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Abstract: We focus on the programming aspect of the treatment of digi-
tized geometries for subsequent use in mesh-free and mesh-based numerical
solvers. That perspective includes the description of our C/C++ implemen-
tations which use OpenGL for the visualization and MFC classes for the user
interface. We report on our experience about implementing with the IGES
interface which serves as input for storage of geometric information. For
mesh-free numerical solvers, it is helpful to decompose the boundary of a
given solid into a set of four-sided surfaces. Additionally, we will describe
the treatment of diffeomorphisms on four-sided domains by using transfinite
interpolations. In particular, Coons and Gordon patches are appropriate for
dealing with such mappings when the equations of the delineating curves
are explicitly known. On the other hand, we show the implementation of
the mesh generation algorithms which invoke the Laplace-Beltrami opera-
tor. We start from coarse meshes which one refine according to generalized
Delaunay techniques. Our software is also featured by its ability of treating
assembly of solids in B-Rep scheme.

1 Introduction

It happens very often in practice that a volumetric problem can be reduced
to a surface problem by using Stokes or Green or similar formulas. That
reduction of dimensionality from 3D to 2D has an advantage in numerical
computation of some engineering problems: instead of discretizing the whole

1



3D domain, we can exclusively concentrate on its boundary. That is the main
advantage of BEM (Boundary Element Method) over other numerical tech-
niques such as FEM (Finite Element Method). In particular, that dimension
decrementation is very important for exterior problems: the domain of in-
terest is the exterior of a 3D domain Ω. That is, we search for a function
which is defined at each point belonging to the complementary Ωc. In prac-
tice, the standard examples are the simulation of flows past 3D obstacles or
computation of electromagnetic fields over 3D objects. The traditional way
of treating exterior problems is to consider a very large bounding box B
which includes the model Ω and one discretizes the exterior domain B \ Ω.
That unnecessary complication can be avoided if we use Boundary Element
techniques. According to our discussions with some specialists in numerics
of integral equations, the drawback of BEM – in comparison to FEM – is
that there are so far very few softwares (commercial or not) which imple-
ment it, so its scope is therefore almost only restricted to research purpose
and its industrial adoption is thus somewhat limited.

Figure 1: Main window

In this document, we describe the implementation of a nontrivial problem
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in computational geometry which consists in preparing geometries to realize
the reduction of dimensionality. Our process is for now applied to integral
equations but we believe that it can be utilized for other engineering pur-
poses. More precisely, we deal with the preparation of CAD models for
subsequent use in integral equations with mesh-free or mesh-based struc-
tures. Let us note that we only focus on implementation part because the
corresponding theoretical survey has already been completely documented
in our former papers [17, 18]. The structure of this paper is as follows.
We will give in the next two sections the exact formulation of treatment
of CAD models together with some motivation from the numerics of inte-
gral equations. In section 4, we comment about our implementation tools
including MFC [13], OpenGL and IGES. In particular, we will see MFC
settings, some classes and typedefs which are used in implementing IGES
entities. In order to simplify user interactions, we use menus and toolbars.
We will provide in section 5 the realization and functionalities of each button
of the toolbars. We will find there too the details about status bar which
displays important information such as the number of solids in the model
and the name of the current IGES file. We summarize the most important
properties of the different trimmed surfaces in a property sheet. The pa-
rameters of each trimmed surface will be contained inside its property page
which will be described in section 6. Furthermore, we detail in section 7,
8 the automatization of geometric input as well as its realization in MFC
by using file dialogs. Since we need to extract the geometric entities from
ascii files, we have to know the exact organization of the input files. That is
why we give some detail about the structure of IGES interface. Afterwards,
the required preparations so that MFC can be used together with OpenGL
will be discussed. That combination procedures need some invocation of
wiggle (Win32+OpenGL) functions. In section 10, we will show that it is
possible to deal with several solids. The functionality of our software is now
featured by B-Rep structures of solids. Thus, we apply the decomposition
algorithm to each shell of the assembly. Toward the end of this paper, we
summarize our former results [18] that describe the theoretical background
which is used for the four-sided splitting, the diffeomorphism creation and
mesh generation. In particular, some results using our adaptive algorithm
and Gordon transfinite interpolation will be given.

2 Brief theoretical motivation

In the next discussion, we introduce some motivation about the importance
of reducing a volumetric problem into a surface one. In particular, we recall
briefly mesh-free and mesh-based methods for treating numerical integral
equations. As an illustration, we consider the following Laplace problem
with Dirichlet boundary condition. For a given function g ∈ H1/2(S), search
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Figure 2: Main window

for some U ∈ H1(Ω) such that

{

∆U = 0 in Ω
U = g on S,

(1)

where Ω ⊂ R3 with boundary S := ∂Ω.

Since we deal with a 3D problem, this can be reduced [9] to the solving of
the following integral equation [9, 1] of the second kind on the 2D manifold
S

u(x) +

∫

S
k(x, t)u(t)dt = −2g(x) ∀x ∈ S, (2)

in which the unknown is u ∈ H1/2(S) and k is some bivariate kernel function
defined on the 2D-manifold S. By introducing the double layer operator:

(Kf)(x) :=

∫

S
k(x, t)f(t)dt for x ∈ S, (3)

the original unknown U of the Laplace problem (1) can be deduced from u
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by applying
U = Ku. (4)

With the double layer operator K in place, we can introduce a second oper-
ator A defined by

(Af)(x) := f(x) + (Kf)(x) ∀x ∈ S. (5)

We obtain therefore the following variational formulation: search for u ∈
H1/2(S) such that

(Au, v)S = (f, v)S ∀ v ∈ H1/2(S) . (6)

In general, the approximation scheme consists in considering a finite dimen-
sional space Rh where we approximate the function u by uh ∈ Rh in which
we solve the following problem

(Auh, vh)S = (f, vh)S ∀ vh ∈ Rh. (7)

The wavelet Galerkin method [19, 10, 3] is a special case of (7) in which the
construction of the finite dimensional space Rh is done by means of mul-
tiresolution techniques. That method requires that one generates wavelets
on the manifold S.

On the other hand, one needs to use numerical quadratures to evaluate
the integrals involved in the entries of the stiffness matrix which results
from the equation (7) when applied to the Wavelet Galerkin scheme. If the
parametric function γi is a diffeomorphism, integrations over the manifold
S can be transformed on the unit square:

∫

S
u(x)v(x) dσ(x) =

N
∑

i=1

∫

[0,1]2
u(γi(s))v(γi(s))

√

det (Ki(s)) ds. (8)

For mesh-based numerical solvers, the finite dimensional space Rh is usually
chosen to be piecewise polynomials. That is, if we denote by Pk the set of
polynomials of degree at most k, then

Rh ⊂ {p : p|T ∈ Pk ∀T ∈ Mh}. (9)

There are basically two types of approximation methods which use a mesh:
h-version and p-version. The degrees of the polynomials inside the triangles
are kept constant if one uses the h-version approaches. That is, if we want
to have more accurate approximation uh of the solution u to the integral
equation, then we have to refine the mesh Mh. For that case, we need an
a-posteriori error estimator εT (uh) which has the following property:

λ1

∑

T∈Mh

εT (uh) ≤ ‖u− uh‖ ≤ λ2

∑

T∈Mh

εT (uh), (10)
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where λ1 and λ2 are positive constants independent of u and uh. There are
different methods of obtaining a-posteriori error estimators which can be
used to identify the parts of the mesh that need to be refined. The special
property of an a-posteriori error estimator εT (uh) is that it can be computed
without knowing the function u. If the value of the a-posteriori error esti-
mator εT (uh) with respect to the triangle T exceeds some prescribed value
ε0, then we subdivide the triangle T into several subtriangles. In the case
of p-versions, the polynomial degrees are allowed to be variable. In order to
obtain a better accuracy, the mesh Mh does not need to be refined. Instead,
we increase polynomial degrees k of the piecewise polynomials in relation
(9). A combination hp-version also exists in order to improve numerical
performance.

