corresponding to the
polynomial J ij :

J ij(u, v) = P ij(u, ..[2n].., u; v, ..[2n].., v). (4.56)

Define h := 1/(2nσ) and ap := a + ph, cq := c + qh for p = 0, · · · , 2n and
q = 0, · · · , 2n. We would like now to apply multivariate Taylor development of
the first order to the blossom P ij at (ap, ..[2n].., ap; cq, ..[2n].., cq).

P ij(a, ..[2n − p].., a, b, ..[p].., b; c, ..[2n − q].., c, d, ..[q].., d) =

P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +
2n−p∑

r=1

(a− ap)
∂

∂ur
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n∑

r=2n−p+1

(b− ap)
∂

∂ur
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n−q∑

r=1

(c− cq)
∂

∂vr
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) +

2n∑

r=2n−q+1

(d− cq)
∂

∂vr
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) + O(h2).

Due to the symmetry [98, 112] of the blossom function we obtain

P ij(a, ..[2n − p].., a, b, ..[p].., b; c, ..[2n − q].., c, d, ..[q]..d) =
P ij(ap, ..[2n].., ap; cq, ..[2n].., cq) + O(h2).

(4.57)

CHARACTERIZATION 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 4.5: Multiple subdivisions: (a)uniform (b)adaptive

In other words, we have the following equality regarding the control points

J ij
pq = J ij(ap, cq) + O(h2). (4.58)

Combining (4.55) and (4.58), there must exist some constant C > 0 such that we
have the following relations

J ij
pq = J ij(ap, cq) + J ij

pq − J ij(ap, cq) (4.59)

≥ J(ap, cq) −Ch2 (4.60)

≥ ρ− Ch2 . (4.61)

Since Ch2 = C
(2nσ)2

tends to 0 as σ tends to infinity, we deduce that J ij
pq > 0 for

σ sufficiently large and it concludes the proof.

�

4.5.2 Adaptivity

So far, we have always described something which should work if the Coons patch
x is a diffeomorphism. What happens if it is not? On that account, we want to
state the following result.

Theorem 11 Adopt the same notations as in the previous theorem but suppose
now that the Coons patch is not a diffeomorphism.

There must exist (i1, j1) and (i2, j2) such that

{
J i1,j1

pq > 0 ∀ p, q = 0, · · · , 2n
J i2,j2

pq < 0 ∀ p, q = 0, · · · , 2n. (4.62)

104 MAPPING REGULARITY

Proof

This theorem is demonstrated in a very similar way as the preceding one. There-
fore we omit the proof.

�

Remark 14 The condition in (4.62) can of course be used in the next algorithm
as an abortion criterion. That is, once the condition (4.62) occurs in the loop
(see step 1), we terminate the algorithm and conclude at the same time that the
Coons patch is not a diffeomorphism.

In the preceding theorems, we have subdivided the unit square uniformly (see
Fig. 4.5(a)) which is not always essential in practice. It is advisable to apply
the former Bézier subdivisions only to those patches which do not give responses
(affirmative or negative) as it can be seen in Fig. 4.5(b). Before we give our
algorithm of adaptive subdivision, let us observe the following simple fact. If
the Bézier coefficients of the surface F from remark 4.5.1 are all positive then so
are those of the resulting surfaces A, B, C, D. The theoretical results that we
derived earlier give rise to the following algorithm.

Algorithm: Adaptive regularity

step 0 : Initialize the grid G to have only one cell [0, 1] × [0, 1] and
compute the Bézier coefficients Jpq according to (4.40).

step 1 : Traverse the cells I = [a, b] × [c, d] of the grid G

• Check if all coefficients JI
pq have fixed sign irrespective

of the indices p, q = 0, · · · , 2n

• If not, split I into four cells I1, I2, I3, I4 and sub-
divide the Bézier surface JI into four Bézier surfaces
JI1, JI2, JI3, JI4 as in Remark 4.5.1.

• If there was some cell Ĩ 6= I for which J Ĩ
pq was al-

ways positive (resp. negative) for all p, q = 0, · · · , 2n
and the current JI

pq is always negative (resp. positive),
then abort the whole algorithm and conclude that the
Coons map is NOT a diffeomorphism as discussed in
Theorem 4.

step 2 : If in step 1, all JI
pq have fixed sign irrespective of the cell I

and the indices p, q = 0, 1, · · · , 2n then terminate the algo-
rithm and conclude that the Coons map is a diffeomorphism
otherwise go to step 1.

4.6. NUMERICAL RESULTS 105

[0, 0] [1, 0]

[0, 1]
[1, 1]

σ

σ

σ

σ

σ

σ

σ

σ

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 4.6: (a)Control polygons of the boundary curves (b)Coons map for σ =
0.216.

4.6 Numerical results

This section will be occupied by numerical results which support the formerly
described theories as well as algorithm. As a first test, we consider a Coons
map whose boundary curves can be controlled by a parameter σ. More precisely,
let us consider the control polygons which are seen in Fig. 4.6(a). A special
case of such a map for σ = 0.216 is portrayed in Fig. 4.6(b). If the parameter
σ is zero then we retrieve the unit square. The purpose of this first test is to
investigate numerically the theoretical conditions that we discussed earlier. On
that account, we want to see the performance of the three sufficient conditions
to verify diffeomorphism. For σ > 0.36, the Coons map does not present any
diffeomorphism any more. We want therefore to vary the value of σ which will
then range from 0 to 0.35.

The numerical data that are in Table 4.1 have been collected from an Intel Pen-
tium 4 processor 2.66 GHz running Windows XP. For any given σ in the first
column, we find the corresponding results of Theorems 8, 9 and 10 in the three
last columns respectively.

If the conditions in the theorems are successful then we provide the time needed
to run the test. If the map is a diffeomorphism but our condition could not detect
that, then we report a failure information in the table (’fails’). For the results
of the second test, additional information about the required degree n of the
boundary curves is provided in parentheses. In other words, we degree-elevate
the curves until the second test gives some response. The same remark applies
to the third test with the number of required cells in parenthesis.

From the figures in the table, we see that the first test is only successful till the
value of σ is 0.216, a case which corresponds to the map in Fig. 4.6(b). On

106 MAPPING REGULARITY

σ first test second test adaptive subdivision

0.000 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.036 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.072 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.216 1.1 E-07 sec 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.252 fails 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.280 fails 1.2 E-05 sec (n=4) 1.2 E-05 sec (nb cells=1)
0.324 fails 7.8 E-002 sec (n=9) 1.5 E-002 sec(nb cells=4)
0.350 fails 5.6 E+010 sec (n=40) 1.5 E-002 sec(nb cells=4)

Table 4.1: Performance of the three conditions

the other hand, it is also to be noticed that the first test is comparatively less
computationally intensive than the other two tests. A closer look at Table 4.1
reveals that the second test is not any longer efficient when the degree n is too
large because one single test lasts approx. one minute.

Our next experiment is to consider some Coons maps and to investigate in which
case they present diffeomorphisms. Let us consider the Coons map whose control
polygons are seen in Fig. 4.7(a). Observe that the boundary curve δ is specified
by some parameter µ1 which could be positive or negative. For examples we see
in Fig. 4.7(b) the result if the parameter takes the value µ1 = 0.7. We have
used the former theorems to characterize whether the resulting Coons map is
a diffeomorphism: if µ1 is negative then we have always a diffeomorphism. If
µ1 ∈ [0, 0.88] then we still have a diffeomorphism. For µ1 = 0.89, we do not have
any more diffeomorphism.

Now we want to do a similar test but this time we want to apply it to a control
polygon where the boundary curve α is parallel to the boundary curve γ and
the other curves are straight lines. As illustrated in Fig. 4.7(c), the control
points of the curved boundaries α and γ are determined by some constant µ2.
In Fig. 4.7(d), we can see the Coons map in which we chose µ2 = 1. After
applying the former theory in which we let µ2 vary inside the interval [−10, 10]
we have concluded that the resulting Coons map is consistently a diffeomorphism
irrespective of the value of µ2.

Another example is depicted in Fig. 4.7(e) where the parameter µ3 > 0 controls
the distance of one corner to the origin. Our former theorems allow us to conclude
that the corresponding Coons map is a diffeomorphism as long as µ3 > 0.5 and
it is not a diffeomorphism for µ3 ∈ [0, 0.5].

4.6. NUMERICAL RESULTS 107

[0, 0] [1, 0]

[0, 1] [1, 1]

[µ1, 2/3]

[µ1, 1/3]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

[0, 0]

[0.3,−µ2]

[0.5, 2µ2]

[0.7,−µ2]

[1, 0]

[0, 1]

[0.3,−µ2 + 1]

[0.5, 2µ2 + 1]

[0.7,−µ2 + 1]

[1, 1]

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

[0, 0] [1, 0]

[µ3, µ3]

[0, 1]

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

Figure 4.7: Examples of diffeomorphisms

108 MAPPING REGULARITY

α

β

γ

δ

θ1

θ2

θ3

θ4

(a)

f0 = α

f1

f2

fN = γ

g0 = δ
g1 g2 gM = β

x11 x21

x12

x22

(b)

Figure 4.8: (a)A four sided domain for Gordon patch, (b)A network of curves for
Gordon patch

4.7 Mapping search

In the previous sections, we have shown methods and theorems to verify if a given
Coons map is a diffeomorphism. In the next sections, we attempt to generate a
diffeomorphism x from the unit square onto a given four-sided region F which is
bounded by four curves α, β, γ, δ. We suppose that the bounding curves α, β,
γ, δ are represented as bijective Bézier curves such that α̇, β̇, γ̇, δ̇ are continuous
and

α̇(t) 6= 0, β̇(t) 6= 0, γ̇(t) 6= 0, δ̇(t) 6= 0, ∀ t ∈]0, 1[. (4.63)

Those conditions imply in particular that the bounding curves do not contain
any cusp or sharp corners. The diffeomorphism generation consists in iteratively
inserting some internal curves and in considering the Gordon patch afterward. If
we do not have yet any diffeomorphism after some iterations, then we subdivide
the region F . We suppose that the angles at the corners θ1, θ2, θ3, θ4 belong
to]0, π[as in Fig. 4.8(a). The property that x should be a diffeomorphism is
not required during the CAD design process. It is only used in a subsequent
application of numerical solution of integral equations [26, 27, 109, 63] on CAD
objects.

Remark 15 The problem of mapping generation is very well known in the con-
text of complex analysis (see [65] and reference there). A common approach
consists in approximating the boundaries of F by a polygon and in generating a
conformal mapping from the unit square to the polygon. That method is numer-
ically realized by the analyses of Schwarz-Christofel [117, 65] where the mapping
is given in the form of a complicated integral requiring numerical evaluation.
Some coefficients in the integral should be determined by solving a nonlinear
system of equations. Some generalizations of the Schwarz-Christofel approach
are described in [18, 19] where one approximates the boundary with piecewise

4.7. MAPPING SEARCH 109

polynomials. However, those existing methods cannot be used in our problems
because the following two points are of great importance in our objective:

• Retaining the exact geometry of the trimmed surface F .

• Easy and fast evaluation of the resulting mappings x.

We will achieve those two objectives by following the idea of transfinite interpo-
lation described by Gordon and Hall in [54] and by giving an efficient approach
of finding the curves to be inserted.

4.7.1 Overspill phenomenon

The Coons patch x given by (4.9) interpolates the prescribed boundary curves
but it is not necessarily a diffeomorphism. The boundary curves α, β, γ, δ
being continuously differentiable, the differentiability of x is guaranteed if the
blending functions are chosen to be differentiable. The real problem in having
a diffeomorphism is then the invertibility and nonvanishing of the Jacobian. In
most practical cases, like in Fig. 4.2, a Coons patch is already a diffeomorphism.
Still, sometimes two unsatisfactory situations may occur. First, some isoline
curves may partially reside outside the boundary as in the case of Fig. 4.3(a).
Another problem is that all isolines reside inside the domain F but some of
them overlap as in Fig. 4.3(b). Those situations, better known [54] as ’overspill
phenomena’, are not suitable to our objective. In the next discussion, we will
propose a method based on Gordon patches, which are a generalized form of
Coons patches, to eliminate the overspill phenomena.

4.7.2 Gordon patch

Since our method of generating a mapping from the unit square to a four sided
domain F is based on Gordon patch [56, 111], let us introduce briefly some
interesting definitions. We will only state things which are immediately related
to our problems. We direct the readers to [47, 55] for more complete information
about Gordon patches. Consider two strictly increasing sequences {u0, · · · , uM} ⊂
[0, 1] and {v0, · · · , vN} ⊂ [0, 1]. In our case, we assume u0 = v0 = 0 and uM =
vN = 1 because we are interested in a mapping from the unit square. Suppose
that we have two families of curves fj , gi, j = 0, · · · , N , i = 0, · · · ,M (see Fig.
4.8(b)) satisfying the compatibility condition:

xij := gi(vj) = fj(ui) ∀(i, j) ∈ {0, · · · ,M} × {0, · · · , N}. (4.64)

A Gordon patch is a parametric surface x which is defined on [0, 1] × [0, 1] and

110 MAPPING REGULARITY

x11 x21

x12

xij = Xk

(a)

x11 x21

x12

xij = Xk

(b)

pl

βkl

αkl

pk

(c)

Figure 4.9: (a) Quadrilateral elements (b)The mesh M (c) The mesh N on the
unit square.

which interpolates the curves fj and gi:
{

x(u, vj) = fj(u) ∀ j = 0, · · · , N ∀u ∈ [0, 1],
x(ui, v) = gi(v) ∀ i = 0, · · · ,M ∀ v ∈ [0, 1].

(4.65)

By choosing two sets of blending functions (ϕi)
M
i=0 and (ψj)

N
j=0 satisfying:

ϕi(uk) = δik ψj(vl) = δjl i = 0, · · · ,M and j = 0, · · · , N, (4.66)

we define the Gordon patch as:

x(u, v) :=

M∑

i=0

gi(v)ϕi(u) +

N∑

j=0

fj(u)ψj(v) −
M∑

i=0

N∑

j=0

xijϕi(u)ψj(v). (4.67)

4.8 Generation of internal curves

We eliminate [54] the overspill phenomena by first inserting some curves fj and
gi inside the four-sided domain F as illustrated in Fig. 4.11(b) and then by con-
sidering the Gordon patch x which interpolates those curves. The main difficulty
in that process is the searching of the equations of the curves fj and gi to be in-
serted. Since we only know the equations of the curves delineating the boundary
of the four-sided domain F , we will discuss about an automatic method of gen-
erating the internal curves fj and gi. In the following sections, we will describe
our approach which consists of three stages:

• Find suitable points xij in the domain F . These points will be the future
intersections of the curves fj and gi as in relation (4.64).

• Determine the parameter values u0, · · · , uM and v0, · · · , vN which were in-
troduced in relation (4.65).

• Interpolate the points xij with cubic Bézier-splines to obtain the curves fj
and gi.

INTERNAL CURVES 111

4.8.1 Finding the internal points xij

We are presenting two approaches of determining the internal points. The first
one is based on the Dirichlet energy and the second one uses the Floater parametriza-
tion.

First approach (Dirichlet energy)

ζu(u, v)

ζv(u, v)

ζ(u, v)(u, v)

ζ

Figure 4.10: Distortion quantification

Before describing our method, let us observe that one can form quadrilaterals
[xij ;xi+1,j ;xi+1,j+1;xi,j+1] with the help of the vertices xij as seen in Fig. 4.9(a).
Or analogously, if we insert a diagonal inside every quadrilateral then we have
a triangular decomposition M as in Fig. 4.9(b). Our first approach finds a
mapping which minimizes triangular distortions. Let us first introduce or recall
the notion of Dirichlet energy in order to quantify the triangular distortions.

For any function ζ defined from the unit square to the plane, we define the
Dirichlet energy to be

D(ζ) := 0.5

∫

[0,1]2

[
‖ζu‖2 + ‖ζv‖2

]
du dv. (4.68)

Now we would like to identify the relationship between the Dirichlet energy and
the shape distortion. The shape distortion of ζ can be characterized by two
quantities:

ζu · ζv and ‖ζu‖2 − ‖ζv‖2. (4.69)

The first expression measures the angular deviation and the second one the scale
nonuniformity (Fig. 4.10). We have the following inequalities

‖ζu × ζv‖ ≤ ‖ζu‖ · ‖ζv‖ ≤ 0.5
[
‖ζu‖2 + ‖ζv‖2

]
. (4.70)

One can see [96] that those inequalities become equalities iff there is no shape
distortion. Or equivalently, if the quantities in (4.69) are zero. Since the integral
of the last term is the Dirichlet energy, if its minimal value is reached then there
is no shape distortion. It is well-known [43] that if the image is a convex set and
the mapping is harmonic then it must be one-to-one.

112 MAPPING REGULARITY

Let us fix a simple mesh N in the unit square as sketched in Fig. 4.9(c). The
first approach consists therefore in finding the positions of xij which minimize
the Dirichlet energy which is in our case

D(ζ) = 0.5
∑

T∈N

∫

T
‖∇ζ‖2du dv. (4.71)

Now let us show that minimizing the Dirichlet energy can easily be transformed
into the solving of a linear system. In order to simplify the notations, we organize
the nodes xij in lexicographic ordering as

Xk = Xk(i,j) = xij . (4.72)

Let us denote by pk, k ∈ R the set of nodes of the mesh N . The boundary nodes
of the mesh M are samples from the boundary curves α, β, γ, δ:

Ar = α
(r
N

)
Bs = β

(s

M

)
Cr = γ

(r
N

)
Ds = δ

(s

M

)
(4.73)

for r = 0, ..., N and s = 1, ...,M − 1.

The Dirichlet energy of the function ζ which is piecewise linear transformation
of N into M is [97]

D(ζ) = 0.25
∑

[pk ,pl]∈E

(cotαkl + cot βkl)‖ζ(pk) − ζ(pl)‖2, (4.74)

where E denotes the set of edges of the triangulation N and αkl, βkl the angles
opposite to the edge [pk, pl] (see Fig. 4.9(c)). We make the convention that
cot(αkl) or cot(βkl) are zero if the edge [pk, pl] is a boundary one and let us
denote by [xk, yk] the coordinates of Xk = ζ(pk) for all k ∈ R. Since we are
minimizing the Dirichlet energy, we are interested in their derivatives which are:

∂

∂xk
D(ζ) = 0.5

∑

pl∈ν(pk)

(cotαkl + cot βkl)[xk − xl] (4.75)

∂

∂yl
D(ζ) = 0.5

∑

pl∈ν(pk)

(cotαkl + cot βkl)[yk − yl], (4.76)

where ν(pk) represents the set of neighbors of pk. By splitting the set R into the
set of boundary vertices B and the set of internal vertices I and by equating the
above expressions to zero, we get a system of linear equation whose unknowns xk

and yk for k ∈ I are exactly the coordinates of the internal points xij .

Since the numbers cotαkl depend exclusively on the fixed mesh N on the unit
square, one can deduce from (4.75) and (4.76) that the internal nodes Xk, k ∈ I
are linear functions of the boundary vertices Xk, k ∈ B. In particular, there are
continuous functions σij such that each internal point xij can be expressed as:

xij = σij(Ar, Bs, Cr,Ds). (4.77)

INTERNAL CURVES 113

Second approach (Floater parametrisation)

Now we are going to describe the second method of determining the internal
points xij . First, one generates a mesh M on the four-sided domain. Then, one
uses the shape preserving parameterization method described by Michael Floater
in [41] to find a mesh N on the unit square. One can therefore introduce a
function κ which transforms the r-th node ur of the mesh N to the r-th node
of the mesh M. A point u located inside a triangle [ur,us,ut] of N is then
transformed into

κ(u) := λrκ(ur) + λsκ(us) + λtκ(ut), (4.78)

where λr, λs, λt are the barycentric coordinates. In section 6.6.1, we will recall
the Floater technique of obtaining the mesh M. Finally, the points xij to be
interpolated are defined to be κ(i/M, j/N) for i = 1, · · · ,M−1 and j = 1, · · · , N−
1.