3 Problem setting

Let us consider a closed surface S ⊂ R3 that is given as a collection of M
trimmed parametric surfaces S1, · · ·, SM defined on the 2D-domains D1,
· · ·, DM which are multiply connected regions in R2. The external and
internal (when relevant) boundary curves of each domain Di are supposed
to be composite curves. We suppose further that the parametric functions
defining Si

ψi : Di −→ Si (11)

are diffeomorphisms. Such a surface representation is usually met in the
B-Rep settings of the shell which bounds a solid. In that case, the surface
S practically represents the boundary of a solid.

Furthermore, we do not allow the existence of cusps at the boundaries of any
Di. That is, if we suppose that the closed curve representing a boundary
(exterior or interior) of Di is given by the parametric curve κ, then we must
have the following.

(B1) For all τ , we have κ̇(τ) 6= 0.

(B2) For all κ(τ) belonging to the boundary of Di,

lim
t→τ−

κ̇(t) 6= −λ lim
t→τ+

κ̇(t) ∀λ > 0. (12)

Additionally, the curve κ is supposed to be bijective piecewise polynomial
which can only have corners (discontinuity of tangents) at the segment sep-
arators [18].

In this document, we will discuss about the implementation of two separate

geometric problems. First of all, we would like to tessellate S into m four-
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sided subsurfaces Fi:

S =

m
⋃

i=1

Fi . (13)

For that end, we will aim at having a splitting which is conforming. That is
to say, every two different subregions Fi and Fj share a complete edge or they
share a single corner or they are disjoint. Our main purpose is to keep the
number m of surfaces Fi small. However, we do not intend to compute the
globally optimal tessellation that minimizes m because the computational
cost would be extremely high. Another requirement which is related to the
first one is to generate a diffeomorphism γi from the unit square onto each
four-sided surface Fi

γi : [0, 1]2 −→ Fi. (14)

It is that additional requirement that makes the implementation and the-
oretical aspects of this problem very complicated. We will use transfinite
interpolation techniques in order to deal with the mappings on patches hav-
ing four curved sides. If we are unable to find a diffeomorphism, then we
subdivide the four-sided surface Fi into a few four-sided subsurfaces.

The second problem that we treat in this paper is the generation of a mesh
Mh on the surface S. There are some numerical solvers [1, 9] of integral
equations which require the input geometric information to be represented
as a mesh Mh. The two standard assumptions that one expects from the
triangular elements of the mesh Mh are the following:

(A1) The intersection of two triangles having nonempty intersection is either
a node or a complete edge.

(A2) The smallest angle αmin(T ) inside each triangle T is larger than some
prescribed threshold α0 > 0.

Note that if the lengths of the three edges in any triangle T ∈ Mh are
proportional, then condition (A2) follows. That is, if we have

hmax(T ) ≈ hmin(T ), (15)

where hmax(T ) and hmin(T ) are the lengths of the longest and shortest edges
of T respectively then (A2) holds. A mesh having triangles satisfying (15)
is usually nicely shaped.

Before going any further, note that those above two problems do not have
anything to do with one another. We have combined the software for treating
them because both of them come from an IGES file and they are used for
boundary integral equations.
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4 Programming tools and MFC settings

The purpose of this section is to comment about the main points of our im-
plementations whose main window can be found in Fig. 1 and Fig. 2. Gen-
erally speaking, our software has four major large components: instructions
for geometric algorithms, visualization routines, IGES treatment procedures
and user interface functions. The source codes of the software have been im-
plemented with the help of a combination of C and C++. Since there are a
lot of GUI (Graphical User Interface) applications, we use Win32 and MFC
(Microsoft Foundation Classes) in order to implement the controls which
facilitate user interactions. The display of graphical scenes is processed by
means of OpenGL and GLUT [12, 14]. In fact, our window panes can exhibit
2D as well as 3D graphical scenes which can be manipulated by moving the
mouse or by selecting some resource items such as formview button, menu
entry, or toolbar button. As for the input geometric data, they are extracted
from IGES files. Since we can only deal with ascii IGES files for now, the
user has to convert any binary IGES files into ascii ones before loading them
into our software. We use usual C routines like fscanf and string operations
to extract the relevant data from IGES files.

Although we need various displays, we chose to use the MFC type SDI (Sin-
gle Document Interface) instead of MDI (Multiple Document Interface). In
order to enable the display of several sceneries simultaneously, the client win-
dow is split into several disproportional panes having different views. Some
panes contain graphical scenes and others have formviews. Some splitters
need T-shaped boundary because the panes do not have the form of a uni-
form array. As long as possible, we use the MFC ClassWizard with its
message map handlers in order to assign new procedures to specified ac-
tions. The Document and Frame classes that are initially generated by the
AppWizard have been modified in order that they fit with our particular
purpose. For instance, some important part of the Frame class can be found
below together with the generated message map functions.

class CMainFrame : public CFrameWnd

{protected: // create from serialization only

CMainFrame();

DECLARE_DYNCREATE(CMainFrame)

// Attributes

public:

BOOL m_initSplitters; //Splitters were initialized

CSplitterWnd m_mainSplitter; //Splitter main window

CSplitterWnd m_wndSpSub_left; //Splitter left subwindow

CSplitterWnd m_wndSpSub_right;//Splitter right subwindow

[...]
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protected:

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar; //main toolbar

CAdvanceToolBar m_advToolBar; //navigation toolbar

CToolBar m_decomp_povray; //decomposition toolbar

CFont m_StatusBarFont; //font for status bar

[...]

protected:

//{{AFX_MSG(CMainFrame)

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

afx_msg void OnSize(UINT nType, int cx, int cy);

[...]

afx_msg void OnUpdateIndicatorVaryingView(CCmdUI* pCmdUI);

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

In order that we can use the digitized CAD information in our geometric
algorithms, several data structures and pertaining routines must be imple-
mented. The problem about using an IGES file for storing the input geomet-
ric components is related to the loading, parsing and evaluating processes.
During the treatments of the selected entities in Table 2, the following tasks
have to be implemented.

(a) Automatic extraction of the size of the entities which require large stor-
age: we need the different integer values which indicate the volume required
in the data structures. That is a necessary step in order that accurate mem-
ory allocations and deallocations can be feasible. This step has to happen
before the real entity extraction can take place.

(b) A large number of simple routines for transforming the IGES parameters
to acceptable inputs in the code: those routines include location of the
parameter delimiters and record delimiters so that appropriate records could
be withdrawn from IGES files. This is necessary in order to access a specified
record in the Parameter Data section which is pointed by an entity in the
Directory Entry section.

(c) Extraction of relevant entities from the IGES file: one has to write a
single routine for each entity because the IGES description of parameter
sequences varies from one entity to another in the Parameter Data section.

(d) Loading of the parameters of the entities from the IGES file to the C-
data structures: we need convertion of the IGES data formats into formats
which are understood by the C programming language. We have generated
a data structure for every entity. The following is for example the data
structure that is used to store a NURBS surface [15]. The other entities can
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be structured in a similar way.

typedef struct nurbs_surface{

int nu; //order in u-variable

int nv; //order in v-variable

int ku; //smoothness in u-variable

int kv; //smoothness in v-variable

point **d; //3D coordinates of control points

double **w; //weights

double *tau_u; //knot sequence along u-direction

double *tau_v; //knot sequence along v-direction

double u0; //[u0,u1]=interval of def along u-dir

double u1; //[u0,u1]=interval of def along u-dir

double v0; //[v0,v1]=interval of def along v-dir

double v1; //[v0,v1]=interval of def along v-dir

int prop1; //open or closed in u-direction

int prop2; //open or closed in v-direction

int prop3; //rational or polynomial

int prop4; //periodic or not in u-direction

int prop5; //periodic or not in v-direction

}nurbs_surface;

In order to quickly understand the above structure, we recall that a NURBS
surface is mathematically [16] represented as

x(u, v) =

∑nu

i=0

∑nv

j=0 ωijdijN
ku

i (u)Nkv

j (v)
∑nu

i=0

∑nv

j=0 ωijN
ku

i (u)Nkv

j (v)
(u, v) ∈ [u0, u1] × [v0, v1]

(16)
where the bases functions are defined as

Nk
i (t) :=

t− θi

θi+k−1 − θi
Nk−1

i (t) +
θi+k − t

θi+k − θi+1
Nk−1

i+1 (t) (17)

with N1
i being the characteristic function of [θi, θi+1). Consequently, the

knowledge of the weights ωij, control points dij as well as the knot sequences
is enough to completely describe a NURBS surface. When the weights ωij

have unit values, x(u, v) becomes a polynomial B-Spline.

(f) Evaluation functions: one step that cannot be neglected is the entity
evaluations because one has to evaluate the loaded entities repeatedly in
our subsequent geometric algorithms. We have to implement an evaluation
routine for each and every given data structure. For instance, we need a
de-Boor algorithm to evaluate a B-spline surface.
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Entities Number

source files (*.c and *.cpp) 167
header files 34
directories 8
classes 20
typedef’s 95
resource files 7

Table 1: Four fields in terminate section

At the beginning, the size of this project was not large but as more codes
were implemented in order to make different algorithms efficient, its dimen-
sion has also grown. Additionally, making everything user-friendly needs
lots of code. The current respective number of entities is enlisted on Table
1. Like many softwares, this one is constantly developed and improved. As
a consequence, those numbers are subject to change in the future.

5 Toolbars and status bar

We use toolbars in order to execute specified actions which could be file
operations, geometric routines or visualization tasks. Each button on a
toolbar has generally an equivalent entry in the menu. We have rescaled the
toolbar buttons to have size 32 × 32 instead of the default 16 × 16. In fact,
we have four toolbars (see Fig. 3) having the following identifiers

IDR MAINFRAME

IDR TOOLBAR ADVANCE

IDR DECOMP POVRAY

IDR MESH GENERATION.

Now, we would like to describe the functionalities and the identifiers of the
different toolbar buttons. Some of them are immediately clear when you
see the descriptive graphs on the icons but other ones really need some
explanations. For the main toolbar that is displayed in Fig. 3(a), the
identifier and purpose of each member button are as follows.

ID FILE OPEN: opening an IGES file

ID FILE SAVE: storing the results in IGES or *.dat files

ID BUTTON ZOOM PLUS: magnification of a 2D/3D scene

ID BUTTON ZOOM MINUS: miniature view of a 2D/3D scene

ID FILE CLOSE: closing an IGES file
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(a) (b)

(c) (d)

Figure 3: (a)Main toolbar (b)Navigation toolbar with a combo-box
(c)Decomposition toolbar (d)Mesh generation toolbar

ID BUTTON HELP: getting a simple help

Now we would like to comment about the navigation toolbar (Fig. 3(b))
which contains a combobox. The three possible entries of the combo box
are PATCHES, SOLIDS, CELLS. They specify the roles of the arrow buttons
of the navigation toolbar. If SOLID is selected, then we navigate through
the solids of an assembly. If PATCHES is chosen, the arrow buttons modify
the indices of the trimmed surfaces or patches in the current solid. CELLS

is selected if one wants to navigate through the list of quadrilaterals or
four-sided domains on the current trimmed surface. The functionalities of
the members of the navigation toolbar are as follows (object is what the
combo-box specifies):

ID START: going to the starting object

ID BACKWARD: going backward once

ID FORWARD: going forward once

ID END: going to the final object

The third toolbar which is shown in Fig. 3(c) deals with the decomposition
of the model in the loaded IGES file into a set of simpler structures. Ad-
ditionally, it is used to generate a file script which can be incorporated in
the POV-RAY program for rendering tasks as post-processing. More specif-
ically, the functionalities of the buttons of the decomposition toolbar are as
follows:

ID TOOL DECOMPOSE: decomposing into foursided patches

ID TOOL POVRAY: exporting for POVRAY rendering

ID TOOL MODSTRUCT: generating a polyhedral approximation

ID TOOL GRID: decomposition from a polyhedral approximation

ID BUTTON TRANSFINITE: generating the diffeomorphisms

ID DISPLAY TRANSFINITE: display the diffeomorphisms
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(a) (b)

Figure 4: Status bar

The fourth toolbar which is shown in Fig. 3(d) is for the generation of
meshes. The purpose of its toolbar buttons is as follows.

ID GENERATE MESH: generating a mesh directly from the IGES file

ID BOUND GRAPH: polygonal boundary approximation

ID TRIANGULATE: mesh from polygonal approximation

ID REFINE MESH: refining the current mesh

Note that not all buttons are always functional. For example, you cannot use
the button for the decomposition from a polyhedral approximation unless
the model boundaries have already been split into polygonal approximations.

In the remaining of this section, we will discuss about the settings of the
status bar. We do not use the standard status bar of MFC which indicates
the currently pressed special keys on the keyboard. Rather, we display on
the status bar three items as illustrated in Fig 4: the name of the currently
loaded IGES file, the number of all trimmed surfaces, the number of solids
in the current assembly, and a parameter which identifies the type of view
that is displayed at the right-bottom window pane. Instead of using the
standard font, we use another font type and font size which are specified by
the following logical font structure.

LOGFONT lf;

[...]

lf.lfWeight = FW_BOLD;

lf.lfItalic = FALSE;

lf.lfUnderline = FALSE;

lf.lfStrikeOut = FALSE;

lf.lfCharSet = DEFAULT_CHARSET;

lf.lfOutPrecision = OUT_DEFAULT_PRECIS;

lf.lfClipPrecision = CLIP_DEFAULT_PRECIS;

lf.lfQuality = DEFAULT_QUALITY;

lf.lfPitchAndFamily = VARIABLE_PITCH | FF_ROMAN;

[...]