As opposed to the first approach, it is unknown which energy this second approach
minimizes. Therefore, it is very difficult to make a rigorous analysis about its
theoretical efficiency. It is yet worth mentioning that the second approach is
very efficient in practice even for four-sided domains with extremely complicated
boundary curves.

4.8.2 Generating the interpolating curves

In this section, we would like to determine a way to generate the curves fj and
gi if the internal nodes xij have already been determined. Our approach should
guarantee that the compatibility condition in (4.64) is fulfilled. The curve gi

(resp. fj) should interpolate the points xik with k = 0, 1, · · · , N (resp. xlj with
l = 0, 1, · · · ,M).

By introducing ui := i/N and vj := j/M , the internal curves are represented as
cubic Bézier-Splines:

gi(v) =
3∑

k=0

gikB
3
k((v − vj−1)/(vj − vj−1)) ∀ v ∈ [vj−1, vj] (4.79)

fj(u) =

3∑

l=0

fjlB
3
l ((u− ui−1)/(ui − ui−1)) ∀u ∈ [ui−1, ui]. (4.80)

In order to determine the unknown control points {gik}, {fjl} in (4.79) and (4.80),
one solves some linear system which depends only on xij, ui and vj and which is
diagonal dominant (see [68] for details). Because of that linearity, the coefficients
gkl and fkl are continuous functions of xij . That is, there are some consitnous
functions µkl and νkl such that:

gkl = µkl(xij) fkl = νkl(xij). (4.81)

114 MAPPING REGULARITY

Since the curves gi and fj interpolate the points xij , the compatibility relation
in (4.64) are necessarily fulfilled.

4.9 Diffeomorphic Gordon and termination guarantee

In this section, we would like to specify how to choose the blending functions
ϕi and ψj from equation (4.66). Our objective during the choice is that we
can carry over the results about the Coons patch from the former sections to
Gordon patches in a piecewise manner. Additionally, we are summarizing the
former discussions in form of an algorithm. We will also theoretically discuss
our proposed algorithm has a termination. The usual way [39] of generating the
blending functions is to utilize the Lagrange polynomials. The support of such
functions is therefore the whole interval [0, 1]. That method and similar ones are
called elastic in [56] because a perturbation of one curve fj or gi propagates to
the whole domain. In other words, a local variation of a curve fj or gi modifies
the whole Gordon patch as given by equation (4.67). For our purpose, we prefer
to use a local method in which ϕi and ψj are defined by

ϕi(u) =





φ[(u− ui−1)/(ui − ui−1)] if u ∈ [ui−1, ui]
1 − φ[(u− ui)/(ui+1 − ui)] if u ∈ [ui, ui+1]
0 otherwise,

(4.82)

ψj(v) =





φ[(v − vj−1)/(vi − vj−1)] if v ∈ [vj−1, vj]
1 − φ[(v − vj)/(vj+1 − vj)] if v ∈ [vj , vj+1]
0 otherwise,

(4.83)

where φ is a function defined on [0, 1] with φ(0) = 0 and φ(1) = 1. A candidate
for such a function φ is given by F1 from equation (4.28). In order to ensure
important properties for ϕi and ψj such as global smoothness or local positivity,
one can introduce additional conditions for φ like

• φ′(0) = φ′(1) = 0,

• φ takes nonnegative values.

We can immediately observe that the above blending functions ϕi and ψj are
compactly supported by [ui−1, ui+1] and [vj−1, vj+1] respectively. The resulting
Gordon patch is known [56] to be plastic because every perturbation is kept local
due to local support of the blending functions. Now, we want to analyze the
Gordon patch in the cell Rij := [ui−1, ui] × [vj−1, vj]. One can check that in Rij

the Gordon patch, which has (4.82) and (4.83) as blending functions and which
interpolates the internal curves in (4.79), (4.80), coincides with the Coons patch
with respect to the boundary curves αloc, βloc, γloc, δloc defined for u, v ∈ [0, 1]

TERMINATION GUARANTEE 115

xi−1,j−1 xi,j−1

xi−1,j xi,j

fj−1

fj

gi−1 gi

(a)

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.11: (a) Image of Rij by a Gordon patch x (b) An example of a Gordon
patch.

by:

αloc(u) := fj−1(u(ui − ui−1) + ui−1) βloc(v) := gi(v(vj − vj−1) + vj−1)

γloc(u) := fj(u(ui − ui−1) + ui−1) δloc(v) := gi−1(v(vj − vj−1) + vj−1).

Effectively, if we use the settings of cubic Bézier-splines as in (4.79) and (4.80),
then we have the following control points for the local boundary curves αloc, βloc,
γloc, δloc:

αloc
0 = fj−1,0 αloc

1 = fj−1,1 αloc
2 = fj−1,2 αloc

3 = fj−1,3

βloc
0 = fj−1,3 βloc

1 = gi1 βloc
2 = gi2 βloc

3 = fj3
γloc
0 = fj0 γloc

1 = fj1 γloc
2 = fj2 γloc

3 = fj3
δloc
0 = fj−1,0 δloc

1 = gi−1,1 δloc
2 = gi−1,2 δloc

3 = fj0.
(4.84)

Most of the results that we had for the Coons patch in the former sections can be
locally carried over to the Gordon patches. For instance, we would like to present
an immediate corollary of Theorem 8.

Corollary 4 Consider the following three conditions:

(G1) There exists some F > 0 such that for k = 0, · · · , 3

‖(gik − gi−1,k) + φk(xi−1,j − xij + xi,j−1 − xi−1,j−1) + (xi−1,j−1 − xi,j−1)‖ ≤ F/ρ

‖(fjk − fj−1,k) + φk(xi,j−1 − xij + xi−1,j − xi−1,j−1) + (xi−1,j−1 − xi−1,j)‖ ≤ F/ρ

where ρ := supt∈[0,1] |φ′(t)|.
(G2) There exists some κ > 0 such that for all u ∈ [ui−1, ui], v ∈ [vj−1, vj],
ζ, χ ∈ [0, 1]

det(Ku,ζ , Lv,χ) ≥ κ for

116 MAPPING REGULARITY

Ku,ζ := (ui − ui−1)[(1 − ζ)f ′j−1(u) + ζf ′j(u)] (4.85)

Lv,χ := (vj − vj−1)[(1 − χ)g′
i−1(v) + χg′

i(v)] (4.86)

(G3) There is some M such that for all u ∈ [ui−1, ui], v ∈ [vj−1, vj], ζ, χ ∈ [0, 1]

‖Ku,ζ‖ ≤M and ‖Lv,χ‖ ≤M. (4.87)

Under these conditions the Gordon patch is a diffeomorphism in Rij if

2MF + F 2 < κ. (4.88)

We propose the following algorithm for generating diffeomorphism(s) with the
help of transfinite interpolation.

Algorithm

step 1 : Generate the Coons patch xC and use the former theorems
to verify the diffeomorphism.

step 2 : If xC is not a diffeomorphism, insert some curves fj, gi and
generate the Gordon patch xG. Verify if xG is a diffeomor-
phism.

step 3 : If xG is not a diffeomorphism, insert more curves and update
the corresponding Gordon patch xG. Repeat this third step
until a prescribed maximal number of curves is reached. If
xG is a diffeomorphism, abort the loop and terminate the
algorithm.

step 4 : If xG is not yet a diffeomorphism, then subdivide the domain
F bounded by [α, β, γ, δ] into a few four-sided patches Fi

bounded by curves [αi, βi, γi, δi]. Then, go to step 1 and
apply the algorithm to each [αi, βi, γi, δi].

In Fig. 4.12(a) and Fig. 4.12(b), we can see subdivisions of four-sided domains
into subregions having curved boundaries. The displayed subdivisions are not
always possible for any four-sided domain F because there could be intersections
between a curve and an internal straight edge. In chapter 3, we have elaborately
described a method of decomposing a domain having a curved boundary into four-
sided domains. In particular, we have described approaches of treating boundary
interferences in which the curved boundary intersects an internal edge. As a
consequence, we do not need to give much detail here about the realization of the
subdivision in step 4.

In the next descriptions, we would like to analyze why the above algorithm has
a termination. The following discussion is simple but we include it for the sake
of completeness. Suppose we have a four-sided patch which has A, B, C and
D as corners. The corner angles made by the quadrilateral composed of these

TERMINATION GUARANTEE 117

vertices are θA, θB, θC and θD as in Fig. 4.12(c). We use the following angular
assumption

0 < θA < π, 0 < θB < π, 0 < θC < π, 0 < θD < π. (4.89)

Let us introduce the following auxiliary control points

αr := λrB + (1 − λr)A βr := λrC + (1 − λr)B

γr := λrC + (1 − λr)D δr := λrD + (1 − λr)A,
(4.90)

where λr denotes r/n. One can observe that those control points define four
simple straight lines.

Let us introduce the points xij which are the solutions of (4.75) and (4.76) if the
control points of the four boundary curves are given by (4.90). Consequently, we
have the following local control points of the cubic Bézier-spline:

f j0 = xi−1,j f j1 =
1

3
xij +

2

3
xi−1,j f j2 =

2

3
xij +

1

3
xi−1,j f j3 = xij (4.91)

gi0 = xi,j−1 gi1 =
1

3
xij +

2

3
xi,j−1 gi2 =

2

3
xij +

1

3
xi,j−1 gi3 = xij (4.92)

By using the formula in (4.84), one can define the corresponding local control

points αloc
r , β

loc

r , γloc
r , δ

loc

r with respect to the cubic Bézier splines in (4.91) and
(4.92). Let us define the local corners

a := xi−1,j−1 b := xi,j−1 c := xij d := xi−1,j (4.93)

and let the corresponding corner angles be θloc

A , θloc

B , θloc

C , θloc

D . Because of
angular relation (4.89), we have also

0 < θloc

A < π, 0 < θloc

B < π, 0 < θloc

C < π, 0 < θloc

D < π. (4.94)

The partial derivatives of the Coons patch which is composed of the Bézier curves

having αloc
r , β

loc

r , γloc
r , δ

loc

r as control points are

xu = (1 − χ)
−→
ab + χ

−→
dc (4.95)

xv = (1 − ζ)
−→
ad + ζ

−→
bc with (4.96)

χ(u, v) = φ(v) + φ′(u)(v − φ(v)) ζ(u, v) = φ(u) + φ′(v)(u − φ(u)) (4.97)

and φ is the function used in (4.82) and (4.83). We have therefore

[xu,xv] = (1 − χ)(1 − ζ)[
−→
ab,

−→
ad] + (1 − χ)ζ[

−→
ab,

−→
bc]+

χ(1 − ζ)[
−→
dc,

−→
ad] + χζ[

−→
dc,

−→
bc].

(4.98)

118 MAPPING REGULARITY

A

B C

D

F1

F2 F3

F4

(a)

A

B

C

D

F1

F2

F3

F4F5

(b)

A

B

C

D

α

β

γ

δ

θA

θB

θC
θD

(c)

Figure 4.12: (a),(b) Subdividing a four-sided domain (c)Termination guarantee

Because of the angular condition (4.94),

min
{

[
−→
ab,

−→
ad], [

−→
ab,

−→
bc], [

−→
dc,

−→
ad], [

−→
dc,

−→
bc]
}
> 0. (4.99)

Therefore, if we choose the function φ of (4.82) and (4.83) as in Remark 13, then
we get [xu,xv] > 0. Let us denote by ν the maximal difference |αloc

r − αloc
r |,

|βloc
r − β

loc
r |, |γloc

r − γloc
r |, |δloc

r − δ
loc
r |. A few computation reveals that

[xu,xv] = [xu,xv] + O(ν). (4.100)

Because of the continuity relations (4.77) and (4.81), ν tends to zero as the global
difference

µ := max{|αr − αr|, |βr − βr|, |γr − γr|, |δr − δr|} (4.101)

tends to zero. Therefore, [xu,xv] must be strictly positive for all µ smaller than
some µ0 because σ is strictly positive.

Remark 16 As a result, the above description shows that if the deviations of
the bounding curves from line segments are small enough, then the Gordon patch
must be a diffeomorphism. That simple deduction was only done in order to
guarantee that the algorithm terminates but the situations are much better in
practice as seen in the next numerical results. That is especially true if the
geometries come from mechanical objects. In this chapter, we have only treated
planar Coons patches. Spatial trimmed surfaces are provided in IGES format in
the following way. An initial parametric function ψ is given from a rectangular D
parameter domain to the space. Afterward, a planar trimmed domain D is defined
inside D. The eventual spatial trimmed surface is then the image of D by ψ. In
general the parametric function ψ is supposed to be a diffeomorphism. Hence,
the final diffeomorphism in case of spatial trimmed surface is the composition of
a Gordon patch and the function ψ.

4.10. PRACTICAL RESULTS 119

Tasks CPU time

Searching for the gridpoints 4.306 sec
Finding the internal curves 0.080 sec
Evaluation at 100 positions 0.090 sec

Table 4.2: Runtimes for parameterization

4.10 Practical results

The first numerical test whose results can be found in Fig. 4.13 consists in finding
the mappings for three different four-sided regions. In our investigation, we try
to compare the Coons map and the results of the algorithm in section 4.9. We
can see clearly that the Coons patches do not give diffeomorphisms in the three
cases. We can observe terrible overspill phenomena especially in the third case
where the internal domain becomes very tight. In the Gordon cases, the overspill
phenomena could be completely eliminated.

As a second numerical test, we want to investigate the runtimes of the algorithm
that we described for Gordon patches. Toward that end, we generate a Gordon
patch for the domain in Fig. 4.11(b). In Table 4.2, we find the time needed to
generate the gridpoints xij , and the time for finding the internal curves {fj} and
{gi}. We are also interested in the computational cost of evaluating the resulting
Gordon patch. In the last row of Table 4.2, we report the time needed to evaluate
the Gordon patch at 100 parameter values (uk, vk) ∈ [0, 1]× [0, 1]. One notes that
determining the internal curves needs only to be done once and the values of the
control points {gik} and {fjl} in equations (4.79) and (4.80) can be stored for any
future purpose. If we want to use the geometries for subsequent integral equation
solvers, we can store those control points together with the information which
describes the input geometric components.

120 MAPPING REGULARITY

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

(a)

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(f)

Figure 4.13: Nondiffeomorphic Coons patches (left side) and diffeomorphic Gor-
don patches (right side)

Chapter 5

MESH GENERATION

Abstract: We shall describe a mesh generation technique on a closed surface
composed of a few parametric surfaces. The edge size function is a fundamental
entity in order to be able to apply the process of generalized Delaunay triangu-
lation with respect to the first fundamental form. Unfortunately, the edge size
function is not known a-priori in general. We describe an approach which in-
vokes the Laplace-Beltrami operator to determine it. Since the edge size function
is required to be harmonic, the second objective of this chapter is to propose a
method to determine piecewise linear approximations of the curved boundaries
such that the variation of the edge lengths is smooth. We illustrate our approach
by triangulating the surfaces of some CAD objects which come directly from
IGES files. Numerical data demonstrate the quality of the resulting meshes with
regard to harmonicity.

5.1 Introduction

Some numerical solvers [3, 61] of integral equations require that the input geo-
metric information is represented as a mesh. As a consequence, we address the
problem of creating a mesh [58, 41, 85] on a surface Γ which is composed of
parametric surfaces Si defined on parameter domains Di ⊂ R2. Additionally, we
want the mesh to be composed of nicely shaped triangles. That is, the lengths
of the three edges of each triangle should be proportional. For that matter, the
ideal case would be the generation of a mesh of which all triangles are equilateral.
In general, that ideal case is impossible to obtain because the discretizations of
the boundary curves are not necessarily uniform. As a consequence, we aim at
obtaining triangles which are as equilateral as possible. Thus, the variation of
the edge lengths should be very smooth. That objective is obtained if we impose
that the edge size is a harmonic function. In other words, we require that the
edge size function (denoted by ρ throughout the chapter) vanishes by applying
the Laplace-Beltrami operator. In order to generate the mesh, we choose the De-

121

122 MESH GENERATION

launay technique for two reasons. First, it has a well-known nice property that
generates a triangulation which maximizes the smallest angles. Additionally, the
Delaunay triangulation can be used to control the size of the edges by splitting
all edges which have lengths exceeding the ideal edge sizes.

The notion of equilateral triangles in the plane can be generalized in the context
of parametric surfaces by using the first fundamental form. In fact, the usual
length between two points a,b ∈ Di and the angle at an apex a inside a triangle
[a,b, c] ⊂ Di can be generalized by using a symmetric positive definite matrix
M as follows

dM (a,b) =
−→
ab

T
M

−→
ab, θM = arccos

−→
ab

T
M −→ac

dM (a,b) · dM (a, c)
. (5.1)

The problem of mesh generation in Si amounts to applying the planar Delaunay
triangulation on the parameter domain Di by using the above generalized distance
and angle with respect to the matrix which is provided by the first fundamental
form. The generation of a mesh by means of the Delaunay technique with respect
to the first fundamental form [13] requires the knowledge of the edge size function
which is unfortunately unknown a-priori. The first purpose of the chapter is to
describe a methodology to determine the edge size function ρ. Since the edge
size function is known on the boundary, the treatment of the Laplace-Beltrami
problem becomes therefore a boundary value problem which we propose to solve
by means of the finite element method [15, 22].

In the next two sections, we will introduce various important definitions and we
will outline our approach. In section 5.4, we will detail the meshing of a single
parametric surface by using generalization of Delaunay triangulation [35]. After-
wards, we will describe the numerical resolution of the Laplace-Beltrami problem.
We will apply it to the mesh generation of a composite trimmed parametric sur-
face in section 5.9 where we will describe a method to approximate the curved
boundaries by piecewise linear curves. For that matter, an approach invoking
the use of a graph is utilized. Section 5.10 is written for those readers who are
interested in theoretical background of the mesh generation approach. At the
end of the chapter, we will report some benchmarks of CAD objects which are
taken from IGES files. We will investigate numerically the quality of the resulting
meshes with respect to their harmonicity.

5.2 Definitions and problem setting

Before describing our method of mesh generation, let us introduce a few defini-
tions. Note that a thorough understanding of all the definitions is not an absolute
necessity to understand the rest of the chapter.

A mesh Mh is a set of triangles Tk ⊂ Rd (d = 2, 3) such that for every two
different triangles Tk, Tl ∈ Mh we have the following.

PROBLEM SETTING 123

• Either Tk ∩ Tl = ∅,

• or Tk and Tl share a node,

• or Tk and Tl share a complete edge.

A standard condition that is required in numerical solvers is that the smallest
angle αmin(T) inside each triangle T ∈ Mh satisfies

αmin(T) ≥ α0, (5.2)

where α0 > 0 is some prescribed threshold.

In our context, if d is 2 (resp. 3), then we will call Mh a 2D (resp. 3D) mesh.
The above points imply in particular that there are no hanging nodes. That is,
no node of Mh lies strictly in the interior of an edge. For a node A in a mesh Mh,
we will denote its valence by η(A), i.e. the number of edges which are incident
upon A. The set of nodes which are the endpoints of edges incident upon A, and
which are different from A, will be denoted by ν(A).

Suppose we have a closed surface Γ that is composed of n parametric surfaces
{Sk}n

k=1 such that each Sk is given as the image of a domain Dk ⊂ R2 by the
following function

xk : (u1, u2) ∈ R2 −→ (xk,1(u1, u2), xk,2(u1, u2), xk,3(u1, u2)) ∈ R3 (5.3)

which is supposed to be bijective and sufficiently smooth. Each domain Dk is a
multiply connected region in R2 that is delineated by an external boundary and
some internal boundaries which are composite curves having no double points.
The surfaces Sk will be referred to as the patches of the whole surface Γ. Every
patch of the surface Γ is bounded by a list of curves Ck which we will henceforth
call ’curved’ edges. In the usual B-rep scheme, such curves are simply called
edges. We use the expression curved edge in order to differentiate it from an edge
of a mesh and from the edge of a graph which we will introduce subsequently.
When no confusion is possible, we will drop the index k the sequel.