For the realization, we generate the following indicator table:
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static UINT indicators[] =

{ID_INDICATOR_IGESFILE,

ID_SEPARATOR,

ID_INDICATOR_NB_SURFACES,

ID_INDICATOR_NB_SOLIDS,

ID_INDICATOR_BOTVIEW

};

6 Formviews and property sheet

The main window contains several formviews which are embedded in dif-
ferent panes. In this section, we will mainly comment about the formview
located at the left-bottom window pane. Its member which have been de-
signed by means of the resource editor are displayed in Fig. 5. They are
used to control the view on the top-left window pane which shows OpenGL
3D scenes. The leftmost buttons of the formview are used to change the
role of the mouse button. When ”rotate” button is selected, the mouse is
used to turn the 3D scenes. The ”shift” button is used to make the mouse
button shift the graphical scene. When the ”restore” button is hit, the 3D
scene takes its original position, size and posture. On the other hand, the
manipulation parameters are shown in the corresponding edit boxes. You
find there the current shifting and scaling parameters together with the two
current spherical coordinates for the rotation. The refresh button is used to
apply the data in the edit box to the 3D scene.

In the right-bottom window pane, we can display the summary of the geo-
metric data which are stored in the IGES file in form of a property sheet. It
is contained in a formview which contains the number of base surfaces and
the number of solids besides the property pages. The property sheet sum-
marizes the important property of the base surfaces of the trimmed surfaces.
For example, the property page corresponding to a surface of revolution dis-
plays the parameters of the axis of revolution, the type of generatrix and
the angle range (starting and terminating angles).

Figure 5: Formview for the manipulation of 3D scene
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(a) (b)

Figure 6: (a)Property sheet (b)Property page of the summary of a surface
of revolution

For each property page, we have to generate two subclasses which are derived
respectively from the MFC classes CPropertySheet and CPropertyPage

such as:

class CSummaryPSheet : public CPropertySheet

class CSplinePPage : public CPropertyPage

The corresponding controls for the property pages are drawn as usual with
the help of the resource editor. In the formview which contains the property
sheet, we put a picture control in place of the future property sheet. The
placement of the property sheet is then done programmatically by overriding
the OnInitialUpdate() member function of the corresponding class.

In the top-right window pane, we can display three different 2D-graphical
scenes. First, one can show there the quadrangulations (Fig. 7(b)) cor-
responding to the four-sided splitting. Second, that pane illustrates the
transfinite interpolation on each four-sided domain (Fig. 7(c)). We show
there the images of the u-constant and v-constant isolines. The third possi-
bility (Fig. 7(d)) is to display planar meshes on the parameter domains of
the trimmed surfaces. In the background, there is grid which facilitates the
2D-views and which can be refined or coarsened by choosing the relevant
menu entry.

7 File I/O

The geometric data which are input in our program are stored in IGES
files which one generates with the help of some CAD system such as Pro-
Engineer. When this software has been implemented for the first time, it
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(a) (b)

(c) (d)

Figure 7: (a)Dialog for color customization; OpenGL 2D display:
(b)Quadrangulation (c)Diffeomorphism (d) Planar mesh
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(a) (b)

Figure 8: File dialogs (a) IGES input, (b) File export

was a console application. The names of the IGES files was hardcoded inside
the program. Since that was very inconvenient, we use dialog application
as in Fig. 8(a) in order to easily specify the file names and to locate the
containing directory. We use the filter *.igs in order that the user can only
load IGES files. That means, the OnFileOpen() function was overridden so
as it becomes as follows.

void CMAPApp::OnFileOpen()

{static char szFilter[] = "IGES FILE (*.igs)|*.igs||";

CNewFileDialog fileName(TRUE,"*.igs",NULL,OFN_HIDEREADONLY |

OFN_OVERWRITEPROMPT,szFilter);

fileName.m_ofn.lpstrTitle="FILE OPEN";

if(fileName.DoModal() != IDOK)

return;

CWinApp::OpenDocumentFile(fileName.GetPathName());

}

The same remark holds for data storage inside a file by using the dialog in
Fig. 8(b). Our software supports two formats for the output of the four-
sided decomposition. First, we implemented an IGES export which calls
NURBS/B-Spline subdivision routines many times. Another format of the
output files has the ending *.dat. That second format has the following
structure.

NUMBER OF NODES=nnd

NUMBER OF ELEMENTS=nel

NUMBER OF EDGES=ned

NODE[0]=[x0,y0] FLAG=fl0 REAL PARAMETER=t0

NODE[1]=[x1,y1] FLAG=fl1 REAL PARAMETER=t1

....
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ELEMENT[0]=[a0,b0,c0,d0] [e0,f0,d0,k0]

ELEMENT[1]=[a0,b0,c0,d0] [e0,f0,d0,k0]

....

EDGE[0]=[n0,m0] INCIDENT=[j0,i0]

EDGE[1]=[n1,m1] INCIDENT=[j1,i1]

...

The comments which are in upper cases can be enabled or disabled. In the
above structure, the flag information has the following values.

Flag(x)=-1 if the node x is located on the exterior boundary

Flag(x)=i if the node x is located on the i-th interior boundary

Flag(x)=-2 otherwise (i.e. x is a nonboundary node)

As for the mesh generation, the format of the output is the usual list of
vertices and the list of triangles.

8 IGES interface as geometric storage

Since we extract the geometric information from an IGES file, it is important
to understand the structure of an IGES file. In order that we can load an
IGES file into our program, many routines which require knowledge of IGES
sections had to be implemented. As a consequence, we describe here the
IGES format briefly. While reading this short description, we recommend
that the readers compare the explanation with Fig. 9 which shows a simple
example of an IGES file.

8.1 Entity classification and data types

We distinguish two main entity categories in an IGES file: geometric and
nongeometric entities. The first group contains information which is re-
quired to describe shapes such as curves, surfaces, solids and relationships
between them. The second group is needed for other graphical or computa-
tional purposes that include color properties in RGB, CMY, or HLS format,
or physical units such as measures of mass, time, temperature, luminous
intensity which are needed in physical simulations or numerical applica-
tions. Descriptive properties such as text fonts are also classified in the
non-geometric entities. Since we use IGES to store model for four-sided
decomposition, we are only interested in geometric entities.

IGES standard supports several data types which include strings, integers,
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PTC IGES file: H:\IGES_files\open_cylinder.igs S 1
1H,,1H;,7HPRT0001,31HH:\IGES_files\open_cylinder.igs, G 1

49HPro/ENGINEER by Parametric Technology Corporation,7H2001150,32,38,7, G 2
38,15,7HPRT0001,1.,1,4HINCH,32768,0.5,13H021014.152641,0.00865991, G 3

86.6025,8Hmaharavo,7HUnknown,10,0,13H021014.152641; G 4
124 1 1 1 0 0 0 001000000D 1