Let us introduce the following definitions:

gij(x) :=<
∂x

∂ui
,
∂x

∂uj
> i, j ∈ {1, 2}, (5.4)

so that if we have v = a1
∂x

∂u1
+ a2

∂x

∂u2
and w = b1

∂x

∂u1
+ b2

∂x

∂u2
then

< v,w >=

2∑

i,j=1

aibjgij(x). (5.5)

We will need the matrix I(x) := [gij(x)] which represents the first fundamental
form [71, 87] in our mesh generation technique.

124 MESH GENERATION

T1

T2

(a)

hmax

hmin
αmin

(b)

Figure 5.1: (a)Inadmissible mesh (b) Edge lengths

In this chapter, our objective is to generate a 3D mesh Mh which approximates Γ
such that all nodes of Mh are located on the surface Γ. Additionally, the angular
condition in (5.2) should be fulfilled. Note that if the lengths of the three edges
in any triangle T ∈ Mh are proportional, then condition (5.2) follows. In other
words, if we have

hmax(T) ≈ hmin(T), (5.6)

where hmax(T) and hmin(T) are the lengths of the longest and shortest edges of
T ∈ Mh respectively then (5.2) holds as illustrated in Fig. 5.1(b). Beside shape
quality, one of the most difficult things to achieve is to ensure that there are no
hanging nodes at the interfaces of the surfaces Sk.

5.3 Motivation for the planar case

In this section, we want to treat briefly the mesh generation problem in the
planar case (see Fig. 5.2) that should provide both motivation and intuitive
ideas which facilitate the description of the general case of parametric surfaces.
For that matter, we want to triangulate a planar multiply connected domain Ωh

with polygonal (external and possibly internal) boundaries Ph.

Observe that the edge sizes of the polygon Ph are usually nonuniform (see Fig.
5.2(a)). That is usually caused by adaptive discretization of some original curved
boundaries P according to some error criteria.

The most straightforward method of obtaining (5.6) is to try to have a mesh such
that all elements are equilateral triangles. That is not possible if the discretization
of the bounding curves is nonuniform. As a result, we will try to obtain triangles
which are as equilateral as we can do. Such triangles have in general very nice
shapes [10, 11]. In order to obtain a few number of triangles while keeping their
good quality shape, the edge sizes should have a small variation. That is, there
are no two neighboring edges whose respective lengths are very disproportional.
Let us introduce the edge size function

ρ : Ωh ⊂ R2 −→ R , (5.7)

PLANAR CASE 125

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

250

(a)

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

250

(b)

Figure 5.2: Planar case: (a)boundary nodes (b)internal nodes

which is supposed to take only positive values. If this function is explicitly known,
then a way to obtain the mesh is to start from a very coarse mesh and to apply
Delaunay node insertion (see [29, 13, 90]) in the middle of every edge [a,b] whose
length exceeds the value of ρ at the midnode of [a,b]. Unfortunately, the value
of ρ is not known in practice. If the geometry of Ωh is simple, then one can
do some little computation to guess some reasonable values of ρ. That guessing
approach could become difficult when the domain Ωh becomes highly nonconvex.
That usually happens in the following situations.

• The interior boundaries are placed in nonuniform positions,

• The difference between the lengths of the shortest and the longest boundary
edges is very large,

• The initial curved boundary P has many constituents.

We face therefore the problem of determining the edge size function ρ which is
only known at the boundaries ∂Ωh = Ph. We consider therefore the following
boundary value problem:

∆ρ :=
∂2ρ

∂u2
1

+
∂2ρ

∂u2
2

= 0 in Ωh, (5.8)

with the nonhomogeneous Dirichlet boundary condition given by the edge sizes
at the boundary. That means the edge size function is required to be harmonic.
A very good feature of a harmonic function ρ is that it satisfies the mean value
property. That is, ρ(a) is the same as the average of the values of ρ in a circle
centered at a = (a1, a2):

ρ(a1, a2) =
1

2π

∫ 2π

0
ρ(a1 + r cos θ, a2 + r sin θ)dθ. (5.9)

126 MESH GENERATION

(a) (b)

Figure 5.3: (a)Mesh on a trimmed surface (b)the corresponding 2D mesh

An immediate consequence of this property is that the edge size function ρ has
practically small variation. The Poisson problem (5.8) can be solved efficiently
by means of the finite element method on a temporary mesh. In the following
sections, we will first discuss how to mesh a single trimmed parametric surface.
Before treating the parametric case, let us note the following generalization prop-
erty. For two points a and b in the plane, we compute the distance with the help
of

d(a,b) =
−→
ab

T−→
ab. (5.10)

For a triangle [a,b, c] ⊂ R2, the angle at the apex a can be expressed with

θ = arccos

−→
ab

T−→ac
‖ab‖ · ‖ac‖ . (5.11)

For a given symmetric positive definite matrix M , those metric and angular
relations can be generalized as

dM (a,b) =
−→
ab

T
M

−→
ab, θM = arccos

−→
ab

T
M −→ac

dM (a,b) · dM (a, c)
. (5.12)

Thus, the attempt to have well shaped triangles should be treated according to
those generalized entities. We will utilize the Laplace-Beltrami operator which is
the generalization of the Laplace operator for parametric surfaces. Afterwards,
the mesh generation of a surface which is composed of multiple trimmed para-
metric surface will be described.

5.4. MESHING USING THE FIRST FUNDAMENTAL FORM 127

b

a

b

a

(a)

b

a

d

c

b

a

d

c

(b)

Figure 5.4: (a)Splitting (b)Flipping

5.4 Meshing using the first fundamental form

In this section, we suppose that a single parametric function S is provided by
giving a smooth parametric function x defined on a parameter domain D ⊂ R2.
The approach in triangulating S is processed in two steps (see also [13, 51] for
discussion about generation of anisotropic meshes). First, we generate a 2D mesh
(see Fig. 5.3(b)) on the parameter domain D according to the first fundamental
form. Afterwards, we lift the resulting 2D mesh to the parametric surface S by
computing its image by x (see Fig. 5.3(a)). For that purpose, we start from
a coarse 2D mesh of D and we use a generalized two dimensional Delaunay
refinement which we want to describe briefly in this section. We will call an edge
of a mesh in the parameter domain a 2D edge and an edge in the lifted mesh a
3D edge.

5.4.1 Splitting according to first fundamental form

Similarly to the planar case, we introduce an edge size function ρ which is de-
fined now on the parametric surface ρ : S −→ R+. By composing ρ with the
parameterization x of S,we have another function ρ̃ := ρ ◦ x which we will call
henceforth ”parameter edge size function” because it is defined for all u = (u, v)
in the parameter domain. Let us consider a 2D edge [a,b] ⊂ D and let us denote
the first fundamental forms at a and b by Ia and Ib respectively. Further, we
introduce the following average distance between a and b

dRiem(a,b) :=

√
−→
ab

T
T
−→
ab T := 0.5(Ia + Ib). (5.13)

We split the 2D edge [a,b] (see Fig. 5.4(a)) if this average distance exceeds the
value of the parameter edge size function ρ̃ at the midnode of [a,b]. Note that
only internal edges are allowed to be split. As a consequence, no new boundary
nodes are introduced during the refinement process.

128 MESH GENERATION

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Selected steps in mesh recursive refinement

5.4.2 Flipping according to first fundamental form

Let us consider the situation where the 2D edge [a, c] is shared by two triangles
(see Fig. 5.4(b)) which form a convex quadrilateral. Denote by Ia, Ib, Ic and
Id the values of the first fundamental form when applied to the nodes a, b, c
and d respectively. By defining T to be the average of these Ia, Ib, Ic and Id,
we perform the generalized Delaunay edge flipping if the following generalized
Delaunay angle criterion is met

‖−→bc ×−→
ba‖(−→da

T
T
−→
dc) < ‖−→da ×−→

dc‖(−→cbT
T
−→
ba). (5.14)

That is, we replace the two triangles [a, c,d] and [a,b, c] by [a,b,d] and [b, c,d]
if we have the above inequality.

5.5 Initial coarse mesh

Many mesh operations in Computer Graphics start from a very fine mesh [50]
which is repeatedly coarsened. In the opposite, for our mesh generation purpose,
we start from a very coarse triangulation and we refine it according to the ideal
mesh size function ρ. An illustration of the refinement process can be seen in

BOUNDARY APPROXIMATION 129

Fig. 5.5. Suppose we have a 2D domain P which may contain some holes and
which has polygonal boundaries. In this section, we would like to describe the
procedure of splitting P into a coarse triangulation whose vertices are located
at the boundary of P. The approach consits in chopping off a triangle from the
polygon repeatedly. It is summarized in the following algorithm.

step 1 : Split the initial polygon into a set of simply connected poly-
gons P =

⋃N
i=1 P(i).

step 2 : For every simply connected polygon P(i), do the following:

step 2.1 : Initialize its set of triangles as empty set T (i)
h = ∅.

step 2.2 : Find a triangle T which can be chopped off from P(i).

step 2.3 : Update P (i) := P (i) \ T and T (i)
h = T (i)

h ∪ T .
step 3 : The triangulation of P is the union of all triangulations:

Th := ∪iT (i)
h .

In section 5.10, we will give theoretical background which shows that this algo-
rithm always give an acceptable triangulation.

Note that we can just as well use other triangulation methods such as advancing
front techniques [52, 92] in order to obtain the coarse mesh. Another possible
way of having a coarse triangulation of the domain is to consider a bounding
box and inserting the vertices of the polygon one by one by applying Delaunay
triangulation and we remove the triangles outside the domain afterwards [10].
Yet another procedure consists in splitting the polygon into monotone polygon
[29] and then triangulating each monotone polygon by means of diagonal edge
insertion [49].

5.6 Nonsmooth boundary approximation

Let us suppose in this section that we have only one single trimmed patch S.
There are two usual ways of approximating the curved boundaries ∂S of S by
piecewise linear curves. The first one is done by picking equi-spaced vertices on
∂S. The second one consists in creating the piecewise linear curves so that very
few vertices are needed to have a good approximation of the curved boundaries.
The former method is not always desirable because it could yield a lot of vertices
even in linear part of the boundary ∂S. The drawback of the latter is that it
could lead to nonsmooth edge size transition. In fact, we distinguish three kinds
of nonsmoothness which we want to point out briefly now.

First kind: Two edges on the same curve which share one node have lengths
which are not proportional at all (see Fig. 5.6(a)). This usually happens when
the boundary ∂S is composed of linear and curved components. One needs many
vertices to obtain an accurate approximation of the curved component whereas
only very few vertices are required to have a very good approximation of the
linear component as is observed in Fig. 5.6(a).

130 MESH GENERATION

−100 −50 0 50 100 150 200

−100

−50

0

50

100

(a)

−100 −50 0 50 100 150 200

−100

−50

0

50

100

(b)

Figure 5.6: (a)Nonsmoothness of first kind (b)After smoothing

−100 −50 0 50 100

−100

−50

0

50

100

(a)

−100 −50 0 50 100

−100

−50

0

50

100

(b)

Figure 5.7: (a)Nonsmoothness of second kind (b)After smoothing

Second kind: The second kind of nonsmoothness can only happen if the bound-
ary ∂S is composed of several closed curves. In this case, one has one exterior
boundary and one or several interior boundaries because the surface contains
some holes. Nonsmoothness occurs if two curves are very close to one another
but the respective edges have nonnegligible difference in length. For instance, that
happens when one curve is circular and another one is rectangular as portrayed
in Fig. 5.7(a).

Third kind: Nonsmoothness could also occur even if two nonproportional edges
are not adjacent but they are spatially close to one another. That is exemplified
in Fig. 5.8(a) where an edge on the curved boundary is close to the topmost
edge but those two edges do not share any common node. In order to have
smooth variation of the edge sizes, one has to insert more vertices in the linear
top boundary as illustrated in Fig. 5.8(b).

Our method of discretization of curved boundaries is processed in two steps.
First, we discretize each boundary components in which one uses as few nodes as
possible to have a good accuracy. As a second step, one inserts additional nodes

EDGE SIZE 131

−400 −300 −200 −100 0 100 200 300 400
−100

−50

0

50

100

150

200

(a)

−400 −300 −200 −100 0 100 200 300 400
−100

−50

0

50

100

150

200

(b)

Figure 5.8: (a)Nonsmoothness of third kind (b)After smoothing

to have smooth edge length variation. We will describe this boundary smoothing
process in the next sections where it will also be made clear that such a process
should not be done patch by patch.

5.7 Determination of the edge size function

Let us consider a parametric surface S and a differentiable function F : S −→ R.
The Laplace-Beltrami operator is defined by

∆SF = − 1√
g

∂

∂uj

(√
ggij

∂F

∂ui

)
(5.15)

in which we use Einstein notation in indexing and g is the determinant of I which
we introduced in (5.4). The function F is said to be harmonic if

∆SF = 0. (5.16)

It is known that this operator is independent of the chosen parameterization. To
put it another way, the operator depends exclusively on the surface and not on
the chosen local coordinates. In our approach the edge size function ρ which
is defined on a parametric surface should be harmonic. We have therefore the
following problem

{
−∆Sρ = 0 in S

ρ = ρbound on ∂S .
(5.17)

We would like to sketch in this section how to numerically solve the boundary
value problem (5.17) involving the Laplace-Beltrami equation. We approximate
the function ρ by a function ρh by means of the finite element method [15, 22].
For that end, we take a temporary mesh Mh on S and we denote its boundary
by ∂Mh.

132 MESH GENERATION

The values of ρ at the boundary which are denoted by ρbound are known because
the piecewise linear boundary has already been determined from section 5.6. Since
the function ρ represents the edge size, we can define its value at a boundary node
A to be average of the lengths of the two incident boundary edges of A.

For a smooth function φ which takes value zero at the boundary we have

−
∫

S

∆Sρφ =

∫

S

< ∇Sρ,∇Sφ >=: a(ρ, φ) . (5.18)

Let us define the following set of approximating linear space

Vh := {f ∈ C0(Mh) : f|T ∈ P1 ∀T ∈ Mh} , (5.19)

where C0(Mh) denotes the space of functions which are globally continuous on
Mh and P1 the space of linear polynomials. For a function g we define the set

V g
h := {f ∈ Vh : f = g on ∂Mh} (5.20)

which is not in general a linear space (The sum of two functions in this set is not
necessarily an element of this set if g in nonzero).

The approximated solution ρh will reside in the set V ρbound

h . In order to find ρh,
we pick an arbitrary element ρ̃ of V ρbound

h and define µh by setting

ρh = ρ̃+ µh . (5.21)

The function ρh is therefore completely determined if we know the new unknown
function µh which resides interestingly in V 0

h . Observe that V 0
h is a linear space

in which we choose a basis {φi}i∈I . As a consequence, the function µh is a linear
combination of {φi}i∈I :

µh =
∑

i∈I

µiφi . (5.22)

By introducing the following bilinear form ah(·, ·) which approximates a(·, ·) of
(5.18)

ah(ψ, φ) :=
∑

T∈Mh

aT (ψ, φ) with aT (ψ, φ) :=< ∇Tψ,∇Tφ >, (5.23)

we have
ah(ρh, φ) = 0 ∀φ ∈ V 0

h (5.24)

or equivalently
ah(µh, φ) = −ah(ρ̃, φ) ∀φ ∈ V 0

h . (5.25)

Since φi builds a basis for V 0
h , this leads to a linear equation

∑

i∈I

ah(φi, φj)µi = −ah(ρ̃, φj) ∀j ∈ I . (5.26)

MULTIPLE PATCHES 133

One can assemble the stiffness matrix Mij := ah(φi, φj) and solve (5.26) for µi

which yields the value of µh by using equation (5.22).

For every triangle T in Mh with internal angles α1, α2 and α3, its contribution
[9, 96] to the stiffness matrix M is

MT = 0.5




cotα2 + cotα3 − cotα3 − cotα2

− cotα3 cotα1 + cotα3 − cotα1

− cotα2 − cotα1 cotα1 + cotα2


 . (5.27)

5.8 Meshing of a surface with multiple patches

In the previous sections, we have described the triangulation of a single trimmed
surface. Now we are going to give some description of how to triangulate the
surface Γ composed of the surfaces S1, · · · ,Sn (see Fig. 5.9). The different stages
of the process are outlined in the following steps. First, we approximate the
curved edges Ci by piecewise linear curves C̃i in which we aim at both accuracy
and smoothness (see Fig. 5.9(a)). Then, we map the 3D nodes of the relevant
piecewise linear curves C̃i back to the parameter domain Dk ⊂ R2 for each
patch Sk. Afterwards, we generate a mesh Mk for each surface patch Sk by first
generating a 2D-mesh on Dk according to some criteria and then by lifting the
resulting 2D mesh to Sk as we have described in the former sections. Finally, we
merge [51] the meshes M1,· · ·, Mn in order to have the final mesh. Note that
nodes at the interface will surely align because we do not insert new boundary
nodes in the triangulation of each Sk. In the next section, we are going to describe
how to accomplish the piecewise linear approximation of the curved edges in order
to achieve smooth edge size variation.

5.9 Discretization of the curved boundaries

Let us first demonstrate that it is important to generate the piecewise linear
approximation of the boundaries for the whole object (see Fig. 5.9). In other
words, the inefficiency of performing that discretization by proceeding patch by
patch can be explained by two reasons. First, the nonsmoothness that we have
described before could also occur if two disproportional edges belong to two dif-
ferent patches. In order to illustrate that, let us consider again the object in
Fig. 5.9 and let us observe the situation that happens in the interface between
the cylindrical patch P1 and a planar patch P2 which is tangent to P1. One
can readily notice that there are edges of P2 which do not belong to P1 (see
Fig. 5.9(a)) but which must undergo some smoothing process in order that the
resulting mesh (Fig. 5.9(b)) has smooth edge size transition in the neighborhood
of the interface.

134 MESH GENERATION

(a) (b)

Figure 5.9: (a)Boundary nodes (b)Surface mesh

The second reason for acting globally is about mesh merging. We generate a mesh
M for the whole surface by first generating a mesh Mi for each patch and then
by merging the meshes M1,· · ·,Mn. In order that the merging process happens
successfully, the nodes at the interface must align well. One approach of achieving
that abutting of the boundary nodes is by using a postprocessing in which one
inserts new nodes or one shifts some existing boundary nodes. We would like to
avoid that approach because that could considerably damage the quality of the
mesh. If we prescribe the boundary nodes by fixing their positions with the help
of boundary discretization in advance then boundary nodes belonging to adjacent
patches will surely align.

Now let us introduce our approach of achieving that global edge discretization
with smooth variation.

Definition 16 A graph G is defined by giving a pair (V,E) in which V is the set
of vertices and E is the set of graph edges. Each vertex a ∈ V has 3D coordinates
and each graph edge e ∈ E has two bounding vertices. We define the distance
between two graph edges to be the Euclidean distance of their midpoints. For a
positive number L, we define the L-neighborhood of a given graph edge e ∈ E to
be the set of graph edges f 6= e of the graph G such that the distance between e
and f is smaller than L. We will subsequently denote by |e| the length of a graph
edge e in V .

Remark 17 During the course of our algorithm, the coordinates of a vertex
a ∈ E is the image of some curved edge C, i.e.

a = C(t) for some t . (5.28)

5.10. THEORETICAL DISCUSSION 135

Definition 17 A smoothing factor is a number α ≥ 2 which is used to determine
if an edge need to be refined. Let e be a graph edge in the graph G and let L
be its length. We will say that e is nonsmooth if there is an edge f in the
L-neighborhood of e such that

|e| ≥ α|f |. (5.29)

Now we would like to describe briefly how to obtain the graph G of the boundaries
of the surface Γ = S1 ∪ · · · ∪Sn. The important steps are summarized in the fol-
lowing short description in which our objective is both accuracy of approximation
and smoothness.