124 0 0 1 0 XFORM 1D 2
100 2 1 1 0 0 1 001010000D 3
100 0 0 1 0 ARC 1D 4

124 3 1 1 0 0 0 001000000D 5
124 0 0 1 0 XFORM 2D 6

100 4 1 1 0 0 5 001010000D 7
100 0 0 1 0 ARC 2D 8
110 5 1 1 0 0 0 001010000D 9

110 0 0 1 0 LINE 1D 10
124 6 1 1 0 0 0 001000000D 11

124 0 0 1 0 XFORM 3D 12
100 7 1 1 0 0 11 001010000D 13

100 0 0 1 0 ARC 3D 14
124 8 1 1 0 0 0 001000000D 15
124 0 0 1 0 XFORM 4D 16

100 9 1 1 0 0 15 001010000D 17
100 0 0 1 0 ARC 4D 18

110 10 1 1 0 0 0 001010000D 19
110 0 0 1 0 LINE 2D 20
110 11 1 1 0 0 0 001010000D 21

110 0 0 1 0 LINE 3D 22
110 12 1 1 0 0 0 001010000D 23

110 0 0 1 0 LINE 4D 24
120 13 1 1 0 0 0 001010000D 25

120 0 0 1 0 SREV 1D 26
110 14 1 1 0 0 0 001010000D 27
110 0 0 1 0 LINE 5D 28

102 15 1 1 0 0 0 001010000D 29
102 0 0 1 0 CCURVE 1D 30

110 16 1 1 0 0 0 001010500D 31
110 0 0 2 0 LINE 6D 32
110 18 1 1 0 0 0 001010500D 33

110 0 0 2 0 LINE 7D 34
110 20 1 1 0 0 0 001010500D 35

110 0 0 2 0 LINE 8D 36
110 22 1 1 0 0 0 001010500D 37

110 0 0 2 0 LINE 9D 38
102 24 1 1 0 0 0 001010500D 39
102 0 0 1 0 CCURVE 2D 40

142 25 1 1 0 0 0 001010500D 41
142 0 0 1 0 UV_BND 1D 42

144 26 1 1 0 0 0 000000000D 43
144 0 0 1 0 TRM_SRF 1D 44

110 27 1 1 0 0 0 001010000D 45
110 0 0 1 0 LINE 10D 46
110 28 1 1 0 0 0 001010000D 47

110 0 0 1 0 LINE 11D 48
120 29 1 1 0 0 0 001010000D 49

120 0 0 1 0 SREV 2D 50
110 30 1 1 0 0 0 001010000D 51
110 0 0 1 0 LINE 12D 52

102 31 1 1 0 0 0 001010000D 53
102 0 0 1 0 CCURVE 3D 54

110 32 1 1 0 0 0 001010500D 55
110 0 0 2 0 LINE 13D 56

110 34 1 1 0 0 0 001010500D 57
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110 0 0 2 0 LINE 14D 58
110 36 1 1 0 0 0 001010500D 59

110 0 0 2 0 LINE 15D 60
110 38 1 1 0 0 0 001010500D 61

110 0 0 1 0 LINE 16D 62
102 39 1 1 0 0 0 001010500D 63

102 0 0 1 0 CCURVE 4D 64
142 40 1 1 0 0 0 001010500D 65
142 0 0 1 0 UV_BND 2D 66

144 41 1 1 0 0 0 000000000D 67
144 0 0 1 0 TRM_SRF 2D 68

406 42 1 1 0 0 0 001000000D 69
406 0 0 1 15 PROP 1D 70
402 43 1 1 0 0 0 000000300D 71

402 0 0 2 7 LAYER 1D 72
406 45 1 1 0 0 0 001000000D 73

406 0 0 1 15 PROP 2D 74
402 46 1 1 0 0 0 000000300D 75

402 0 0 2 7 LAYER 2D 76
124,-1D0,0D0,0D0,7.5D1,0D0,-1D0,0D0,1.5D2,0D0,0D0,1D0,0D0; 1P 1
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 3P 2

124,1D0,0D0,0D0,7.5D1,0D0,-1D0,0D0,1.5D2,0D0,0D0,-1D0,-5D1; 5P 3
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 7P 4

110,5D1,1.5D2,0D0,5D1,1.5D2,-5D1; 9P 5
124,1D0,0D0,0D0,7.5D1,0D0,1D0,0D0,1.5D2,0D0,0D0,1D0,0D0; 11P 6
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 13P 7

124,-1D0,0D0,0D0,7.5D1,0D0,1D0,0D0,1.5D2,0D0,0D0,-1D0,-5D1; 15P 8
100,0D0,0D0,0D0,2.5D1,0D0,-2.5D1,0D0; 17P 9

110,1D2,1.5D2,0D0,1D2,1.5D2,-5D1; 19P 10
110,7.5D1,1.5D2,0D0,7.5D1,1.5D2,1D0; 21P 11

110,1D2,1.5D2,-5.1D1,1D2,1.5D2,1D0; 23P 12
120,21,23,3.078760800518D0,6.346017160251D0; 25P 13
110,5D1,1.5D2,-5D1,5D1,1.5D2,0D0; 27P 14

102,4,3,19,7,27; 29P 15
110,9.807692307692D-1,3.141592653590D0,0D0,9.807692307692D-1, 31P 16

6.283185307180D0,0D0; 31P 17
110,9.807692307692D-1,6.283185307180D0,0D0,1.923076923077D-2, 33P 18
6.283185307180D0,0D0; 33P 19

110,1.923076923077D-2,6.283185307180D0,0D0,1.923076923077D-2, 35P 20
3.141592653590D0,0D0; 35P 21

110,1.923076923077D-2,3.141592653590D0,0D0,9.807692307692D-1, 37P 22
3.141592653590D0,0D0; 37P 23

102,4,31,33,35,37; 39P 24
142,0,25,39,29,1; 41P 25
144,25,1,0,41; 43P 26

110,7.5D1,1.5D2,0D0,7.5D1,1.5D2,1D0; 45P 27
110,1D2,1.5D2,-5.1D1,1D2,1.5D2,1D0; 47P 28

120,45,47,-6.283185307180D-2,3.204424506662D0; 49P 29
110,1D2,1.5D2,-5D1,1D2,1.5D2,0D0; 51P 30

102,4,13,9,17,51; 53P 31
110,9.807692307692D-1,0D0,0D0,9.807692307692D-1, 55P 32
3.141592653590D0,0D0; 55P 33

110,9.807692307692D-1,3.141592653590D0,0D0,1.923076923077D-2, 57P 34
3.141592653590D0,0D0; 57P 35

110,1.923076923077D-2,3.141592653590D0,0D0,1.923076923077D-2, 59P 36
0D0,0D0; 59P 37
110,1.923076923077D-2,0D0,0D0,9.807692307692D-1,0D0,0D0; 61P 38

102,4,55,57,59,61; 63P 39
142,0,49,63,53,1; 65P 40

144,49,1,0,65; 67P 41
406,1,17H02___PRT_ALL_AXES; 69P 42

402,18,3,7,9,13,17,19,21,23,25,29,39,43,45,47,49,53,63,67,0,1, 71P 43
69; 71P 44
406,1,18H06___PRT_ALL_SURFS; 73P 45

402,18,3,7,9,13,17,19,21,23,25,29,39,43,45,47,49,53,63,67,0,1, 75P 46
73; 75P 47

S 1G 4D 76P 47 T 1

Figure 9: Sample of an IGES file
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Entity ID number IGES-code

Line 110 LINE

Circular arc 100 ARC

Polynomial/rational B-spline curve 126 B SPLINE

Composite curve 102 CCURVE

Surface of revolution 120 SREV

Tabulated cylinder 122 TCYL

Polynomial/rational B-spline surface 128 SPLSURF

Trimmed parametric surface 144 TRM SRF

Transformation matrix 124 XFORM

Table 2: Implemented curve, surface and transformation entities

and real numbers. Real numbers are usually represented in the form rDs, a
floating point number r followed by the character ’D’ followed by a signed
integer s as 9.807693D-1 or 1.5D2. This represents a real number r mul-
tiplied by ten to the power of s. A string has the format lHf in which the
integer l determines the length of the string to be described. The real string
is shown after the letter H as 11HProEngineer.