First, we initialize the graph G to have one graph-edge per curved edge of the
surface S. As a second step, we traverse the list of graph edges e ∈ E and we
suppose that e is bounded by two vertices a and b with a = C(ta) and b = C(tb).
We compute the relative error according to the following formula:

err(e) =
1

‖−→ab‖

[
‖−→ab‖ − L(a,b)

]
, (5.30)

where L(a,b) is the length of the curved edge C in the interval [ta, tb]. After-
wards, we split those graph edges e for which the error err(e) is larger than some
prescribed accuracy ε > 0. Then, we take a smoothing factor α > 0 in order to
find the list of nonsmooth edges W ⊂ V . Finally, we split every nonsmooth edge
e of W by inserting a node between its endpoint.

5.10 Theoretical discussion

This section is devoted to those readers who are more interested in the theoretical
aspect of the above description than in the practical numerical realization of the
mesh generation from CAD data.

Basically, the mesh generation procedure consists in having an initial coarse mesh
which is then refined recursively. Since splitting an edge by introducing an inter-
nal node and flipping an edge (Fig. 5.4) are two operations which are straight-
forward, the main critical points which we want to theoretically clarify are:

• In the initial coarse mesh generation of section 5.5, can every multiply
connected polygon be triangulated by using only boundary nodes?

• Is the linear system in section 5.7 uniquely solvable?

In the next descriptions, we want to consider some theoretical background per-
taining to those two items. First, let us show by the following theorem that every
simply connected polygon has a triangulation having all nodes on the boundary.

136 MESH GENERATION

T1

T2

P

(a)

T1

T2

T1 T2

(b)

xi−1

xi

xi+1 y

~u

(c)

Figure 5.10: (a)Chopping two triangles off (b)Triangulating quadrilaterals (c)The
triangle T := [xi−1,xi,xi+1] contains some nodes in its interior.

Theorem 12 (Meister) From every simply connected polygon P, one may re-
move two triangles T1 and T2 by introducing internal cuts (Fig. 5.10(a)).

Proof:

We proceed by induction with respect to the number n of vertices of P.

If n = 4 (thus P is a quadrilateral), then P can be split into exactly two triangles
T1 and T2 as in Fig. 5.10(b). We suppose now that the claim is true for n. Let
us consider a polygon P having (n+ 1) vertices. Pick a vertex xi of P such that
its interior angle is smaller than π. The following two cases may occur to the
triangle T := [xi−1,xi,xi+1].

Case 1: If T does not contain any node, we remove it from the polygon P. Let us
denote by P̃ the remaining polygon which has n vertices. Thus, the first triangle
that one can chop from P is T1 := T . On account of the hypothesis of induction,
we can chop off two triangles T̃1 and T̃2 from the polygon P̃. The second triangle
that can be removed is T2 := T̃1 or T2 := T̃2 whichever does not have [xi−1,xi+1]
as edge.

Case 2: Suppose now that T contains some node of P in its interior as graphically
illustrated in Fig. 5.10(c). Denote by ~u the unit normal to [xi+1,xi−1] such that

det(−−−→xi+1xi−1, ~u) > 0. (5.31)

Let y be the node inside T which maximizes < ~u,−−−→xi+1y >.

The segment [xi,y] splits the polygon P into two polygons Pa and Pb. Let us
consider two subcases depending on the number of vertices of the polygon Pa.

Subcase 2.1: If Pa is a triangle, we simply define T1 := Pa. Then, we apply
the hypothesis of induction to the polygon Pb which yields two triangles T̃1 and
T̃2. At least one of the triangles T̃1 and T̃2 does not have the segment [xi,y] as
edge. Therefore, we choose that triangle as T2.

5.10. THEORETICAL DISCUSSION 137

Subcase 2.2: If Pa has more than three vertices, we apply the hypothesis of
induction to both polygons Pa and Pb in order to obtain the triangles T a

1 , T a
2 ,

and T b
1 , T b

2 . We choose T1 and T2 from among those four triangles whichever are
not incident upon the segment [xi,y].

�

Corollary 5 A simply connected polygon can be triangulated by using only
boundary nodes.

Proof

Suppose the polygon has n vertices. Chop triangles off (n− 2) times by applying
the above theorem.

�

For triangulation of multiply connected polygons, we need to split them first into
several simply connected polygons Pi by introducing internal cuts. Afterwards,
we apply the above Corollary to every polygon Pi. In chapter 3, we have met a
lot of discussions and proofs pertaining to cut insertions.

Now we would like to show the solvability of the equation involving the Laplace-
Beltrami operator with the help of the following theorem.

Theorem 13 The linear system from relation (5.26) is uniquely solvable.

Proof

We will show that the matrix is invertible by considering its expression in one
element. At the same time, we will show how to derive the formula in (5.27).

Consider a triangle T = [A,B,C] of the mesh Mh. Let ~N3 be the unit normal
vector of T . Generate two unit vector vectors ~N1 and ~N2 perpendicular to ~N3

such that (~N1, ~N2, ~N3) is an orthonormal system which can be centered at A.
Since the triangle T is located in the plane spanned by (~N1, ~N2), every point
x ∈ T can be identified by (v1, v2) ∈ R2 such that

−→
Ax = v1 ~N1 + v2 ~N2. (5.32)

Consider the triangle t := [(0, 0), (1, 0), (0, 1)] and let ϕ be the (Fig. 5.11)
parametrization which transforms t into T :

[
ϕ1(u1, u2)
ϕ2(u1, u2)

]
:=

[
V1 W1

V2 W2

] [
u1

u2

]
, (5.33)

where (V1, V2) and (W1,W2) are the components of W :=
−−→
AB and V :=

−→
AC in

(~N1, ~N2). Denote by M the above matrix and let θ be the inverse of ϕ:
[
θ1(v1, v2)
θ2(v1, v2)

]
=

1

detM

[
W2 −W1

−V2 V1

] [
v1
v2

]
. (5.34)

138 MESH GENERATION

Let ψ be the linear polynomial which transforms ψ(0, 0) = µ(A), ψ(1, 0) = µ(B),
ψ(0, 1) = µ(C). Its exact expression is

ψ(u1, u2) = [µ(B) − µ(A)]u1 + [µ(C) − µ(A)]u2 + µ(A). (5.35)

We want to compute the expression of aT (·, ·) with the help of the variables
(u1, u2). By introducing aij := ∂vj

θi, the integrand for aT (·, ·) involves:

I(u1, u2) := (a11∂u1
ψ + a21∂u2

ψ)2 + (a12∂u1
ψ + a22∂u2

ψ)2 (5.36)

= (a2
11 + a2

12)(∂u1
ψ)2 + 2(a11a21 + a22a12)(∂u1

ψ∂u2
ψ) + (5.37)

(a2
21 + a2

22)(∂u2
ψ)2. (5.38)

Because of equation (5.34), we have the relations by using D = detM

a11 = W2/D a12 = −W1/D a21 = −V2/D a22 = V1/D. (5.39)

We have therefore

I(u1, u2) = 1
D2 {(W 2

2 +W 2
1)(∂u1

ψ)2 − 2(W2V2 +W1V1)∂u1
ψ∂u2

ψ+
(V 2

2 + V 2
1)(∂u2

ψ)2}
= 1

D2 {‖W‖2(∂u1
ψ)2 − 2 < W,V > ∂u1

ψ∂u2
ψ + ‖V ‖2(∂u2

ψ)2}
= 1

D2 {[µ(B) − µ(A)]2 < W,W − V > +[µ(B) − µ(C)]2 < V,W >
[µ(C) − µ(A)]2 < V, V −W >}.

By using the relations

cosα =
< V,W >

‖V ‖ · ‖W‖ sinα =
detM

‖V ‖ · ‖W‖ , (5.40)

we obtain

I(u1, u2) =
1

D
{[µ(B)−µ(C)]2 cotα+[µ(C)−µ(A)]2 cot β+[µ(B)−µ(A)]2 cot γ}

(5.41)

We have therefore

aT (µ, µ) =

∫

t
I(u1, u2)(detM)du1du2 (5.42)

= 0.5{[µ(B) − µ(C)]2 cotα+ [µ(C) − µ(A)]2 cot β + (5.43)

[µ(B) − µ(A)]2 cot γ}. (5.44)

By denoting Ψ(µ) := aT (µ, µ), the system in (5.27) can be obtained by

aT (µ, ν) = 0.5[Ψ(µ+ ν) − Ψ(µ) − Ψ(ν)]. (5.45)

5.11. NUMERICAL RESULTS 139

ϕ θ = ϕ−1

ψ

u1

u2

v1

v2

t

T

(0, 0) (1, 0)

(0, 1)

A

B

C

µ(A) µ(B) µ(C)

R
W

V

µ

α
β

γ

Figure 5.11: Computing the cotan formula

Denote by W̃ := 1
D (∂u1

ψ)W and Ṽ := 1
D (∂u2

ψ)V , we have

I(u1, u2) = ‖W̃‖2 − 2 < W̃, Ṽ > +‖Ṽ ‖2. (5.46)

By the relation of Cauchy-Schwarz, I(u1, u2) = 0 iff W̃ = λṼ for some λ ∈ R.
The fact that W and V are not parallel implies that I(u1, u2) = 0 if ∂u1

ψ =
∂u2

ψ = 0. That is to say ψ = Cte which means µ(A) = µ(B) = µ(C). Since µ ∈
V 0

h is globally continuous and it takes zero values at the boundary as introduced
in relation (5.20), we have µ = 0. That amounts to saying that ah(µ, µ) > 0 if the
function µ ∈ V 0

h and µ 6= 0. The form ah(·, ·) is thus symmetric positive definite
(s.p.d). Therefore, the linear system from relation (5.26) is invertible and it can
be solved numerically with the help of numerical solvers for s.p.d systems like
Conjugate Gradient.

�

5.11 Numerical results

We have implemented the approaches that we have described in this chapter in
order to investigate their numerical performance. The program has been written
in C/C++ and it uses OpenGL [66] and GLUT [76] to display graphical out-
put which allows the user to interact with it. The CAD objects whose surfaces
have to be triangulated are given as input. They are stored in IGES files [119]

140 MESH GENERATION

which have been generated by some CAD systems [124]. We have developed au-

Figure 5.12: Mesh with 5424 elements and 2710 gridpoints

tomatic routines to load the different parts of a given IGES file and to evaluate
the constituting entities [39, 68]. The majority of the geometric patches in an
IGES format are represented in form of NURBS surfaces with NURBS curve as
trimming curves (see[95]).

We consider in our numerical tests three CAD objects which have respectively
19, 38 and 22 patches. We used the aforementioned method to generate meshes
on their surfaces. The resulting meshes, having respectively 5424, 32310, and
7314 elements, are portrayed in Fig. 5.12, 5.13 , 5.15. Before we describe those
meshes, let us introduce the way we analyze the quality of our results with regard
to our above-discussed approach of mesh generation. In our numerical tests, we
would like to investigate the harmonicity of the meshes which we want to define
now. For any considered node A ∈ R3 of a mesh Mh, we define

ρ(A) :=
1

η(A)

∑

B∈ν(A)

‖−−→AB‖ (5.47)

to be the average edge length (see section 5.2 for the definition of the valence
η(A) and the set of incident nodes ν(A)). Now we would like to introduce the
discrete counterpart of the right hand side of the relation (5.9). For that end we
define r(A) to be the length of the shortest edge incident to a node A and we let
si be the intersection of the i-th edge incident to A and the sphere centered at
A with radius r(A) (see Fig. 5.14 for an illustration). We define the mean value

5.11. NUMERICAL RESULTS 141

Figure 5.13: Mesh with 32310 elements and 16145 gridpoints

A

B1

B2

B3

B4

Bi

B6

BN

si

Figure 5.14: Edge length

142 MESH GENERATION

ρmean(A) to be

ρmean(A) :=
1

η(A)

∑

B∈ν(A)

ρ(si) (5.48)

in which ρ(si) is the following convex combination of ρ(A) and ρ(Bi)

ρ(si) :=
‖−→Asi‖
‖−−→AB‖

ρ(Bi) +

(
1 +

‖−→Asi‖
‖−−→AB‖

)
ρ(A).

Figure 5.15: Mesh with 7314 elements and 3651 gridpoints

Average harmonicity Smallest harmonicity Largest harmonicity

mesh1 .99727 .74156 1.25858
mesh2 .99496 .66758 1.43521
mesh3 .99627 .75712 1.29101

Table 5.1: Harmonicity of the three meshes

We have a discrete mean value property if

ρ(A) = ρmean(A). (5.49)

We define the harmonicity of a node A to be the ratio

ξ(A) := ρ(A)/ρmean(A). (5.50)

If the value of the harmonicity approaches the unity, the discrete mean value
property is valid. We have computed the average harmonicity of the three meshes

5.11. NUMERICAL RESULTS 143

and the results can be found in the next table. As one can see, the mesh sizes in
our tests nearly verify the discrete mean value property.

For more results where each trimmed surface is painted with its own color in
order to facilitate the view of the mesh matching in the interfaces, we can see
Fig. 5.16 and Fig. 5.17.

144 MESH GENERATION

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Results from CAD data in IGES files

5.11. NUMERICAL RESULTS 145

(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Results from CAD data in IGES files

146 MESH GENERATION

Chapter 6

C0-PAVING OF MESHES BY

QUADRILATERAL

PATCHES

Abstract: We would like to decompose a closed orientable 2-manifold with arbi-
trary genus g into a set of four-sided tessellants. The input surface is a triangular
surface mesh representing a free-form shape. The first process in the tessellation
consists in finding a set of curves drawn on the surface mesh. The search for
those curves is done in two steps: finding initial curves by means of algebraic or

(a) (b)

Figure 6.1: Triangulation paving: (a) bottle in form of a triangular mesh
(b)approximated surface in form of patches

147

148 TRIANGULATION PAVING

geometric methods and improving them by using combinatorial optimization. Af-
terward, we perform the handle decomposition by slicing the surface along those
curves. After flattening the surface on the plane by using the setting (a1b1a

−1
1 b−1

1)
· · · (agbga

−1
g b−1

g), we use the resulting parametrization to split the surface into
four-sided patches. We approximate those patches by B-spline surfaces in which
we want to obtain global C0-joints. The proposed methods will be illustrated by
several numerical examples.

6.1 Introduction

It often happens in practice that we have a numerical solver of integral equations
which accepts mesh-free geometric data as input but the only geometry that we
have at our disposal is a mesh. Treating every element of the mesh as a patch
will surely explode the computational costs of the integral equation solver. Faced
by such a conflicting situation, we have only one choice if we do not want to
reject the input mesh: we try to generate a few patches from the mesh. That
process amounts to approximating or interpolating the mesh by a set of practical
surfaces such as B-spline patches (Fig. 6.1) and that is exactly the purpose of this
chapter where we will treat only free-form surfaces. For algebraic surfaces such
as spheres, planes, cylinders or combinations of them, we recommend [121, 120].
Apart from the fitting process, two main difficulties have to be considered. First,
the partitioning of the large mesh into pieces which can be approximated by
four-sided patches. Second, generation of parameter 2D meshes which allow us
to perform the approximation by parametric surfaces. Before going any further,
let us formulate our problem more specifically

6.2 Problem formulation

Let us suppose that we have a triangular mesh M which represents a surface
embedded in the space. Additionally, we suppose that M is an orientable closed
surface of arbitrary genus. We assume that the surface M is globally smooth
in the sense that it can be approximated by a continuous surface which has no
sharp edge anywhere. Those types of surfaces already cover a lot of interesting
practical cases.

Our main purpose of this chapter is to present a methodology to approximate M
into a set of surfaces {Sr}. More precisely, our objective is twofold:

1. Decompose M into a set of four-sided submeshes {Mr}.

2. Approximate every Mr by a B-spline patch Sr which is the image of a

6.3. HANDLE DECOMPOSITION 149

parametric function

Xr(u, v) =

n∑

i,j=0

dr
ijN

k
i (u)Nk

j (v).

Furthermore, we want the set of surfaces {Sr} to be globally continuous.
That is, for two neighboring submeshes Mr and Mρ, the surfaces Sr and
Sρ have C0-joint.

The realization of those goals will be done in a few steps. First, we have to find
some curves such that if the surface M is split along those curves, we still have
a single connected surface. The number of those curves depends on the genus
of the surface M. Second, we want to have a topological parametrization from
a polygonal disk P ⊂ R2, which we still have to determine, to the mesh. After
splitting the mesh into four-sided submeshes, we approximate the boundary of
the submeshes Mr by B-spline curves Cq. The last step consists in fitting the
submeshes Mr by B-spline surfaces Sr where we interpolate the bounding B-
spline curves Cq. In the next sections, we would like to describe those steps one
by one. For topological terms which are not clear in this chapter, refer to the
appendices or [46, 82].

Remark 18 Since the above two objectives are already very difficult in their
own, the problem about diffeomorphism is not analyzed in this chapter. Inter-
ested readers should consult works of Greiner [60] who has treated similar prob-
lems by developping a very long theory about removing wrinkles from a B-spline
surface.

6.3 Handle decomposition

Consider a topological surface M which is orientable and of genus g > 0. We
define a system of canonical curves to be a set of 2g closed curves A1, B1, · · ·,
Ag, Bg which fulfills the following criteria.

(C1) They reside on the surface M: Ai ∈ M, Bi ∈ M for all i = 1, · · · , g.

(C2) They have one and only one intersection Ω ∈ M known as basepoint.

(C3) If we cut the surface M along those curves then we still have a connected
surface (Fig. 6.2) which can be flatten out to become a planar polygon
[8, 36]

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g . (6.1)

The planar edges ai (resp. bi) correspond to the canonical curves Ai (resp.
Bi). The exponents −1 in (6.1) specify that the corresponding planar edges
are to be traversed in the opposite direction.

150 TRIANGULATION PAVING

Ω

A1

B1

A2

B2

(a)

a−1
1

b−1
1

b2

a2

b1

a1

a−1
2

b−1
2

(b)

Figure 6.2: (a) A surface with genus 2 and its four canonical curves A1, B1, A2,
B2 (b)The flattened planar polygon a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2

Ω1

Ω2

Ω3

A B

M

(a)

ω1 ω2

ω3ω2

a

b−1

ba−1

(b)

Figure 6.3: Flattening: (a) Genus zero surface (b) Its flattened planar polygon
abb−1a−1

6.4. PRELIMINARY SEARCH 151

The first step in our algorithm is to search for those canonical curves in which
achieving criterion (C2) is the most difficult task. The process of cutting the sur-
face M along those curves is better known as handle decomposition. After finding
the canonical curves, we will describe an approach to define a parametrization
from a planar polygon to the surface.

Remark 19 For surfaces of genus zero, the problem of splitting is much simpler
because we need only to split the mesh along two abutting curves A and B as
in Fig. 6.3(a). Those 3D-curves will be flattened out in the plane to obtain the
boundary 2D-curves a, b, a−1, b−1 as in Fig. 6.3(b).

6.4 Preliminary search for canonical curves

Since the following methods use standard techniques of finding canonical curves,
we will only describe the approaches without long comments. Searching for the
canonical curves is usually done in two stages. First, one finds some preliminary
canonical curves A1, B1, · · ·, Ag, Bg which fulfill the above criteria (C1), (C2),
(C3) but which are undesirable in practice. The second stage consists in improv-
ing those preliminary curves by shifting them homotopically in order to find the
final canonical curves A1, B1, · · ·, Ag, Bg. In this section, we would like to discuss
how to achieve the first stage with two different methods. The first one is based
on algebraic operations and the second one is a combinatorial approach.

6.4.1 Normalized canonical form

For a given mesh M, let us denote by nt, ne, and nv its number of triangles,
edges and vertices respectively. We will denote the i-th triangle, the j-th edge
and the k-th vertex of the mesh M by σ2

i , σ
1
j , σ

0
k respectively. We would like to

describe briefly the way we compute the homology bases which represent some
curves drawn on the surface (compare with Fig. 6.4(a)).

Consider the two incidence matrices [44] E0 and E1:

E0 :=




[σ1
1 : σ0

1] · · · [σ1
ne

: σ0
1]

· · · · · · · · ·
[σ1

1 : σ0
nv

] · · · [σ1
ne

: σ0
nv

]


 E1 :=




[σ2
1 : σ1

1] · · · [σ2
nf

: σ1
1]

· · · · · · · · ·
[σ2

1 : σ1
ne

] · · · [σ2
nf

: σ1
ne

]




(6.2)
where [σs

i : σs−1
j] denotes the incidence number of σs

i and σs−1
j .

Since those incidence numbers take integer values, we have to deal with integer
computations. In particular, we may not perform any division operations. We
have effectively the following relation pertaining to the operators E0 and E1:

Znf
E1−→Zne

E0−→Znv . (6.3)

152 TRIANGULATION PAVING

e1
e2

e3e4

(a)

a

b

d

c

b

a

c

d

w0

w1

w2

w3

w4

w5

w6

w2g−1

w1

w2

(b)

Figure 6.4: (a)Homology bases e1, e2, e3, e4 (b)Coincidence of the images of
different parameter nodes

The property of the boundary operator [115] implies in particular

E0 · E1 = 0 . (6.4)

The set σk
i forms now a basis of the k-chains Ck. The reduction into normalized

canonical form consists in searching for new bases of C0, C1, C2 such that in
those bases the above matrices take the form

Ẽ0 =




0
... Λ0

· · · . · · ·
0

... 0


 Ẽ1 =




0
... Λ1

· · · . · · ·
0

... 0


 (6.5)

where Λ0 and Λ1 are square diagonal matrices. In other words, we are searching
for three square matrices Mv, Me, and Mt of size nv, ne, and nf respectively such
that

Ẽ1 = M−1
e E1Mt Ẽ0 = M−1

v E0Me. (6.6)

Therefore, the new bases of C0, C1 and C2 can be expressed as linear combinations
of the old bases {σk

i } having coefficients from the columns of the matrices Mv,
Me, and Mt. Denote by γ0 and γ1 the dimensions of the square diagonal matrices
Λ0, Λ1 and consider the new basis {e1, · · · , ene} of the 1-chains C1. Because of
the structure of Ẽ0 and Ẽ1 we have

Ker Ẽ0 = span{e1, · · · , ene−γ0
}, (6.7)

Im Ẽ1 = span{e1, · · · , eγ1
}. (6.8)

The first homology group H1 is spanned by the classes

[eγ1+1], [eγ1+2], · · · , [ene−γ0
] (6.9)

in which [f] is the class of a representant f .

6.4. PRELIMINARY SEARCH 153

α2
α1

β2β1

Ω

ω1
ω2γ1 γ2

(a)

ωi Ωγi

(b)

Figure 6.5: (a)Connect the homology bases with Ω by means of approach paths
(b)Follow the approach path γi then the closed curve and finally traverse γi

backward.

After that process, the classes from relation (6.9) provides us with a set of pairs
of closed curves

α1, β1, · · · , αg, βg (6.10)

such that each pair (αi, βi) intersect only at a single point ωi as illustrated in
Fig. 6.5(a).

In order to have the preliminary canonical curves Ā1, B̄1,· · ·, Āg, B̄g from the
curves α1, β1,· · ·, αg, βg, we use the following steps.

S1. Refine the triangular mesh M so that the edges of the curves (αi, βi)
become edges of the mesh.

S2. Choose as basepoint any point Ω of the surface which does not reside on
those curves.

S3. Use Dijkstra algorithm in order to find a path γi joining the basepoint Ω
and the crossing point ωi as illustrated in Fig. 6.5(a).

S4. At this point we have a set of loops Li. Each loop Li is obtained by first
traversing the approach path γi, then the closed curve Ci := αi or Ci := βi

and finally traversing γi backward as depicted in Fig. 6.5(b).

S5. Shift the loops Li homotopically so that they traverse triangles internally
as in Fig. 6.6(b). Use Reidemeister moves (see Appendix) so that the loops
have only intersections at the basepoint Ω.

S6. The curves Āi, B̄i are then given by the loops Lk.

154 TRIANGULATION PAVING

6.4.2 Numerical realization

For the reduction of an integer matrix A into normalized canonical form as in
relation (6.5), we distinguish three row operations:

(Op1) Swap the i-th row Ri and the j-th row Rj of A.

(Op2) Multiply the i-th row Ri by (−1).

(Op3) Replace the i-th row Ri by Ri + qRk where q is a given integer.

Note that all those three operations are invertible. Indeed, the first two are
self-invertible while the inverse of the last one is Ri − qRk.

Similar elementary operations can be done for the columns of A. The reduction
into normalized form is processed in two steps. First, we reduce A into Smith
normal form Ã = GAF and then we perform some column swappings. That is,
we search for Ã such that

Ã =




a1

. . .

am

0
. . .

0




, (6.11)

where ai 6= 0 and ai divides ai+1. Let us show how to obtain (6.11) by using
the above elementary operations. Suppose the matrix composed of the first c
rows and the first c columns has already been reduced. The next steps are the
following

1. Apply the above elementary operations so that α := Acc divides the re-
maining entries in the c-th row and the c-th column. That is

∃ki, hj ∈ Z with Aic = kiα and Acj = hjα ∀ i, j > c . (6.12)

2. Make all those entries zero by applying the third operation (Op3). That is,
for all i, j > c, replace row Ri by Ri − pRc with p = Aic/α and column Cj

by Cj − qCc with q = Acj/α.

Since we are interested in the matrices of change of bases G−1 and F in (6.11), we
should store the parameters for the elementary operations every time we apply
them so that we do not need to explicitly compute the inverse of the integer
matrices at the end of the process.

The difficulty of directly applying the above process to the incidence matrices E0

and E1 is that we have to do them simultaneously. Observe that we use the same
matrix Me of change of bases in equation (6.6) for both E0 and E1. For that end,
we execute the following steps.

6.4. PRELIMINARY SEARCH 155

1. Reduce E0 in normalized canonical form:

E0 = M−1
v E0Me. (6.13)

2. Apply the change of bases Me to E1:

E1 := M
−1
e E1. (6.14)

3. Reduce E1 in normalized canonical form:

Ẽ1 = M̃−1
e E1Mt = (M eM̂e)

−1E1Mt. (6.15)

4. Define
Ẽ0 := E0M̃e = M−1

v E0(M eM̃e). (6.16)

By introducing Me := M eM̃e, we obtain the relation (6.6).

6.4.3 Bases of the fundamental group

Now, we would like to describe a second method of finding the temporary canon-
ical curves Ā1, B̄1,· · ·,Āg, B̄g by using the fundamental group. In order to find
the basis of the fundamental group π1(M) [45] of a two dimensional simplicial
complex M, we follow the next major steps.

S1. Choose an arbitrary point Ω of M as a basepoint.

S2. Find a list of loops (a sequence of edges starting and terminating at the
basepoint Ω) Le, e ∈ S.

S3. Shift the loops homotopically so that they traverse triangles as in Fig.
6.6(b). Use Reidemeister moves so that the loops have only intersections
at the basepoint Ω.

S4. The curves Āi, B̄i are then given by the loops Le.

Let us describe the way of achieving step 2 by following the standard approach
[45, 104, 114] requiring the use of a spanning tree. Let G be the edge-vertex graph
which is generated from the mesh M. We use the Breadth First Search (BFS)
algorithm [2] to find a spanning tree T [73] of G which is rooted at the basepoint
Ω. Now we would like to describe how to find the set of edges S of step 2. For
that end, we will assemble recursively a subgraph Γ of G. As an initialization,
we define S to be the empty set and Γ to be the spanning tree T . We perform
the following updating process of Γ and S repeatedly.

Search for an edge e = [v,w] from the set G \ Γ such that there exists a triangle
[p, v, w] with [p, v] ∈ Γ and [p,w] ∈ Γ. We distinguish now two cases depending

156 TRIANGULATION PAVING

Ω

(a) (b)

Figure 6.6: (a)Impossible double nodes inside one individual loop (b)Initial loop
Le in bold line and homotopically shifted loop L′

e in dotted line.

θ Le

L′
eX

B

(a)

A B
Le

L′
eX1 X2

ω

(b)

Figure 6.7: (a)First type of loop shifting (b)Second type of loop shifting

on the success of the search. If such an edge [v,w] exists, we include it in the
subgraph Γ:

Γ := Γ ∪ [v,w]. (6.17)

Otherwise, we pick any edge [r, s] from G \ Γ and then we include it in the list
S. We terminate the above updating if the set of edges of (Γ∪ S) is the same as
that of G.

Now that we find a list of edges S, we want to show how to generate a loop Le

for every e = [t, u] ∈ S. Find a path pt (resp. pu) which belongs to the spanning
tree T , which starts at t (resp. u) and which terminates at the basepoint Ω. We
define the loop Le corresponding to the edge e as

Le := ptep
−1
u (6.18)

which is pt followed by e and then by the inverse pu. The loops Le are also
commonly termed ’generators’ of the fundamental group π1(M).

6.4.4 Homotopic transformation

In this section, we would like to show how to shift curves on a surface so that
they do not have self-intersection and that they intersect only at the basepoint.
The realization of the last steps of the algorithms in sections 6.4.1 and 6.4.3 will
be found here. Before describing homotopic transformations, we would like to

6.4. PRELIMINARY SEARCH 157

(a) (b)

Figure 6.8: (a)A loop with double edges (b)Two loops with common edges.

mention a few features of the loops Le which result from those steps. There are
mainly two common problems occurring to those loops. The first one is a local
one which happens for an individual loop without considering the other loops.
The second problem is a global one in which two different loops Le and Lf could
interfere. They have intersections away from the basepoint. More accurately,
there could exist

• Double edges: different edges which have the same metric information as
in Fig. 6.8(a) or

• Double nodes which are not at the basepoint (Fig. 6.8(b)).

Now we would like to describe a method of homotopically repairing the loops Le

so that those problems are eliminated. For a given loop Le, our current objective
is to generate another loop L′

e which starts and terminates at the basepoint Ω
and which traverses the triangles on the left side of the original loop Le as in Fig.
6.6(b). Since the surface M is orientable, it is not difficult to determine whether
an emanating edge from the loop Le is on its left or on its right side by simple
strategy (i.e. without any metric information). That can be done by orienting
all three local vertices of a triangle in anti-clockwise direction. Now let us denote
by Rθ the list of all edges [θ,B] which emanate from a node θ 6= Ω of the loop
Le and which go to the left hand side such that B 6∈ Le.

In order to find L′
e, we need to generate new nodes which we categorize in two

types. A new node of first type X resides on an edge e = [θ,B] of Rθ and its
distance from the node θ is controlled by a prescribed positive parameter µ as
X = µB + (1 − µ)θ. As an illustration, we find in Fig. 6.7(a) a dotted curve L′

e

obtained by shifting a solid curve Le using nodes of first type.

New nodes of second type are generated when two consecutive edges of a triangle
τ of M belong to the loop Le. In such a case, a node ω inside the triangle τ is
generated as in Fig. 6.7(b). Additionally, two nodes X1, X2 are generated on

158 TRIANGULATION PAVING

L′
eL′

fL′
g

(a) (b)

Figure 6.9: (a)Uniformly splitting an edge traversed by loops (b)Loop intersection
inside a triangle.

the edge whose endpoints belong to the loop Le. That means, we have created
three nodes of second type X1, X2, ω. The generation of the loop L′

e consists
in tracing a curve which goes through those newly generated nodes (of first and
second types) as shown in Fig. 6.6(b).

We note the obvious fact that this process generates a loop L′
e which is homo-

topically equivalent to the original loop Le. We would like to mention that this
process solves the first problem of coinciding edges. That is due to the fact that
the loop Le can never be like the one depicted in Fig. 6.6(a). Note that the
above homotopic shifts do not solve the global problem of interference between
two different loops L′

e and L′
f .

Let us now propose a remedy for that global problem. The first stage of the
remedy consists in uniformization in which we search for the list of edges which
are traversed by loops. We shift afterwards the nodes on the edges in such a way
that they are equispaced as in Fig. 6.9(a). After this stage, no two different loops
L′

e and L′
f have vertices of the same coordinates (other than the basepoint). But

there could still exist the problem of intersection of two different loops which
could only occur inside triangles as in Fig. 6.9(b). In order to eliminate such
intersections, we apply a series of Reidemeister moves [79, 1, 31].

6.5 Improvements of the canonical curves

After a direct application of the formerly described algorithms, the resulting
canonical curves could be too long or unnecessarily complicated. That could
lead to undesirable splitting of the topological surface M as in Fig. 6.10(b).
In order that we can apply the subsequent algorithm, we need to shorten the
lengths of the canonical curves. In this section, we would like to describe an
algorithm to improve the preliminary canonical curves A1,B1, · · ·,Ag, Bg in order
to obtain the final canonical curves A1, B1, · · ·, Ag, Bg. Before describing the
improvement algorithm, let us introduce the notion of weighted split graph which
can be obtained from the edge-vertex graph and the current canonical curves.

IMPROVING THE CANONICAL CURVES 159

6.5.1 Weighted split graph

Suppose we have a few curves S1, S2, · · ·, S2g on the surface mesh M. That is,
every curve Si is composed of a sequence of consecutive edges of the mesh M.
For every index i from {1, · · · , 2g}, let us describe [23] how a weighted graph Hi

is defined by specifying its nodes, edges and weights. Consider the dual graph H
of the edge-vertex graph G. That is to say, we insert an edge between the centers
of gravity of two neighboring triangles of M. At this first stage, the surface M
is split into different faces Fk which are delineated by the edges of H. If we
further split the mesh M by the edges of Sk (k 6= i), we obtain a splitting of the
topological surface M into several connected components C1, C2, · · ·, CN . In Fig.
6.10(a) , we see an illustration of the graph Hi where thin segments represent the
edge-vertex graph G while the dual graph H is depicted with dotted lines and the
canonical curves are shown in bold faces. The highlighted region is an example
of a connected component. For every connected components Cr, we generate a
graph-node Nr of the split graph Hi.

With the nodes of Hi in place, let us now define its edges. Consider two graph-
nodes Np and Nq whose corresponding connected components are Cp and Cq

respectively. Consider the parent faces Fp and Fq of the connected components
Cp and Cq. Let us denote by Tp (resp. Tq) the set of triangles of Fp (resp. Fq)
which are in the connected component Cp (resp. Cq). Between the two graph-
nodes Np and Nq of the graph Hi, we introduce a graph-edge epq of Hi if the sets
Tp and Tq share a common triangle tpq.

Now let us define the weight wpq that is assigned to the graph-edge epq of Hi.
Two nodes sp and sq of the triangle tpq must be the centers of the parent faces
Fp and Fq respectively. The weight wpq assigned to the edges epq will then be the
Euclidean distance between sp and sq.

6.5.2 Improvement algorithm

The improvement of the canonical curve is processed recursively as follow. Sup-
pose the current canonical curves are S1, S2, · · ·, S2g with g being the genus of
the surface. For a given index i = 1, · · · , 2g, we would now like to describe hot
to find the improved canonical curve S ′

i. By using the weighted graph Hi, we
can search for the shortest path from the starting and the terminating connected
components of Si with the help of the Dijkstra algorithm. The new path S ′

i can
then be deduced from the thus defined path.

For the canonical curves, the above improvement can be applied to the curves
S1 := Ā1, S2 := B̄1 , · · ·, S2g := B̄g. The improved canonical curves are therefore
A1 := S ′

1, B1 := S ′
2 , · · ·, Bg := S ′

2g.

160 TRIANGULATION PAVING

(a) (b)

Figure 6.10: (a) Dual graph split by the canonical curves (b) Undesirable canon-
ical curves.

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6.11: (a)Surface with genus 2 (b)parametrization on aba−1b−1cdc−1d−1

6.6 Paving into quadrilateral patches

Suppose that we have an orientable surface M without boundary and a set of
canonical curves. After slicing the surface M along the curves, we would like to
have a single parametrization of the whole surface M from a planar parameter
domain P as illustrated in Fig. 6.11 and Fig. 6.12.

For surfaces of higher genera g ≥ 1, we proceed similarly but we need several
parametrizations: the one for the whole surfaces, one in the neighborhood of
each canonical curve.

6.6. PAVING INTO QUADRILATERAL PATCHES 161

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6.12: (a)Surface with genus 1 (b)parametrization on aba−1b−1

6.6.1 Mesh parametrization

The following parametrization technique can be applied to any surface mesh
R ⊂ R3 having a boundary consisting of m sides. We want to determine a
function q from R to a planar convex polygon P having m sides. The mapping
q is completely defined if we can define a 2D mesh µ on P such that the i-th
node of µ maps to the i-th node xi of R (and conversely). The first step in
the determination of the mesh parametrization is to specify the image q(xi) of
boundary vertices xi ∈ ∂R. That can be done by chord length [39] approaches.
Suppose now that q(xi) ∈ ∂P is known for every boundary node xi ∈ ∂R. Let
us denote by VI and by VB the set of indices of internal and boundary nodes of
the mesh R respectively. For every vertex xi, let us denote by

Ni := {j : [xi,xj] is an edge of R}. (6.19)

For every point xi with i ∈ VI , its image q(xi) will be a convex combination of
the images of its neighbors:

q(xi) =
∑

j∈Ni

λijq(xj). (6.20)

The coefficients λij, known as weights, are some positive values which can be
determined from the initial mesh R and which satisfy:

∑

j∈Ni

λij = 1 ∀ i ∈ VI . (6.21)

Below we are describing how to find their values. From relation (6.20), we obtain

q(xi) =
∑

j∈Ni∩VI

λijq(xj) +
∑

j∈Ni∩VB

λijq(xj) (6.22)

162 TRIANGULATION PAVING

or equivalently

q(xi) −
∑

j∈Ni∩VI

λijq(xj) =
∑

j∈Ni∩VB

λijq(xj). (6.23)

Since we know the values of q(xj) for all j ∈ VB , the right hand side of the above
equation is completely known. This leads to a linear system of order card(VI)

AX = F (6.24)

where the unknown X consists of q(xj) with j ∈ VI . By solving this linear system
the values of the internal nodes q(xj) are completely known.

Now we would like to show how to choose the values of the weights λij . In [42],
there is a comprehensive study about various methods of specifying them. We
show only one method based on convex combination.

Let us consider a vertex xi ∈ R. For any j 6∈ Ni, we set λij := 0. The deter-
mination of λij for every j ∈ Ni is done in two steps. The first step consists in
flattening out the submesh Ri consisting of the triangles which are incident upon
xi. That is, the nodes of Ri are composed of xi and xj with j ∈ Ni. Flattening
Ri consists in finding a planar mesh Pi having nodes ur which map to xr of Ri.
We do that flattening process in the following way. First, ui is chosen to be any
point in the plane. Then, we want to keep the distances unchanged, i.e.

‖−−→uiuj‖R2 = ‖−→xixj‖R3 ∀ j ∈ Ni. (6.25)

For every triangle τj = [xj ,xk,xi] incident upon xi, denote by αj the angle made
by −→xixj and −→xixk. Similarly, we denote by βj the angle made by −−→uiuj and −−→uiuk.
We want that

αi = ρ · βi,

where the coefficient ρ is chosen in such as way that the sum
∑

j∈Ni

βi = 2π.

Now that we have a planar mesh Pi having ur as vertices, we want to proceed
to the second step of determining λij. For any j ∈ Ni, find uk and ul such that

the triangle [uj ,uk,ul] contains the point ui. Let τ i,j
j , τ i,k

k , τ i,l
l be its barycentric

coordinates:
ui = τ i,j

j uj + τ i,j
k uk + τ i,j

l ul.