In the IGES format, a parameter is a value which can be integer, string, or
floating point and which describes some information in the global section
or parameter data. Those parameters are separated by a symbol known as
parameter delimiter which can be specified or defined in the global section
and which has comma (,) as default value. Every entity which is found in the
directory entry is detailed by one record which is a sequence of parameters.
The symbol separating two records is the record delimiter whose default
value is a semicolon (;).

8.2 IGES file organization

The number of lines of an IGES file depends on the geometric information
to be stored. The lines are generally partitioned into five main sections:

(1) Start section,
(2) Global section,
(3) Directory entry,
(4) Parameter data,
(5) Terminate section.

The structure of an IGES file is always organized in 80 columns whose
corresponding specific roles are split into three parts. First, columns 1 till
72 contain the most valuable parameter and record values pertaining to
the digitized geometry. Those columns include information which varies
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according to the section to be described. Second, column 73 contains one
letter which specifies the current section. Thus, the five IGES-sections that
we have described above are identified respectively by the letters ’S’, ’G’,
’D’, ’P’, and ’T’. Finally, columns 74 till 80 contain integer data which
are right-justified and which indicate the line numbers of every section. In
simple words, an IGES file has the structure displayed in Table 3.

1 ... 72 73 74 ... 80

S 1
START SECTION S 2

S ...

G 1
GLOBAL SECTION G 2

G ...

D 1
DIRECTORY ENTRY D 2

D ...

P 1
PARAMETER DATA P 2

P ...

TERMINATE SECTION T 1

Table 3: IGES file structure

Now, we would like to summarize the purpose of each section of an IGES file.
The start section which should have at least one line is a human-readable
section in which you can write anything like the directory location of the file.
This section usually contains the comments of the sender to the receiver.

In the global section, we find general information such as how to read the
current file, where, when and by whom was the file generated. It can also
specify the parameter delimiter as well as the record delimiter.

The actual description of the entities takes place in the directory entry and
parameter data sections. The directory entry gives in general an overview of
the different components of the stored geometry and it points to records in
the Parameter Data section which contains the complete information about
all parameters. For instance, in the directory entry we can see that we have
to deal with NURBS surfaces while the information about the control points,
knot sequence and weights cannot be found in the Directory Entry. Every
entity has its own identification number which can range from 0 to as many
as 514. In Table 2, we summarize the entity numbers of a few important
geometries. It is in the Parameter Data section that we can find the actual
values of all parameters. The content of the parameter data section varies

22



Field Columns Section

1 1-8 Start
2 9-16 Global
3 17-24 Directory entry
4 25-32 Parameter data

Table 4: Four fields in terminate section

from one entity to another but it has in general the following structure

entity number,parameter1,parameter2,...,parameterN;

The terminate section consists only of a single line which does not use
columns 33-72 and which describes the lengths of the former four sections
as described in Table 4.

9 OpenGL encapsulation

All our 2D and 3D graphical scenes are implemented with the help of
OpenGL. In order that we can link OpenGL with MFC windows, a Ren-
dering Context (RC) must be created. Otherwise, the OpenGL instructions
do not display anything on the screen. We use wiggle functions which are
usually recognizable by their prefix wgl for the preparation of OpenGL set-
ting in windows. Note that wiggle is not part of MFC but a common way
to merge Win32 with OpenGL.

Before drawing under MFC with OpenGL, the following introductory in-
structions must be executed. First, one gets a DC (Device Context) which
comes from the client area of the main window. Second, one selects a pixel
format for the DC by invoking a function SetupPixelFormatwhich does the
following: it initializes the Pixel Format Descriptor with the data structure
PIXELFORMATDESCRIPTOR. Then, it calls ChoosePixelFormat which
accepts a handle of the DC and which searches for a pixel format that best
approximates the former pixel format descriptor supported by the DC. Af-
terwards, it invokes SetPixelFormat which sets the chosen pixel format. As
third step, one creates an RC from that DC by using wglCreateContext

that takes a handle of a DC as argument and that returns a handle of an RC.
Finally, one makes the newly created RC current by using wglMakeCurrent.
After those preparations, any OpenGL commands can be invoked to draw
graphical scenes.

After using OpenGL routines, the DC and RC should be released. In
order to release the RC, we first make the RC noncurrent by invoking
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wglMakeCurrent(0,0). Then, we delete it with wglDeleteContext which
takes the handle of the RC as argument. In order to release the DC, one
simply needs to invoke delete followed by the handle of the DC.

10 Assembly of several solids

The software is featured by its ability to handle a geometric model which
is composed of several solids such as those in Fig. 10. The algorithms are
then applied to each geometric shell. For the case of assemblies, we cannot
yet accept IGES files which do not contain color information. Therefore,
the designer has to make sure that while he is preparing the geometric
information, each solid has its own color. That is important because it is
the simplest way to sort the surface components of each shell.

For the graphical scene we use graph coloring algorithm from discrete mathe-
matics in order that each solid has its own color while two adjacent four-sided
patches have distinct colors.

Observing the whole assembly at once usually obscurs some special features
of a particular solid as illustrated in Fig. 10(a). It is possible for the user to
inspect the four-sided decomposition of each individual solid without consid-
ering the assembly by choosing the button ”Solid View” and by navigating
with the help of the top arrow buttons. That way, it is possible to look
every side of each individual solid as in Fig. 10(b).

For the realization, we use the alpha-Blending facility of OpenGL. That is,
we include the color definitions between the following instructions:

glEnable(GL BLEND);

glDisable(GL BLEND);

So, the fourth argument of the color definition in OpenGL is considered:

glColor4f(...,...,...,alpha);

In order to have a good emphasis, the transparent solid has gray basic color.
In order that the opaque solid is always visible, it has to be drawn before
any other transparent solids are drawn. We choose the OpenGL blending
function to have the following arguments:

glBlendFunc(GL SRC ALPHA,GL ONE MINUS SRC ALPHA);

11 Four-sided decomposition

This section will be occupied by the short description of the features of our
approach for geometric tessellation. We will consider the decomposition of
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(a) (b)

(c) (d)

Figure 10: Some instances of assemblies
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(a) (b)

Figure 11: (a)Four-sided splitting of the complete assembly (b)One shell is
opaque, the other ones are transparent

a closed surface S given as a set of surfaces {Si}i∈Λ into a collection of
four-sided subsurfaces:

S =
m
⋃

i=1

Fi . (18)

We suppose that each Si is the image by a function ψi of a multiply connected
2D-region Di having possibly curved boundaries.

Our main approach to achieve (18) consists in splitting the 2D regions Di

into four-sided regions Qk,i:

Di =
⋃

k

Qk,i. (19)

Thereto for each Di, we create an even polygonal approximation P (i) which
we decompose into a set of quadrilaterals qk,i. In order to obtain the four-
sided domains Qk,i from qk,i, we replace the straight boundary edges of
qk,i by the corresponding curve portion of Di. That process could generate
boundary interferences which need to be detected and repaired.