By defining τ i,j
r = 0 for every r ∈ Ni such that r 6∈ {j, k, l}, we have

ui =
∑

r∈Ni

τ i,j
r ur.

The final coefficient is defined as

λij :=
∑

s∈Ni

τ i,j
s .

6.6. PAVING INTO QUADRILATERAL PATCHES 163

(a) (b)

Figure 6.13: (a) Triangular decomposition (b) Quadrilateral decomposition

6.6.2 Splitting into four-sided submeshes

In this section, we will describe a way to decompose a surface M into pieces
of four-sided domains. In order to facilitate the presentation, we suppose that
M is of genus zero and that we have a parametrization P from a rectangular
domain. Our way of segmenting M into several pieces is done into two steps as
explained in Fig. 6.13. The first one consists in splitting M into large curved
triangles. Afterwards, we convert the resulting triangular decomposition T into
four-sided decomposition Q. There are two reasons for using a large triangular
decomposition. First, the Delaunay approaches are better understood in the
context of triangulations than quadrangulations and it is very simple to split a
triangle without introducing any hanging node and without increasing the number
of new elements significantly. Second, we have already a parametrization P in
disposition and we can thus apply the idea of generalized Delaunay triangulation
that we saw in chapter 5.

In order to convert a triangulation T to a quadrangulation Q, we follow the
algorithm in section 3.10 of chapter 3 where we try to merge two neighboring
triangular patches to form a four-sided patch.

Now we would like to describe our decomposition algorithm to obtain the large
triangulation T . Since the method of generalized Delaunay triangulation was
already presented in full detail in chapter 5, we need only to specify the criteria
for splitting an edge (Fig. 6.14(a)) and for inserting a node inside a triangle (Fig.
6.14(b)). On that account, let us introduce the following quality assessment.

Definition 18 For a curve C defined on an interval [a, b], we define its linear
curve distortion ǫ(C) as

ǫ(C) :=
1

‖AB‖
∑

i∈I

‖C(ti) − L(ti)‖,where A := C(a), B := C(b) and (6.26)

L(ti) := λiA+ (1 − λi)B with λi = (ti − a)/(b− a) and (6.27)

164 TRIANGULATION PAVING

a

b

a

b

ω

(a)

ω

a

b

c

a

b

c

(b)

Figure 6.14: Insertion of a new node: (a) edge cutting (b) triangle subdivision

ti are some values taken within [a, b].

This definition can be extended to the case of linear surface distortion µ(S) of a
surface S defined on a planar triangle [a, b, c] where we need to replace L(ti) by

L(ui, vi) := λa
iA+ λb

iB + λc
iC with (6.28)

λa
i , λ

b
i , λ

c
i being the barycentric coordinates if (ui, vi) within [a, b, c].

The determination of the large triangulation T is done recursively by starting
from an initial coarse triangulation T (0). The large triangulation T (k+1) is ob-
tained by T (k) by generalized Delaunay point insertion: we split an edge of T (k)

if its linear curve distortion exceeds some prescribed accuracy ǫ0. We decompose
a large triangle into three subtriangles if its linear surface distortion is larger than
some prescribed µ0.

The initial coarse large triangulation T (0) can be done manually by picking a
few vertices on the mesh M. We recall that the quadrangulation conversion is
only feasible if the number of triangles of T is even. If we start from a coarse
triangulation T (0) with an even number of triangles, then applying the mesh
operations in Fig. 6.14 will keep the parity of the number of triangles even.
In order to have the parametric representations, we use the method in section
6.6. For genus zero surfaces, we need two parametrizations P1 and P2. The
first parametrization P1 consists of a split surface and parametrization P2 is
a representation of the surface in the vicinity of the split curve (A,B) as in
Fig. 6.3(a). For surfaces of higher genera g ≥ 1, we proceed similarly but the
parametrizations are now neighbors of the canonical curves and the basepoint.

6.7 Surface fitting with C0-joint

Let us suppose that we have K submeshes Mr which we would like to approxi-
mate by B-spline surfaces Sr having the following representation:

Xr(u, v) =
n∑

i=0

n∑

j=0

dr
ijN

k
i (u)Nk

j (v) ∀ r = 1, · · · ,K ; (6.29)

6.7. SURFACE FITTING WITH C0-JOINT 165

where Nk
i (·) is the usual [39] B-spline basis function with respect to some knot

sequence θ0 = · · · = θk−1 ≤ θk ≤ · · · ≤ θn+1 = · · · = θn+k:

Nk
i (t) =

t− θi

θi+k−1 − θi
Nk−1

i (t) +
θi+k − t

θi+k − θi+1
Nk−1

i+1 (t). (6.30)

In the formula (6.29), we suppose that the parameters along the u−direction and
v−direction are the same (Otherwise, one can use parameter elevation techniques
[39]). The unknowns are the de-Boor points dr

ij for all indices r. Let us denote
by Dq q = 1, · · · ,M the piecewise linear curves which bound the submeshes Mr.
That is, every submesh Mr is bounded exactly by four piecewise linear curves.
Since we would like to have C0-joints, our first step is to approximate those curves
Dq by B-spline curves Cq

Cq(t) =
n∑

i=0

δq
iN

k
i (t). (6.31)

Let us denote by {ys : s = 0, · · · ,m} the vertices of the piecewise linear curve
Dq. We want that the endpoints of Dq are interpolated by the de-boor points
of Cq, i.e. δq

0 := y0 and δq
n := ym. After using a chord length parametrization

[39] which associates ys to some ts, we may approximate the curve Dq in a least
square sense:

m∑

s=0

‖
n∑

i=0

δq
iN

k
i (ts) − ys‖2 −→ min

δq
i

. (6.32)

The sequence ts belongs to some closed interval [a, b]. Without loss of generality,
we may suppose [a, b] = [θ0, θn+k], t0 = θ0 and tm = θn+k (use shifting and scaling
operations). Before describing resampling method, let us recall the following
result [53, 110].

Theorem 14 (Schoenberg-Whitney) Suppose we have a sequence (ti)i ⊂ R
which corresponds to the points (yi)i ⊂ R3. There exists exactly one B-spline of
order k with knot θj which solves the least-square approximation in (6.32) if (ti)i
has a subsequence (tr(i))i which satisfies the Schoenberg-Whitney conditions of
order k:

θi ≤ tr(i) ≤ θi+k i = 0, · · · , n. (6.33)

Remark 20 (Resampling) It is possible that the formerly mentioned chord
length parametrization (ts,ys) does not satisfy the Schoenberg-Whitney condi-
tions. In that case, we have to perform a resampling process in the following
way. We denote by ρ the piecewise linear function such that ρ(ts) = ys and we
choose some appropriate number p ≥ 2. For every s = 0, · · · , n̄ := (n − k + 2)
and σ = 0, · · · , p − 1, introduce:

{
t̃σ+s(p−1) := λσθ(s+k−1) + (1 − λσ)θs+k

ỹσ+s(p−1) := ρ(t̃σ+s(p−1)).
(6.34)

166 TRIANGULATION PAVING

where λσ := σ/p ∈ [0, 1[and

{
t̃p(n̄+1) := θn+1

ỹp(n̄+1) := ρ(t̃p(n̄+1)).
(6.35)

We replace therefore the sample (ts,ys) by (t̃s, ỹs) which satisfy the Schoenberg-
Whitney condition.

CI

CK

CL CJ

Sr

Figure 6.15: The B-spline curves CI , CJ CK , CL are interpolated by Sr

Now, we would like to fit a B-spline Sr to the submesh Mr which is bounded
by four piecewise linear curves DI , DJ , DK , DL. If we want the B-spline surface
Sr to interpolate the B-spline curves CI , CJ , CK , CL which approximate those
piecewise linear curves (Fig. 6.15), we specify the boundary de-Boor points by

{
dr

i0 := δI
i dr

in := δK
i ∀ i = 0, · · · , n

dr
0j := δL

j dr
nj := δJ

j ∀ j = 0, · · · , n. (6.36)

In the following discussion, we will skip the superscript and subscript r indicating
the patch index when no confusion is possible. From the vertices of the submeshes
Mr, we can have some parameterized samples (uk, vk) ∈ R2, Pk ∈ R3 from which
we would like to determine the control points dij .

By excluding the boundary de-Boor points dij with the help of (6.36), we have
the remaining unknowns whose set of indices is given by

E := {(i, j) : (i, j) 6= (i, 0) (i, j) 6= (i, n) (i, j) 6= (0, j) (i, j) 6= (n, j)}
(6.37)

and whose number is R := (N + 1)2 − 4N .

The surface fitting is then reduced to a least-square approximation:

R∑

l=0

∥∥∥∥∥∥

∑

(i,j)∈E

dijN
k
i (ul)N

k
j (vl) −Pl

∥∥∥∥∥∥

2

−→ min
dij

. (6.38)

6.8. NUMERICAL RESULTS 167

(a) (b)

Figure 6.16: Before Reidemeister moves

Let us note that the samples for the surface fitting might also violate the (tensor-
product) Schoenberg-Whitney condition. In that case, we have to generalize the
resampling method of remark 20.

Like in every least-square approximation, the problems in (6.32) and (6.38) can
be transformed into linear normal equations

MTMX = MT b. (6.39)

6.8 Numerical results

In this section, we would like to describe some results of the former methods
when applied to some meshes. First, we would like to show the developments of
the canonical curves in three stages:

• Before applying the Reidemeister moves,

• After application of the Reidemeister moves which give us the preliminary
canonical curves,

• The ultimate canonical curves after optimization.

We will describe our results with the help of two surfaces which have respectively
genus 1 and 2 (torus and pretzel). In the next figures, we display on the left hand
sides the canonical curves which are traced on the underlying surface meshes.
We display on the right hand sides the canonical curves without surfaces in order
to facilitate the visualization of the curve properties. In Fig. 6.16, we can see

168 TRIANGULATION PAVING

(a) (b)

Figure 6.17: After Reidemeister moves

that the canonical curves still have an intersection which is not at the basepoint.
After application of the Reidemeister moves, there remains only one intersection
at the basepoint but the curves are still very undesirable as seen in Fig. 6.17. By
applying the optimization algorithm that we described in section 6.5, we obtain
the ultimate canonical curves (Fig. 6.18) in which we have one single intersection
point and the quality of the curves has been optimized homotopically.

The same process has been successfully applied to a surface of genus two (see
Fig. 6.19 through Fig. 6.22). We can observe in Fig. 6.21 a magnification of
the results after Reidemeister moves in the neighborhood of the basepoint. As
Fig. 6.21(a) clearly shows, there are still several curve crossings which need to
be eliminated with the help of Reidemeister moves. In Fig. 6.21(b) we see only
one position where we have curve crossings which are exactly at the basepoint.

We would like now to present the second result that consists in reconstructing
surfaces from three meshes having respectively 8288, 11656 and 21872 triangles.
We see the surface meshes together with the splittings in Figs 6.23(a), 6.24(a),
6.25(a), while the corresponding surface patches are located on the right figures.

6.8. NUMERICAL RESULTS 169

(a) (b)

Figure 6.18: After combinatorial optimization

(a) (b)

Figure 6.19: Before Reidemeister moves

(a) (b)

Figure 6.20: After Reidemeister moves

170 TRIANGULATION PAVING

(a) (b)

Figure 6.21: Removing curve-crossings with the help of Reidemeister moves

(a) (b)

Figure 6.22: After combinatorial optimization

(a) (b)

Figure 6.23: (a)Mesh with 8288 triangles (b)Approximation with 40 patches

6.8. NUMERICAL RESULTS 171

(a) (b)

Figure 6.24: (a)Mesh with 11656 triangles (b)Approximation with 32 patches

(a) (b)

Figure 6.25: (a)Mesh with 21872 triangles (b)Approximation with 52 patches

172 TRIANGULATION PAVING

Appendix A

NUMERICAL TOPOLOGY

In this appendix, we would like to describe some notions that are usually met in
computational topology. We mention only some topics which are closely related
to our surface approximation approaches. For readers having no knowledge about
numerical topology, the introductions of the notions here can be found in [44, 45]
which contain materials which lead directly to applications. Interested readers
who need an in-depth insight are urged to read [82, 115].

A.1 Simplicial complexes

The majority of the surfaces that are met in numerical topology are represented
as simplicial complexes which we want to briefly introduce now. Let us consider
some points P0,...,Pk in Rk+1 for which the family {−→0Pi} is supposed to be linearly
independent. A k-dimensional simplex σk with vertices {Pi} is defined to be the
convex hull of {Pi}. For any point P of σk there must existmi, termed barycentric
coordinates, whose sum is unity such that

−→
0P =

k∑

i=0

mi
−→
0Pi . (A.1)

The i-th face σk−1
i of σk is the set of all points in σk for which the i-th barycentric

coordinate mi is zero. A simplex σk is said to be oriented if an ordering of its
vertices Pi is prescribed. Two orderings of the simplex differing by an even

permutation [44] are assumed to determine the same orientation. If the orders of
vertices differ by an odd permutation, they determine opposite orientations. An
oriented simplex is denoted by +σk and a simplex with opposite orientation by
−σk. Throughout this document, a simplex is always supposed to be oriented.
We will drop the superscript k if no confusion is possible. A simplicial complex
M is a set of simplices {σi}i∈I which fulfills the following conditions:

1. M ⊂ ∪i∈Iσi

173

174 NUMERICAL TOPOLOGY

2. For every two different indices i and j such that σi ∩σj is empty, either one
of them is the face of the other or they have a common face which is the
intersection of them.

The dimension of the simplicial complex M is the highest possible dimension of
its elements σi.

A.2 Boundary operator and incidence matrix

For practical purpose, a triangular mesh M representing a surface embedded
in the space can be viewed as a simplicial complex. We have to assign some
orientations to the edges and the triangles of M. The triangles (resp. edges,
resp. vertices) of M can be considered as oriented 2-simplices (resp. 1-simplices,
resp. 0-simplices). In this section, we are introducing the boundary operator
∂k together with its matrix representation. We define the incidence number
[σk+1

j : σk
i] of the j-th (k+1)-dimensional simplex σk+1

j and the i-th k-dimensional

simplex σk
i of M to be

• [σk+1
j : σk

i] := 0 if σk+1
j and σk

i are not incident,

• [σk+1
j : σk

i] := +1 if σk+1
j and σk

i are incident and their orientations agree,

• [σk+1
j : σk

i] := −1 if σk+1
j and σk

i are incident and their orientations are
opposite.

The k-th incidence matrix of a mesh M is the matrix Ek whose entries are

Ek(i, j) := [σk+1
j : σk

i] . (A.2)

The boundary of an oriented simplex σk can be expressed in terms of its faces
σk−1

i by

∂kσ
k :=

k∑

i=0

(−1)iσk−1
i . (A.3)

If we denote by αk the number of k-dimensional simplices in the mesh M, then
relation (A.3) allows us to formulate the expression of the boundary operator ∂k

in terms of the incidence coefficients:

∂kσ
k+1
j =

αk∑

i=1

[σk+1
j : σk

i]σk
i . (A.4)

We introduce also the notion of k-chains which are linear combinations of k-
simplices:

c =
∑

i

aiσ
k
i . (A.5)

A.3. HOMOLOGY GROUP 175

Roughly speaking, a 1-chain is a list of edges and a 2-chain is a set of triangles
from the mesh M. Further the definition of a boundary operator ∂k can be easily
extended to k-chains by linearity:

∂kc =
∑

i

ai∂kσ
k
i . (A.6)

A.3 Homology group

By denoting the set of all k-chains of a given simplicial complex M by Ck, the
boundary operator ∂k defines a linear mapping from Ck to Ck−1. We have therefore
the following diagram

Ck+1
∂k+1−→Ck

∂k−→Ck−1 . (A.7)

The k-chains whose image by ∂k are zero are called cycles. They represent the
k-chains which do not have any boundary. The k-chains which are images of ∂k+1

are called boundaries. In other words, those two sets represent the kernel Zk of
∂k and the image Bk of ∂k+1

A very important property [82] of the boundary operator from algebraic topology
is that

∂k ◦ ∂k+1 = 0 . (A.8)

In terms of the incidence matrices, the above relation is equivalent to

Ek · Ek+1 = 0 . (A.9)

Because of property (A.8), we have Bk ⊂ Zk and therefore we can define the k-th
homology group to be the quotient group

Hk(M) := Zk/Bk . (A.10)

The k-th Betti number βk of the simplicial complex M is the dimension of the
k-th homology group Hk(M). Although this definition is valid for any k, we
will be primarily interested in the first homology group H1(M). If we consider a
surface M which is orientable, then the (first) Betti number is given by

β1 = 2g + h− 1, (A.11)

where g is the genus of the surface M and h is the number of boundary curves.

176 NUMERICAL TOPOLOGY

Appendix B

CURVES ON SURFACES

In this appendix, we would like to point out a brief excursus on the topological
modeling of curves which are drawn on surfaces. That will prove particularly
useful during the course of the determination of the canonical curves in chapter 6.
For that end, let us first review the topological representations and classifications
of surfaces.

B.1 Topological surfaces

Contrarily to surfaces that are usually met in differential geometry, local smooth-
ness is not required in topological modeling. That fact makes the usefullness of
topological surfaces very interesting in practice because it allows us to model
corners, sharp edges while being able to keep track of the surface as a whole. In
other words, it is not always necessary to model the surface as assembly of pieces
of surfaces.

More precisely, a topological surface M is defined to be a set of points in R3 for
which every point x has an open neighborhood U which is homeomorphic to the
open unit disc D ⊂ R2.

A very well-known and useful notion that is utilized both in theoretical derivations
and in implementation is the notion of topological disks, which have also several
other terminologies. In order for us to be able to introduce its definition, let us
consider a finite discrete set A which we will call alphabet whose elements will
be called letters. A polygonal disk P is a polygon with oriented sides labeled
with letters from the alphabet A. Each letter on the polygonal disk P appears at
most twice. For each polygonal disk P we can assign a code ω in the following
way. The code ω is initialized to be empty. We start from any vertex of the
polygon P and follow the sides of the polygon in a counterclockwise orientation.
If the direction of an edge labeled with a letter e has a clockwise orientation,
then we append e in the code otherwise we append e−1. An example of a code

177

178 CURVES ON SURFACES

a

b

b

a

d

c

c

d

Figure B.1: A polygonal disk with code aba−1b−1cdc−1d−1

(a) (b)

Figure B.2: Two surfaces of genus unity

ω = aba−1b−1cdc−1d−1 is illustrated in Fig. B.1 where we have started from its
topmost vertex. A more rigorous definition involving abstract group theory could
for example be found in [114].

Now we would like to describe how one can obtain a topological surface M from
a polygonal disk P. Given a polygonal disk P, we can define a topological surface
by gluing the edges having the same letter in P in which the edge orientations
have to be respected. As an illustration, if we glue the appropriate sides in the
topological disk with code ω = aba−1b−1 of Fig. B.3(a), then we obtain the torus
in Fig. B.3(b). The curves A and B of the torus correspond to the sides a and b
from the code ω. A very well known property from geometric topology [8] states
that for any given compact connected surface M, there is a polygonal disk P
such that M is obtained from P by gluing operations. We refer the reader to [8]
for a more abstract definition of a gluing technique which involves quotient maps
and identification spaces.

B.2. CLASSIFICATION OF SURFACES 179

a

b

a
−1

b
−1

(a)

A

B

(b)

Figure B.3: A topological disk and a corresponding topological surface

B.2 Classification of surfaces

Before introducing the sense of commutators, let us recall the notion of genus
which is a very simple but useful notion that is used in many algorithms. The
genus g(M) of a surface M is the maximum number of pairwise disjoint simple
closed curves along which we can cut the surface M while keeping it in a single
piece. As an illustration, the genera of the surfaces in Fig. B.2 are both unity.
Since we are interested in orientable triangular surface meshes, we want to point
out that in that case, the genus is

g(M) =
1

2
[1 − χ(M)], (B.1)

in which χ(M) is the Euler characteristic of the surface M:

χ(M) = v − e+ t, (B.2)

where v, e, t are respectively the number of vertices, edges and triangles of the
surface mesh M.

In our application of geometric topology to surface splitting from chapter 6, we
need a way to parameterize the whole surface from a single polygonal disk P. On
that account, we want a method to determine the polygonal disk P of a given
surface M in function of its genus g. Before introducing that characterization,
note that commutator [a, b] is a code of the form

[a, b] := aba−1b−1. (B.3)

Every compact orientable surface M without boundary with genus g > 0 can
be obtained [45, 114] from the following code which is the multiplications of g
commutators

ω = [a1, b1][a2, b2]...[ag, bg] . (B.4)

Furthermore, if the genus of the surface M is zero then the appropriate code is

ω = abb−1a−1. (B.5)

180 CURVES ON SURFACES

ω1 ω2

ω3ω2

a

b−1

ba−1

(a)

Ω1

Ω2

Ω3

A B

M

(b)

Figure B.4: (a)Topological disk ω = abb−1a−1 (b)Surface of genus zero

B.3 Fundamental group

Let us consider a topological surface M and a point Ω ∈ M which is called
basepoint. A loop is a curve lying on M starting from Ω and ending at Ω. More
precisely, a loop is the image of a continuous map

L : [0, 1] → M L(0) = L(1) = Ω. (B.6)

We define the product of two loops L0 and L1 to be the loop

(L0 · L1)(t) :=

{
L0(2t) if t ∈ [0, 0.5]
L1(2t− 1) if t ∈ [0.5, 1] .

(B.7)

Two loops L0 and L1 are equivalent if L0 can be continuously deformed to L1.
In other words, they are equivalent if there is a continuous function

φ : [0, 1] × [0, 1] → M (B.8)

such that

φ(t, 0) = L0(t) φ(t, 1) = L1(t) Lr(t) := φ(t, r). (B.9)

As an illustration, in the torus of Fig. B.5(a) L0 and L1 are equivalent but L0

and L2 are not. It is to be noted that the loop equivalence form an equivalent
relation in the set of loops of M.

With this equivalence relation in place, we can define classes of equivalent loops
whose set is denoted by π1(M,Ω). With the product operation that we defined in
(B.7), the set π1(M,Ω) defines a group which is usually called (first) fundamental
group.

B.4 Reidemeister moves

For the reduction of the number of crossings of curves on a surface, we need to
apply a series of Reidemeister moves [45] which we want to introduce now. They

B.4. REIDEMEISTER MOVES 181

Ω

L2

L0 L1

M

(a)

Ω

L1

Ls

L0

(b)

Figure B.5: (a)Equivalent and non-equivalent loops, (b) Loop L0 moves contin-
uously into loop L1

�
�
�
�

�
�
�
��

�
�
�

A

(a)

Ci Ci

(b)

Figure B.6: (a) Unnecessary crossings (b) Twist: first Reidemeister move

are the principal moves that are often met in knot theory [1]. In our search for
canonical curves from chapter 6, we are interested in curves which are drawn on a
given surface M. In order to be able to parameterize a surface M of genus g to a
planar polygon efficiently as we do in chapter 6, we need that the curves C1,...,C2g

cross at one single point of the surface, namely at the basepoint. Unfortunately,
during the course of searching a sequence of the curves Ci, unnecessary crossings
are often possible. That happens for example in Fig. B.6(a) where we have a
surface M with genus unity, on which two curves have two crossings other than
the basepoint. We need therefore to shift the curves Ci while keeping them on
the surface. One distinguishes three types of Reidemeister moves whose planar
projected diagrams can be observed in Figs. B.6(b), B.7(a), B.7(b). The first
Reidemeister move or ’twist’ removes a crossing by a twisting operation. The
second one or ’poke’ removes two crossings in which one curve overcrosses another
as in Fig. B.7(a). The third move or ’slide’ is applied when we have a curve Ci

on the left (resp. right) of a crossing. The third one consists therefore in shifting
Ci so that it becomes on the right (resp. left of the crossing).

182 CURVES ON SURFACES

Ci Cj Ci Cj

(a)

Ci

Cj

Ck

Ci Cj

Ck

(b)

Figure B.7: (a)Poke: second Reidemeister move (b)Slide: third Reidemeister
move.

Bibliography

[1] C. Adams, The knot book, Freeman and Co., New York, 1994.

[2] S. Althoen, R. Bumcrot, Introduction to discrete mathematics, PWS-KENT
publishing company, Boston, 1988.

[3] K. Atkinson, The numerical solution of integral equations of the second kind,
Cambridge university press, Cambridge, 1997.

[4] DXF Reference guide, www.autodesk.com/techpubs/autocad/dxf, 2002.

[5] D. Barnette, A. Edelson, All orientable 2-manifolds have finitely many min-
imal triangulations, Israel J. Math. 62, No. 1 (1988) 90–98.

[6] R. Barnhill, Computer aided surface representation and design, in: Proc.
surfaces in CAGD, North-Holland, Amsterdam, 1986, pp. 1–24.

[7] H. Bast, K. Mehlhorn, G. Schäfer, H. Tamaki, A heuristic for Dijkstra’s
algorithm with many targets and its use in weighted matching algorithms,
Algorithmica 36, No. 1 (2003) 75–88.

[8] E. Bloch, A first course in geometric topology and differential geometry,
Birkhäuser, Boston, 1997.

[9] A. Bobenko, B. Springborn, A discrete Laplace-Beltrami operator for sim-
plicial surfaces, Preprint math. DG/0503219, 2005.

[10] H. Borouchaki, P. George, Aspects of 2-D Delaunay mesh generation, Int. J.
Numer. Methods Eng. 40, No. 11 (1997) 1957–1975.

[11] H. Borouchaki, P. Laug, P. George, Parametric surface meshing using a
combined advancing-front generalized Delaunay approach, Int. J. Numer.
Methods Eng. 49, No. 1-2 (2000) 233–259.

[12] P. Bose, G. Toussaint, Characterizing and efficiently computing quadrangu-
lations of planar point sets, Comput. Aided Geom. Des. 14, No. 8 (1997)
763–785.

i

ii BIBLIOGRAPHY

[13] F. Bossen, P. Heckbert, A pliant method for anisotropic mesh generation,
in: Fifth international meshing roundtable, Saundia National Laboratories,
1996, pp. 63–76.

[14] M. Bousquet, J. Hester, 3D-Konstruktion und Präsentation mit AutoCAD,
IWT-Verl., München, 1993.

[15] D. Bräss, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der
Elastizitätstheorie, Springer, Berlin, 1992.

[16] D. Bremner, F. Hurtado, S. Ramaswami, V. Sacristan, Small convex quad-
rangulations of point sets, in: Proc. 12th international symposium, ISAAC
2001, Christchurch, New Zealand, 2001, pp. 623–635.

[17] S. Brunnermeier, S. Martin, Interoperability cost analysis of the U.S. auto-
motive supply chain, Research Triangle Institute Project Number 7007-03,
March, 1999.

[18] M. Chaudhry, An extended Schwarz-Christoffel transformation for numerical
mapping of polygons with curved segments, COMPEL 11, No. 2 (1992) 277–
293.

[19] M. Chaudhry, Numerical computation of the Schwarz-Christoffel transfor-
mation parameters for conformal mapping of arbitrarily shaped polygons
with finite vertices, COMPEL 11, No. 2 (1992) 263–275.

[20] H. Chen, H. Pottmann, Approximation by ruled surfaces, J. Comput. Appl.
Math. 102 (1999) 143–153.

[21] L. P. Chew, Constrained Delaunay triangulations, Algorithmica 4, No. 1
(1989) 97–108.

[22] P. Ciarlet, The finite element method for elliptic problems, North-Holland,
Amsterdam, 1978.

[23] E. Colin de Verdière, Raccourcissement de courbes et décomposition de sur-
faces, Ph.D. thesis, Université Paris 7, 2003.

[24] J. Corney, 3D modeling with ACIS kernel and toolkit, John Wiley & Sons,
Chichester, 1997.

[25] M. Costabel, J. Saranen, The spline collocation method for parabolic bound-
ary integral equations on smooth curves, Numer. Math. 93, No. 3 (2003)
549–562.

[26] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta
Numerica 6 (1997) 55–228.

BIBLIOGRAPHY iii

[27] W. Dahmen, R. Schneider, Wavelets on manifolds I: Construction and do-
main decomposition, SIAM J. Math. Anal. 31, No. 1 (1999) 184–230.

[28] W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the
interval: stability and moment conditions, Appl. Comput. Harmon. Anal. 6,
No. 2 (1999) 132–196.

[29] M. De Berg, M. Van Kreveld, M. Overmars, O. Schwarzkopf, Computational
geometry: algorithms and applications, Springer, Berlin, 2000.

[30] C. de Boor, A practical guide to splines, Springer, New York, 1978.

[31] M. De Graaf, A. Schrijver, Making curves minimally crossing by Reidemeis-
ter moves, J. Comb. Theory, Ser. B 70, No. 1 (1997) 134–156.

[32] DIN 44302, Datenübertragung, Datenübermittlung, Feb 1987.

[33] DIN 66301, Rechnergestütztes Konstruiren, Jul 1986.

[34] V. Dolejśı, Anisotropic mesh adaptation technique for viscous flow simula-
tion, East-West J. Numer. Math. 9, No. 1 (2001) 1–24.

[35] H. Edelsbrunner, T. Tan, An upper bound for conforming Delaunay trian-
gulations, Discrete Comput. Geom. 10 (1993) 197–213.

[36] R. Engelking, K. Sieklucki, Topology: a geometric approach 4, Heldermann
Verlag, Berlin, 1992.

[37] A. Evans, D. Miller, NASA IGES and NASA-IGES-NURBS-Only Standard,
in: Handbook of grid generation, CRC Press, 1999, Chapter 31.

[38] H. Everett, W. Lenhart, M. Overmars, T. Shermer, J. Urrutia, Strictly con-
vex quadrilateralizations of polygons, in: Proc. fourth Canadian conference
on computational geometry, St. Johns, Newfoundland, 1992, pp. 77–82.

[39] G. Farin, Curves and surfaces for computer aided geometric design: a prac-
tical guide, Academic Press, Boston, 1997.

[40] G. Farin, Discrete Coons patches, Comput. Aided Geom. Des. 16, No. 7
(1999) 691–700.

[41] M. Floater, E. Quak, Piecewise linear prewavelets on arbitrary triangula-
tions, Numer. Math. 82, No. 2 (1999) 221–252.

[42] M. Floater, K. Hormann, Parameterization of triangulations and unorga-
nized points, in: European summer school lecture notes, Tutorials on mul-
tiresolution in geometric modelling, Munich Univ. of Technology, Germany,
2001, pp. 127–154.

iv BIBLIOGRAPHY

[43] M. Floater, K. hormann, Surface parameterization: a tutorial and survey,
in: Advances in multiresolution for geometric modelling, edts. N. Dodgson,
M. Floater, M. Sabin, Springer, Berlin, 2005, pp. 157–186.

[44] A. Fomenko, Visual geometry and topology, Springer, Berlin, 1993.

[45] A. Fomenko, S. Matveev, Algorithmic and computer methods for three-
manifolds, Kluwer Academic Publishers, Dordrecht, 1997.

[46] A. Fomenko, T. Kunii, Topological modeling for visualization, Springer,
Tokyo, 1997.

[47] A. Forrest, On Coons and other methods for the representation of curved
surfaces, Comput. Graph. Img. Process. 1 (1972) 341–359.

[48] P. Frey, H. Borouchaki, Surface mesh quality evaluation, Int. J. Numer.
Methods Eng. 45, No. 1 (1999) 101–118 .

[49] M. Garey, D. Johnson, F. Preparata, R. Tarjan, Triangulating a simple
polygon, Inf. Process. Lett. 7 (1978) 175–179.

[50] M. Garland, P. Heckbert, Surface simplification using quadric error metrics,
in: Proc. SIGGRAPH, 1997.

[51] P. L. George, H. Borouchaki, Delaunay triangulation and meshing. Applica-
tion to finite elements, Hermes edition, Paris, 1998.

[52] P. L. George, Automatic mesh generation. Application to finite element
methods, Chichester: John Wiley & Sons Ltd., Paris: Masson, 1991.

[53] R. Goldenthal, M. Bercovier, Spline curve approximation and design by op-
tional control over the knots, Computing 72, No. 1-2 (2004) 53–64.

[54] W. Gordon, C. Hall, Construction of curvilinear co-ordinate systems and
applications to mesh generation, Int. J. Numer. Methods Eng. 7 (1973) 461–
477.

[55] W. Gordon, C. Hall, Transfinite element methods: blending-function inter-
polation over arbitrary curved element domains, Numer. Math. 21 (1973)
109–129.

[56] W. Gordon, Sculptured surface interpolation via blending-function methods,
Research Report, Department of Mathematics and Computer Science, Drexel
University, Philadelphia, 1982.

[57] B. Goldstein, S. Kemmerer, C. Parks, A brief history of early product data
exchange standard NISTIR 6221 , National Insitute of Standards and Tech-
nology, Sept 1998.

BIBLIOGRAPHY v

[58] I. Graham, W. Hackbusch, S. Sauter, Discrete boundary element methods
on general meshes in 3D, Numer. Math. 86, No. 1 (2000) 103–137.

[59] L. Greengard, V. Rokhlin, A new version of the fast multipole method for
the Laplace equation in three dimension, Acta Numerica 6 (1997) 229–269.

[60] G Greiner, Variational Design and Fairing of Spline Surfaces, Computer
Graphics Forum 13(3), 1994, pp. 143–154.

[61] W. Hackbusch, Integral equations: theory and numerical treatment, Inter-
national series of numerical mathematics 120, Basel: Birkhaüser, 1995.

[62] W. Hackbusch, C. Lage, S. Sauter, On the efficient realization of sparse
matrix techniques for integral equations with focus on panel clustering, cu-
bature and software design aspects, in: Proc. final conf. of priority research
programme boundary element methods, Stuttgart, 1997, pp. 51–75.

[63] H. Harbrecht, R. Schneider, Biorthogonal wavelet bases for the boundary
element method, Preprint SFB393/03-10, Technische Universität Chemnitz,
Sonderforschungsbereich 393, 2003.

[64] H. Harbrecht, R. Schneider, Wavelets for the fast solution of boundary in-
tegral equations, Preprint SFB393/02-19, Technische Universität Chemnitz,
Sonderforschungsbereich 393, 2002.

[65] P. Henrici, Applied and computational complex analysis, vol. 3, John Wiley
& Sons, New York, 1986.

[66] F. Hill, Computer graphics using OpenGL, Prentice Hall, London, 2001.

[67] B. Holtz, The CAD rating guide, OnWord press, New Mexico, 1991.

[68] J. Hoschek, D. Lasser, Grundlagen der geometrischen Datenverarbeitung,
Teubner, Stuttgart, 1989.

[69] B. Joe, Quadrilateral mesh generation in polygonal regions, Comput.-Aided
Des. 27, No. 3 (1995) 209–222.

[70] B. Joe, R. Simpson, Triangular meshes for regions of complicated shape, Int.
J. Numer. Methods Eng. 23 (1986) 751–778.

[71] J. Jost, Riemannian geometry and geometric analysis, Springer, Berlin, 2000.

[72] M. Jungerman, G. Ringel, Minimal triangulations on orientable surfaces,
Acta Math. 145, No. 1-2 (1980) 121–154.

[73] D. Jungnickel, Graphs, networks and algorithms, Springer, Berlin, 1999.

vi BIBLIOGRAPHY

[74] M. Kallmann, H. Bieri, D. Thalmann, Fully dynamic constrained Delaunay
triangulations, in: Geometric modelling for scientific visualization, G. Brun-
nett, B. Hamann, H. Mueller, L. Linsen (Eds.), Springer-Verlag, Heidelberg,
Germany, 2003, pp. 241–257.

[75] M. Keil, J. Snoeyink, On the time bound for convex decomposition of simple
polygons, Int. J. Comput. Geom. Appl. 12, No. 3 (2002) 181–192.

[76] M. Kilgard, The OpenGL Utility Toolkit (GLUT), programming interface
API version 3, Silicon Graphics Inc., 1994.

[77] R. Knight, W. Valaski, AutoCAD-Referenz, IWT-Verl., München, 1993.

[78] C. Lee, S. Lo, A new scheme for the generation of a graded quadrilateral
mesh, Comput. Struct. 52, No. 5 (1994) 847–857.

[79] C. Livingston, Knot theory, The Carus mathematical monographs, The
mathematical association of America, Washington, 1993.

[80] S. Lo, Generating quadrilateral elements on plane and over curved surfaces,
Comput. Struct. 31, No. 3 (1989) 421–426.

[81] D. Loffredo, Fundamentals of STEP implementation, STEP Tools, Rensse-
laer Technology Park, Troy, New York 12180, www.steptools.com.

[82] W. Massey, A basic course in algebraic topology, Springer, New-York, 1991.

[83] H. Mattson, Discrete mathematics with applications, John Wiley & Sons,
New York, 1993.

[84] G. Meister, Polygons have ears, Amer. Math. Mon. 82 (1975) 648–651.

[85] R. Melosh, S. Utku, Estimating manipulation errors in finite element analysis
II, Finite Elem. Anal. Des. 4, No. 2 (1988) 163–173.

[86] A. Mezentsev, T. Woehler, Methods and algorithms of automated CAD re-
pair for incremental surface meshing, in: Proc. eightth international meshing
roundtable, South Lake Tahoe, California, 1999, pp. 299-309.

[87] F. Morgan, Riemannian geometry. A beginner’s guide, Jones and Bartlett
Publishers, Boston, 1993.

[88] M. Müller-Hannemann, K. Weihe, Minimum strictly convex quadrangula-
tions of convex polygons, in: Proc. 13th ACM symposium on computational
geometry, 193–200, 1997.

[89] J. Nocedal, S. Wright, Numerical optimization, Springer Series in Operations
Research, New York, 1999.

BIBLIOGRAPHY vii

[90] J. O’Rourke, Computational geometry in C, Cambridge Univ. Press, Cam-
bridge, 1998.

[91] S. Owen, Non-simplicial unstructured mesh generation, Ph.D thesis,
Carnegie Mellon University, 1999.

[92] J. Peraire, J. Peiro, K. Morgan, Advancing front grid generation, in: Hand-
book of grid generation, CRC Press, 1999, Chapter 17.

[93] L. Piegl, A menagerie of rational B-spline circles, IEEE Computer Graphics
and Applications 9 (Sept. 1989) 48–56.

[94] L. Piegl, Infinite control points - a method for representing surfaces of rev-
olution using boundary data, IEEE Computer Graphics and Applications 7
(March 1987) 45–55.

[95] L. Piegl, On NURBS: a survey, Computer Graphics & Application 11 , No.
1 (1991) 55–71.

[96] U. Pinkall, K. Polthier, Computing discrete minimal surfaces and their con-
jugates. Exp. Math. 2, No. 1 (1993) 15–36.

[97] K. Polthier, Polyhedral surfaces of constant mean curvature, Habilitationss-
chrift, Technische Universität Berlin, 2002.

[98] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-Spline techniques,
Springer, Berlin, 2002.

[99] S. Ramaswami, M. Siqueira, T. Sundaram, J. Gallier, J. Gee, A new algo-
rithm for generating quadrilateral meshes and its application to FE-based
image registration, Proc. 12th International Meshing Roundtable, Sandia
National Laboratories, 159–170, 2003.

[100] S. Ramaswami, P. Ramos, G. Toussaint, Converting triangulations to quad-
rangulations, Comput. Geom. 9, No. 4 (1998) 257–276.