So as to have a decomposition which is conforming everywhere, we proceed
as follows. We approximate the curved boundaries of {Si} by straight line
segments separated by nodes {Xk} ⊂ R3. Then, we make the local splitting
(19) in such a way that it is conforming inside Di and that it uses only the
preimages ψ−1

i (Xk) of the nodes {Xk} as boundary vertices. That is, we do
not use any additional boundary nodes.
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The method that we propose for the local split (19) tessellates a polygon
with n boundary vertices into O(n) convex quadrilaterals. Therefore, if the
number of its boundary vertices ni for all polygons P (i) is smaller than n,
then the total number of quadrilaterals is of order O(M ·n). For all examples
that we considered, we found that the total number of quadrilaterals is quite
small. However, we do not examine how close our local approach comes in
average to the globally optimal solution.

Since quadrangulation is an important step in the process of decomposing
a trimmed surface into a set of four-sided patches, we would like to recall
the main results about algorithmic quadrangulations. In order to realize the
above approach, we should solve the problem about quadrilating multiply
connected polygons. We show that for a simply connected polygon, either
one can chop off a quadrilateral which is not necessarily convex by inserting
a cut or one can introduce an internal Steiner point to remove a convex
quadrilateral. More precisely, we proved the following result.

Theorem 1 Consider a simple polygon P having at least four vertices, one
of the following two statements must hold true:

(Op1) One can remove a quadrilateral which is not necessarily convex by
inserting a single cut.

(Op2) There exists a point ω located strictly within P such that one can re-
move a convex quadrilateral by inserting two line segments emanating
from ω to two vertices of P .

In order to generalize this result about simply connected polygons to multi-
ply connected ones, the notion of double-edged polygons is introduced. Such
a polygon may contain different nodes having the same coordinates but its
interior is connected. We prove that the above result about the decomposi-
tion of a simply connected polygon holds true for double-edged ones. In its
proof, the following generalization of the two-ear theorem for double-edged
polygons is used.

Theorem 2 From every double-edged polygon P having more than four
vertices, one may chop off two triangles.

In order to generate a double-edged polygon from a multiply connected one,
a cut per internal boundary is inserted. Each cut is afterwards replaced by
double edges which are traversed in opposite directions.

By applying the above theoretical results, a quadrangulation technique is
obtained that repeatedly removes quadrilaterals. Since the process of re-
moving quadrilaterals by inserting cuts might generate a quadrangulation
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Figure 12: Quadrangulation of hexagons with different number of internal
Steiner points. No boundary Steiner points are required.

Q having non-convex quadrilaterals, the resulting quadrangulation need to
be converted into another one which contains only convex quadrilaterals as
follows. First, we merge every pair of nonconvex quadrilaterals whose union
is a quadrilateral. The second step consists in forming the hexagon which
results from the union of any nonconvex quadrilateral Q and a neighboring
quadrilateral P . After generating a convex quadrangulation Qloc from the
hexagon, the union Q∪P of Q is replaced by Qloc. The quadrangulation of
a hexagon which is illustrated in Fig. 12 is stated in the following result.

Theorem 3 Every hexagon (which may include reflex vertices) can be de-
composed into a set of convex quadrilaterals by using at most three internal
Steiner points.

Furthermore, we do not want any four-sided domain which has G1-vertices
(i.e. smooth corners). Therefore, a repairing process is used in order to
ensure that some internal edges emanate from such vertices.

12 Transfinite interpolation

The generation of the diffeomorphisms on foursided domains is done with the
help of transfinite interpolations. In most cases for mechanical objects, the
use of Coons patches is sufficient to create a diffeomorphism from the unit
square to a domain having four curved sides. For more complicated cases,
we need to use Gordon patches. The description of the theoretical analyses
have been done in a former paper. Let us recall briefly the fundamental
definitions of those two concepts. Let α, β, γ, δ be four parametric curves
that fulfill the compatibility conditions at the corners:

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (20)
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The Coons patch which corresponds to the blending functions F0 and F1 is
defined by:

x(u, v) :=
[

F0(u) F1(u)
]

[

δ(v)
β(v)

]

+

[

α(u) γ(u)
]

[

F0(v)
F1(v)

]

−
[

F0(u) F1(u)
]

[

α(0) γ(0)
α(1) γ(1)

] [

F0(v)
F1(v)

]

.

(21)

We state the following theorems without proof. The complete theoretical
proofs and missing or obscure notations can be found in our earlier works.

Theorem 4 Let M̃ be a constant that verifies the following upper bounds
for all i = 0, · · · , n− 1 and j = 0, · · · , n

n‖φj(γi+1 − γi + αi − αi+1) + (αi+1 − αi)‖ ≤ M̃

n‖φj(βi+1 − βi + δi − δi+1) + (δi+1 − δi)‖ ≤ M̃.
(22)

Suppose that for all i, j = 0, · · · , n− 1

n2 det[αi+1 − αi, δj+1 − δj ] > 0 ,
n2 det[αi+1 − αi, βj+1 − βj ] > 0 ,
n2 det[γi+1 − γi, δj+1 − δj] > 0 ,
n2 det[γi+1 − γi, βj+1 − βj] > 0 .

(23)

If τ̃ > 0 is defined to be the minimum of the expressions in (23), then
2M̃F̃ + F̃ 2 < τ̃ is sufficient for x to be a diffeomorphism.

Theorem 5 Consider the assumption above and define

D(i, j, k, l) := n2det[Ei+1,j − Eij,Ek,l+1 −Ekl], (24)

C(i, j, k, l) := l
n

[

i
nD(i− 1, j, k, l − 1) + (1 − i

n)D(i, j, k, l − 1)
]

+

(1 − l
n)

[

i
nD(i− 1, j, k, l) + (1 − i

n)D(i, j, k, l)
]

.
(25)

If for all p, q = 0, · · · , 2n

Jpq :=
∑

i+k=p

j+l=q

C(i, j, k, l)

(n
i

)(n
k

)

( 2n
i+k

)

(n
j

)(n
l

)

( 2n
j+l

) > 0, (26)

then the Coons patch is a diffeomorphism.
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From those two theorems, we could deduce two algorithms for checking the
regularity of a Coons map. According to our former analyses, the first algo-
rithm executes very fast but it does not give a satisfactory result when the
bounding curves α, β, γ, δ become complicated. In the opposite, the second
algorithm is much more stable but it is very computationally intensive. In
order to obtain stable algorithm while keeping low computational cost, we
have proved the following theorem based on subdivision.

Theorem 6 Let us adopt the same notations as in the previous statement.
Suppose that the Coons patch x defined with α, β, γ, δ is a diffeomorphism.
Suppose further that we have subdivided J into σ2 Bézier surfaces J ij which
are defined on

Iij := [(i− 1)/σ, i/σ] × [(j − 1)/σ, j/σ] i, j = 1, · · · , σ. (27)

Denote by J ij
pq, p, q = 0, · · · , 2n the control points of the Bézier surface J ij.

We claim that if σ is sufficiently large then J ij
pq is of constant sign uniformly

on i, j = 1, · · · , σ and on p, q = 0, · · · , 2n.

From this theorem, one can deduce the following adaptive algorithm which
is both robust and efficient in practice. In Fig. 13, we compare a uniform
subdivision and an adaptive one which comes from our algorithm. It consists
in subdividing the unit square into a grid which contains several rectangular
domains called cells on which Bézier functions are defined.

Algorithm: Adaptive regularity

step 0 : Initialize the grid G to have only one cell [0, 1] × [0, 1] and
compute the Bézier coefficients Jpq according to (26).

step 1 : Traverse the cells I = [a, b] × [c, d] of the grid G:
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Figure 13: Multiple subdivisions: (a)uniform (b)adaptive

• Check if all coefficients JI
pq have constant sign irrespec-

tive of the indices p, q = 0, · · · , 2n.

• If not, split I into four cells I1, I2, I3, I4 and sub-
divide the Bézier surface JI into four Bézier surfaces
JI1, JI2, JI3, JI4.

• If there was some cell Ĩ 6= I for which J Ĩ
pq was al-

ways positive (resp. negative) for all p, q = 0, · · · , 2n
and the current JI

pq is always negative (resp. positive),
then abort the whole algorithm and conclude that the
Coons map is NOT a diffeomorphism.

step 2 : If in step 1, all JI
pq have constant sign irrespective of the cell

I and the indices p, q = 0, 1, · · · , 2n then terminate the algo-
rithm and conclude that the Coons map is a diffeomorphism
otherwise go to step 1.

Now let us turn our attention to the case of Gordon patches which are
used to generate diffeomorphisms for more complicated four-sided domains.
Suppose that we have two families of curves fj , gi, j = 0, · · · , N , i = 0, · · · ,M
satisfying the compatibility condition:

xij := gi(vj) = fj(ui) ∀(i, j) ∈ {0, · · · ,M} × {0, · · · , N}. (28)

The automatic determination of the internal curves is used by using Floater
parametrization and cubic spline interpolations.

31



−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(e)

−2.5 −2 −1.5 −1 −0.5 0

−2.5

−2

−1.5

−1

−0.5

0

(f)

Figure 14: Mappings on four-sided patches: images of horizontal and vertical
lines from the unit square.
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13 Mesh generation

We would like to summarize in this section the theoretical methods for the
generation of a mesh from CAD models. The initial step in generating a
mesh consists in taking boundary polygonal approximations. Afterwards,
one generates a mesh for each face separately as we will see below. We
suppose that a single parametric function S is provided by giving a smooth
parametric function x defined on a parameter domain D ⊂ R2. The ap-
proach in triangulating S is processed in two steps. First, we generate a 2D
mesh on the parameter domain D according to the first fundamental form.
Afterwards, we lift the resulting 2D mesh to the parametric surface S by
computing its image by x. For that purpose, we start from a coarse 2D
mesh of D and we use a generalized two dimensional Delaunay refinement
which we want to sketch below. The initial coarse mesh is obtained by re-
cursively applying the two-ear theorem which yields a triangulation having
only boundary nodes.

We introduce an edge size function ρ which is defined on the parametric
surface ρ : S −→ R+. By composing ρ with the parameterization x of S, we
have another function ρ̃ := ρ ◦ x which we will call henceforth ”parameter
edge size function” because it is defined for all u = (u, v) in the parameter
domain. Let us consider a 2D edge [a,b] ⊂ D and let us denote the first fun-
damental forms at a and b by Ia and Ib respectively. Further, we introduce
the following average distance between a and b

dRiem(a,b) :=

√

−→
ab

T
T
−→
ab T := 0.5(Ia + Ib). (29)

We split the 2D edge [a,b] if this average distance exceeds the value of the
parameter edge size function ρ̃ at the midnode of [a,b]. Note that only
internal edges are allowed to be split. As a consequence, no new boundary
nodes are introduced during the refinement process.

Let us consider the situation where the 2D edge [a, c] is shared by two
triangles which form a convex quadrilateral. Denote by Ia, Ib, Ic and Id the
values of the first fundamental form when applied to the nodes a, b, c and
d respectively. By defining T to be the average of these Ia, Ib, Ic and Id, we
perform the generalized Delaunay edge flipping if the following generalized
Delaunay angle criterion is met

‖−→bc ×−→
ba‖(−→da

T
T
−→
dc) < ‖−→da ×−→

dc‖(−→cbT
T
−→
ba). (30)

That is, we replace the two triangles [a, c,d] and [a,b, c] by [a,b,d] and
[b, c,d] if we have the above inequality.

For a real-valued differential function F defined on S, the Laplace-Beltrami
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operator is defined by

∆SF = − 1√
g

∂

∂uj

(√
ggij

∂F

∂ui

)

(31)

in which we use Einstein notation in indexing and gij are obtained from the
first fundamental form. The function F is said to be harmonic if

∆SF = 0. (32)

In order to obtain an edge size function ρ which varies smoothly, it should
be harmonic. We have therefore the following problem

{

−∆Sρ = 0 in S
ρ = ρbound on ∂S .

(33)

We would like to sketch now how to numerically solve the boundary value
problem (33) involving the Laplace-Beltrami equation. We approximate the
function ρ by a function ρh by means of the finite element method. For that
end, we take a temporary mesh Mh on S and we denote its boundary by
∂Mh.

The values of ρ at the boundary which are denoted by ρbound are known
because the piecewise linear boundary has already been determined in the
polygonal boundary approximation. Since the function ρ represents the
edge size, we can define its value at a boundary node A to be average of the
lengths of the two incident boundary edges of A.

For a smooth function φ which takes value zero at the boundary we have

−
∫

S
∆Sρφ =

∫

S
< ∇Sρ,∇Sφ >=: a(ρ, φ) . (34)

Let us define the following set of approximating linear space

Vh := {f ∈ C0(Mh) : f|T ∈ P1 ∀T ∈ Mh} , (35)

where C0(Mh) denotes the space of functions which are globally continuous
on Mh and P1 the space of linear polynomials. For a function g we define
the set

V g
h := {f ∈ Vh : f = g on ∂Mh} (36)

which is not in general a linear space.

The approximated solution ρh will reside in the set V ρbound

h . In order to find
ρh, we pick an arbitrary element ρ̃ of V ρbound

h and define µh by setting

ρh = ρ̃+ µh . (37)
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The function ρh is therefore completely determined if we know the new
unknown function µh belonging to V 0

h . Observe that V 0
h is a linear space in

which we choose a basis {φi}i∈I in which we have:

µh =
∑

i∈I

µiφi . (38)

By introducing the following bilinear form ah(·, ·) which approximates a(·, ·)
of (34)

ah(ψ, φ) :=
∑

T∈Mh

aT (ψ, φ) with aT (ψ, φ) :=< ∇Tψ,∇Tφ >, (39)

we have
ah(ρh, φ) = 0 ∀φ ∈ V 0

h (40)

or equivalently
ah(µh, φ) = −ah(ρ̃, φ) ∀φ ∈ V 0

h . (41)

Since φi builds a basis for V 0
h , this leads to a linear equation

∑

i∈I

ah(φi, φj)µi = −ah(ρ̃, φj) ∀j ∈ I . (42)

One can assemble the stiffness matrix Mij := ah(φi, φj) and solve (42) for
µi which yields the value of µh by using equation (38).

For every triangle T in Mh with internal angles α1, α2 and α3, its contribu-
tion to the stiffness matrix M is

MT = 0.5





cotα2 + cotα3 − cotα3 − cotα2

− cotα3 cotα1 + cotα3 − cotα1

− cotα2 − cotα1 cotα1 + cotα2



 . (43)
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Figure 15: Results from CAD data in IGES files
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(c) (d)
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Figure 16: Results from CAD data in IGES files
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