[101] M. Randrianarivony, G. Brunnett, Sufficient and necessary conditions for
the regularity of planar Coons map, Sonderforschungsbereich 393, Preprint
SFB393/04-07, 2004.

[102] A. Rathsfeld, Nyström’s method and iterative solvers for the solution of
double-layer potential equation over polyhedral boundaries, SIAM J. Numer.
Anal. 32, No. 3 (1995) 924–951.

[103] A. Rathsfeld, Iterative solution of linear systems arising from the Nyström
method for the double-layer potential equation over curves with corners,
Math. Methods Appl. Sci. 16, No. 6 (1993) 443–455.

viii BIBLIOGRAPHY

[104] S. Rees, L. Soicher, An algorithtmic approach to fundameental groups and
covers of combinatorial cell complexes, J. Symb. Comput. 29, No. 1 (2000)
59–77.

[105] W. Renz, VDAFS-a pragmatic interface for the exchange of sculptured
surface data, in: Product data interfaces in CAD, CAM applications, edit.
Encarnacao, Schuster, Vöge, Springer, Berlin, 1986, pp. 144–149.

[106] A. Riedel, The wavelet transform on Sobolev spaces and its approximation
properties, Numer. Math. 58 (1991) 875–894.

[107] S. Saunders, T. Takaoka, Improved shortest path algorithms for nearly
acyclic graphs, Theor. Comput. Sci. 293 , No. 3 (2003) 535–556.

[108] R. Schinzinger, P. Laura, Conformal mapping: methods and applications,
Elsevier, Amsterdam, 1991.

[109] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysis-
basierte Methoden zur Lösung grosser vollbesetzter Gleichungssysteme,
Teubner, Stuttgart, 1998.

[110] L. Schoenberg, A. Whitney, On Polya frequency functions III, Trans. Amer.
Math. Soc. 74 (1953) 246–259.

[111] G. Schulze, Blending-Function-Methoden im CAGD, Diplomarbeit, Uni-
versität Dortmund, 1986.

[112] H. Seidel, Computing B-spline control points using polar forms, Comput.-
Aided Des. 23, No. 9 (1991) 634–640.

[113] H. Seidel, Polar forms for geometrically continuous spline curves of arbitrary
degree, ACM Trans. Graph. 12, No. 1 (1993) 1–34.

[114] J. Stillwell, Classical topology and combinatorial group theory, Second edi-
tion, Springer, New York, 1993.

[115] R. Stöcker, H. Zieschang, Algebraische Topologie, Teubner, Stuttgart, 1988.

[116] B. Kehrer, G. Vatterott, CAD models and architectures, integration aspects
of STEP and their expression in the CAD reference model, in: Modelling
and graphics in science and technology, edts: J. Teixeira , J. Rix, 1996, pp.
1–20.

[117] L. Trefethen, Numerical computation of the Schwarz-Christoffel transfor-
mation, SIAM J. Sci. Stat. Comput. 1 (1980) 82–102.

[118] D. Trippner, Experience gained using the IGES interface for CAD/CAM
data transfer, in: Product data interfaces in CAD, CAM applications, edit.
Encarnacao, Schuster, Vöge. Berlin Springer, 1986, pp. 127–141.

BIBLIOGRAPHY ix

[119] U. S. Product Data Association, Initial Graphics Exchange Specification.
IGES 5.3, Trident Research Center, SC, 1996.

[120] M. Vanco, A direct approach for segmentation of unorganized points and
recognition of simple algebraic surfaces, Ph. D. thesis, Technische Universität
Chemnitz, 2003.

[121] T. Varady, P. Benko, G. Kos, Reverse engineering regular objects: simple
segmentation and surface fitting procedures, Int. J. Shape Model. 4 (1998)
127–141.

[122] R. Verfürth, A Posteriori error estimators for the Stokes equations II: non-
conforming discretizations, Numer. Math. 60 (1991) 235–249.

[123] B. Vidakovic, Statistical modeling by wavelets, John Wiley & Sons, New
York, 1999.

[124] M. Vogel, P. Bunte, Pro/ENGINEER und Pro/MECHANICA, Carl Hanser
Verlag, München, 2001.

[125] K. Weihe, T. Willhalm, Why CAD data repair requires discrete algorithmic
techniques, in: Proc. WAE’98, Saarbrücken, Germany, 1998, pp. 1–3.

[126] U. Weissflog, Product data exchange; Design and implementation of IGES
processors, in: Product data interfaces in CAD, CAM applications, edit.
Encarnacao, Schuster, Vöge, Springer, Berlin, 1986, pp. 116–125.

[127] J. Wellington, Historical milestones, NIST,
www.eeel.nist.gov/iges/milestones.html, 2003.

Index

Algorithm
Adaptive Coons regularity, 104
Boundary approximation, 135
Breadth First Search, 155
Coarse mesh generation, 129
Convex polygon intersection, 81
Diffeomorphism generation, 116
Four-sided splitting, 61
Meshing multiple patches, 133
Prim or Kruskal, 60
Quadrangulation, 38
Single cut search, 53

Artificial vertex, 21

Bernstein polynomial, 98
Betti number, 175
Blending function, 94
Blossom, 102

Symmetry, 102
Boolean sum, 93
Boundary approximation, 133
Boundary operator, 174
Boundary refinement, 69
Breadth First Search, 155

CAD interface
CAD/CAM, 14
Neutral format, 14
Usage, 13

CAD repair, 24
Chain, 174
Cleanup, 56
Coarse mesh, 128
Collocation, 2
Commutator, 179
Conforming splitting, 32
Coons patch, 93

Cut search, 49

Data structure, 22
Degree elevation, 105
Double layer operator, 1
Double-edged polygon, 39

Edge flipping, 128
Edge size function, 131
Edge splitting, 127
Euler characteristic, 179

Fast multipole, 2
Fundamental group, 180

Galerkin, 2
Generalized Delaunay, 127
Genus, 179
Graph

Breadth First Search, 155
Canonical curve, 159
Mimimum Spanning Tree, 60
Sibling, 60
Smooth boundary approximation,

133
Spanning tree, 58, 155
Weighted split graph, 159

Harmonic function, 125
Laplace-Beltrami, 122
Mean value property, 125

Harmonicity, 140
Homology group, 175

IGES
Brief history, 14
CAD flaw, 24
Data structure, 22

x

INDEX xi

Delimiter, 18

Entity, 18
IIF (Internal IGES file), 18

Implementation, 21
Section, 18

Shortcomings, 18
Structure, 15

Incidence number, 174

Integral equation, 1
Mesh free method, 3

Mesh-based method, 4

Kernel, 33

Loop, 180

Equivalent, 180
Product, 180

Mean value property, 125
Meister, 35, 135
Mesh conversion, 58

Mesh free method, 3
Mesh generation, 121

Coarse mesh, 128
Edge size function, 122

Generalized Delaunay, 127
Laplace-Beltrami, 122
Nonsmoothness, 129

Planar case, 124
Mesh merging, 133

Mesh-based approach, 4
Multiresolution, 3

Dual, 3
Primal, 3

Nonsmoothness, 129

First kind, 129
Second kind, 129

Third kind, 130
Nyström, 2

Panel clustering, 2

Partition of unity, 98
Poisson problem, 125

Polygon

Double-edged, 39
Intersection, 80
Kernel, 33
Vertex visibility, 76
Wedge, 33

Polygonal approximation, 61
Polygonal disk, 177

Quadrangulation
Conversion into convex, 54
Convertion from triangulation, 58
Hexagon, 78
Multiply connected, 46
Non-convex quadrilateral, 76
Pentagon, 77
Simply connected, 38

Quadrilateral removal, 35

Region
Multiply connected, 61
Simply connected, 35

Regularity, 94
Adaptivity, 104
Necessary condition, 100
Performance, 106
Sufficient condition, 95, 99
Uniform subdivision, 104

Reidemeister moves, 153, 167, 181

Schoenberg-Whitney, 165
Segment separator, 21
Segment-rectangle intersection, 52
Simplex, 173
Simplicial complex, 173
Spanning tree, 60
Splitting

Boundary refinement, 69
Conforming, 32
Simple n-gons, 76
Special splittings, 75

Steiner point, 58
Stiffness matrix, 133
Subdivision, 101
Surface structure, 24

Metric structure, 26

xii INDEX

Topological structure, 24

Topological surface, 177
Classification, 179
Genus, 179
Gluing, 178

Transfinite interpolation, 92
Blending function, 93
Boolean sum, 93
Overspill phenomenon, 94
Regularity, 100

Trimmed surface, 32
Two-ear theorem

Application, 35
Double-edged polygon, 40
Statement, 35

Vertex
G1-vertex, 72
Reflex, 34

Wavelet Galerkin scheme, 3
Wedge, 33

xiii

THESES

Thesis 1: A quadrangulation can be generated by repeatedly removing
quadrilaterals

Many interesting theoretical results related to quadrangulation hold for simply
connected and multiply connected polygons. For simple polygons, either one
can chop off a quadrilateral which is not necessarily convex by introducing a cut
connecting two boundary vertices or one can remove a convex quadrilateral by
inserting an internal Steiner point. The proof of that fact uses the famous 2-ear
theorem. Since that theorem fails to hold for multiply connected polygons, the
notion of double-edged polygons is introduced. For multiply connected polygons,
a method of searching for cuts is required in order to obtain double-edged poly-
gons. Thanks to the version of the 2-ear theorem for double-edged polygons,
the results about simple polygons can be generalized for double-edged ones. Our
quadrangulation method has the property that O(n) quadrilaterals are obtained
from a polygon having n vertices. Since that method of generating a quadran-
gulation may fail to give convex quadrilaterals, a convertion from a nonconvex
quadrangulation to a convex one is required. That is done by combining two
neighboring quadrilaterals in order to form a hexagon. After quadrilating the
hexagon by using only internal Steiner point, the two quadrilaterals are replaced
by the quadrangulation from the hexagon. Cleanup operations are used to en-
hance the quality of a given quadrangulation. Our cleanup operations consist
only in shifting a node or flipping an edge. That is, the numbers of nodes and
edges remain unchanged when a cleanup operation is applied.

Thesis 2: The above quadrangulation yields an approach for decomposing
a set of surfaces having curved boundaries into four-sided subdomains

The basic method of splitting a domain having curved boundaries into four-sided
subregions consists in having first a polygonal approximation. After quadrilating
the resulting polygon by using the above method, one replaces every boundary
edge of the quadrangulation by the corresponding curve portion. In order to be
able to apply polygonal approximations without hanging nodes to a set of sur-
faces, the adjacency information has to be taken into account. For a closed surface
having multiple faces, the number of odd polygonal approximations is proved to
be even. In order that a polygon can be quadrilated, the number of boundary ver-
tices has to be even. Thanks to the adjacency graph, all approximating polygons
can be converted into even ones. On the other hand, the process of replacing a
straight boundary edge by a portion of curve might introduce intersections with
straight internal edges of the quadrangulation. We present an approach to get

xiv

rid of such boundary interference. Since the quadrangulation is only repaired in
the neighborhood of the curve portion which intersects an internal edge, most
part of the quadrangulation is kept unchanged. A very undesired situation is to
have a four-sided domain which has a G1 vertex. That is, the internal angle at a
corner of a four-sided domain is π. A quadrangulation method guarantees that
an edge emanates from every G1 vertex.

Thesis 3: Sufficient conditions exist for checking diffeomorphism about
planar Coons patches

For given four curves delineating a four-sided domain, a method is needed to
test if the corresponding Coons map is a diffeomorphism. If the given curves
are represented in Bézier form, two sufficient conditions can be introduced. The
first condition which is related to the tangents at the boundary curves can be
expressed with the control points of the bounding curves. It is very easy to check
but it is not very robust in practice. With the help of an example of curves whose
curvature can be controlled by some parameter, we show that the first condition
fails to give any answer when the curves deviate significantly from straight lines.
The second method requires the expression of the Jacobian in Bézier form with
some degree elevation. Verifying the second method is more computationally
expensive but it performs much better than the first method.

Thesis 4: An adaptive algorithm about checking diffeomorphism of Coons
patches can be derived from blossoming techniques

For the verification of whether a planar Coons map is a diffeomorphism, a con-
dition which is both efficient and robust is found. In fact, from the blossoming
strategy, a condition which possesses those two objectives is proved. As opposed
to the above two conditions, it turns out that this condition based on blossoming
is not only sufficient but also necessary for identifying the diffeomorphism. From
that theory, one can derive an adaptive algorithm by using subdivision tech-
niques. It is not necessary to subdivide the domain [0, 1]2 everywhere. We need
only to subdivide it at positions where the condition is difficult to check. Thanks
to that property, the adaptive algorithm performs well even for domains where
the bounding curves are very complicated. Apart from theoretical predictions,
different numerical examples show the efficiency and robustness of the adaptive
algorithm .

Thesis 5: Gordon patches can be used to remove overspill phenomena

The problem related to the direct application of the Coons patch is that the
resulting function may have overspill phenomena. That is, there are intersections

xv

between isolines which give some wrinkles in the surface. In order to get rid of the
overspill phenomena, Gordon patches are used. This has the advantage of being
able to interpolate given internal points and curves. The choice of some internal
points and curves are done by using Floater parametrization techniques and a
method which minimizes the Dirichlet energy. It is possible that the bounding
curves are so complicated that it is very difficult to find the internal curves.
In such cases, we have to subdivide the four-sided domain. Additionally, the
results about Coons patches can be generalized to Gordon patches, if the blending
functions are well chosen.

Thesis 6: The IGES format is a suitable CAD interface for the implemen-
tation of geometric preprocessing for integral equations

The IGES format is the CAD interface that is used to store geometric informa-
tion in our work. There are two types of integral equation solvers: mesh-free and
mesh based approaches. For both approaches, the IGES format is suitable for
the storage of CAD data. Implementation with IGES format is a tedious work
which include the following tasks. First, routines for location of information re-
lated to the the stored geometry have to be assembled. Since the IGES structure
varies from one IGES entity to another, one set of routines for the loading of
the record related to each entity has to be constructed. Since it is very difficult
to treat all entities of the IGES format, a few selected entities have been imple-
mented. Those special entities can represent interesting mechanical CAD data.
Furthermore, generation of a data structure for each IGES entities should exit.
As a consequence, one needs a conversion from the IGES records to those data
structure. Good data structures are required in order to have good coherence be-
tween the components of the stored geometry. Finally, an evaluation routine for
each important data structure is needed in order that the data in IGES files can
be used with our geometric algorithm. Apart from the withdrawal of geometric
information from IGES files, the topological structure and the metric information
have to be generated. Having them helps in geometric algorithms which needs
adjacency information. Those algorithms include the polygonal approximation
without hanging node and the conversion of odd faces into even ones within a
closed surface.

Thesis 7: The generalized Delaunay triangulation can be used to generation
of a mesh from CAD data

The preprocessing of CAD geometry for subsequent application in numerical
method for mesh-based integral equation solvers requires the generation of sur-
face meshes. In order to generate a mesh from surfaces stored in CAD data,
the generalized Delaunay triangulation proves suitable. The methods consists in
starting from a coarse mesh which is refined repeatedly by using Delaunay split-

xvi

ting and flipping methods. In order to be able to split an edge, the knowledge
of the ideal edge size is required. Unfortunately, the ideal edge size is unknown
a-priori. So as to determine it, the Laplace-Beltrami operator is used. For CAD
data having multiple trimmed surfaces, that technique is applied to each one of
them. In order that there exists no hanging node, the boundaries of the trimmed
surfaces are discretized before the process of mesh generation.

Thesis 8: A three-step approach exists for the C0-paving of a triangular
mesh into quadrilateral patches

In the thesis, approximation of an orientable closed surface mesh by a set of B-
spline patches was investigated. The first step consists in finding curves which are
drawn on the surface such that by slicing the mesh along those curves, a single
connected piece of surface remains. First, a parametrization technique is applied
in order to find a mapping from a planar polygonal domain to the sliced mesh.
Afterwards, the mesh is split into several four-sided submeshes. Since the goal
in the surface fitting is to obtain global continuity, we approximate the bounding
piecewise linear curves first by B-spline curves. The boundary de-Boor points
of the B-spline surfaces are determined by interpolating those bounding B-spline
curves. The final step in the approximation consists in determining the internal
de-Boor points in a least-square method.

xvii

LEBENSLAUF

Persönliche Daten:

Vor- und Zuname : Maharavo H. Randrianarivony
Geburtsdatum : 07. August 1976
Geburtsort : Befelatanana, Madagascar
Familienstand : ledig
Wohnort : Klarastrasse 30

09131 Chemnitz
E-Mail : maharavo@informatik.tu-chemnitz.de

Studium:

1999-2001 : Mathematik mit Nebenfach Informatik.
Technische Universität Chemnitz.
Abschluss mit ”Master of Science”.

1997-1999 : Reine und Angewandte Mathematik.
Université d’Antananarivo.

Abschluss mit ”Attestation d’Études Approfondies”.
1993-1997 : Reine und Angewandte Mathematik.

Université d’Antananarivo.
Abschluss mit ”Maitrise en Mathématiques”.

Schule:

1985-1993 : Lycée Paul Minault. Série scientifique.
Abschluss mit ”Baccalaureat”.

1980-1985 : Grundschule Ambohimandroso.

Berufstätigkeit:

1999-2001 : Wissenschaftlicher Mitarbeiter an der Fakultät für Mathe-
matik der TU Chemnitz.

2001-Jetzt : Wissenschaftlicher Mitarbeiter an der Fakultät für Infor-
matik der TU Chemnitz.

xviii

VERSICHERUNG

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegeben Hilfsmittlel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Weitere Personen waren an der geistigen Her-
stellung der vorliegende Arbeit nicht beteiligt. Insbesondere habe ich nicht die
Hilfe eines Promotionsberaters in Anspruch genommen. Dritte haben von mir
weder unmittelbar noch mittelbar geldwerte Leistugen für Arbeiten erhalten, die
im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

xix

BIBLIOGRAPHISCHE BESCHREIBUNG UND REFERAT

Geometric processing of CAD data and meshes as input of integral equation
solvers.

Technische Universität Chemnitz, Fakultät für Informatik,
Dissertation, 2006, 182 pages

In diesem Dokument interessieren wir uns für die Vorbereitungen von CAD oder
geometrischen Daten damit die mit Löseren von Integralgleichungen passen. Zu
der Nutzung von Geometrien für mesh-basierten Integralgleichungen verwenden
wir eine Methode, die auf einer generalisierten Delaunay Triangulierung basiert
ist, um ein Mesh von einer Oberfläche zu erzeugen. Damit wir so eine Tri-
angulierungsmethode auf den Riemanntensor anwenden können, verwenden wir
eine Annäherung von der Kantenlägenfunktion, die den Laplace-Beltrami Op-
erator benutzt. Anderseits, wurden Verfahren entwickelt und implementiert
um die Oberflächen in viereckigen Gebieten zu zerlegen. Wir zeigen Methoden
um Polygonen in konvexen Vierecken aufzuteilen. Wir versuchen die Zerlegung
des getrimmten Parametergebietes mit wenigen Teilgebieten zu erhalten. Wir
berichten unsere praktischen Erfahrungen über die Implementierung mit Hilfe
von der CAD Schnittstelle IGES. Um Integralgleichungen die auf Wavelet Ver-
fahren basiert sind umsetzen zu können, braucht man Diffeomorphismus von
dem Einheitsquadrat. In dem Zusammenhang, haben wir Methode entwickelt
um Diffeomorphismus mit Hilfe von transfiniten Interpolationen zu behandeln.
Begrenzungskurven in Bézierform sollen das verwendete Diffeomorphismuskri-
terium darstellen. Anschliessend zeigen wir Methode um ein Mesh mit Hilfe von
stückweise B-spline patches zu approximieren.

Stichworte: CAD, IGES, integral equation, quadrangulation, surface approxima-

tion, mesh generation, transfinite interpolation, diffeomorphism, four-sided split-

ting.

