
On a multilevel parallel solver for higher order

FEM on elliptic systems

Maharavo Randrianarivony

May 27, 2019

Abstract

We consider the efficient solving of the linear system originating from a higher or-

der Finite Element Method. The proposed method is able to solve systems having

a large number of unknowns with a few number of iterations and it requires only

a tight memory capacity. For the stability, we use a hierarchical Scott-Zhang

operator and the spider averaging operator. The method functions for elliptic

systems in 2D and 3D and it is applied to the Poisson and the Navier-Lamé

equations. We do not require that the domain be convex. The solution is not as-

sumed to admit a H
2-smoothness either. In addition, the mesh distribution is not

necessarily concentrated at the boundary. Apart from theoretical consideration,

we put a special emphasis on the numerical implementation: parallel execution,

load balancing of the data among the processors, p-cascading from one coarse

mesh onto a finer mesh, redistribution of the data after mesh refinements.

1

Contents

List of tables . 3

List of figures . 4

1 Introduction 5

2 Problem setting 8

2.1 Additive Schwarz Method . 8

2.2 Higher order multilevel discretization 10

3 Preconditioner lower bound 12

3.1 Construction . 14

3.2 Stability analysis . 16

4 Preconditioner upper bound 19

4.1 Reordering according to the patch diameters 19

4.2 Multilevel strengthened Cauchy inequality 21

4.3 Multilevel higher order estimate . 24

5 Higher order FEM for elliptic systems 27

6 Numerical experiments 32

6.1 Numerical convergence . 32

6.1.1 h-performance . 32

6.1.2 p-performance . 33

6.1.3 hp-performance . 33

6.2 Data distribution and parallel processing 40

6.2.1 Load balancing . 40

6.2.2 Refinement redistribution . 43

6.2.3 Manifolds for boundary conditions 45

6.2.4 Scalar/vector valued cascading 46

6.3 Iteration counts . 48

Conclusion and outlook 54

References 55

2

List of Tables

1 h-performance for fixed p: P2 (Poisson 2D), P3 (Poisson 3D), E2 (Elas-

ticity 2D), E3 (Elasticity 3D). 34

2 Two dimensional hp-convergence by using pmax = 9 for the Poisson and

the Navier-Lamé admitting the material properties (λ, µ) = (2, 1). . . . 36

3 Three dimensional hp-convergence by using pmax = 9 for the Poisson

and the Navier-Lamé admitting the material properties (λ, µ) = (2, 1). . 37

4 Load-balancing of the data among 8 parallel processors. 42

5 Global and local number of tetrahedra among processors after refine-

ments WITH redistribution. 44

6 Global and local number of tetrahedra among processors after refine-

ments WITHOUT redistribution. 45

7 2D-Laplace: PCG-iteration counts by using cascading and bisection as

refinement. 49

8 2D-Elasticity: PCG-iteration counts by using cascading and bisection as

refinement. 50

9 3D-Laplace: PCG-iteration counts by using cascading and bisection as

refinement. 51

10 3D-Elasticity: PCG-iteration counts by using cascading and bisection as

refinement. 52

11 Comparison with ParaSail solver for p = 2. 53

3

List of Figures

1 (a)Mesh distribution among the processors, (b)Typical hp-polynomial

distribution where p = 1,, pmax = 9. 7

2 Newly created nodes in a mesh. 12

3 Binary tree of hierarchical function decomposition. 17

4 (a)Impossible: some fine elements are partly inside and partly outside a

coarse element, (b)Typical situation and chromatic intersections. 22

5 p-performance for fixed h: H1-accuracy in function of the polynomial

degrees. 35

6 H1-accuracy as function of DOF for various refinements and polynomial

degrees. Elastic properties (λ, µ) = (5, 1.25). 39

7 Mesh distribution among the processors 41

8 Load balancing during refinements, ratio between local and average NEL

for each processor: (a)With redistribution, (b)Without redistribution. . 43

9 Boundary condition: (a)Facial manifold mesh mapped onto volume mesh,

(b)Manifolds are updated during volume mesh refinement and redistri-

bution among 8 processors. 46

10 Cascading for 8 processors: (a)A piecewise polynomial of degree p = 3

on a coarse mesh M(ℓ1), (b)The same function expressed on a finer mesh

M(ℓ2) ⊃ M(ℓ1). The mesh distributions are load-balanced. 47

4

1 INTRODUCTION 5

1 Introduction

The linear system solver is a very important component which cannot be neglected

when considering a FEM (Finite Element Method) development. One valuable factor

in deciding whether a particular FEM approach / implementation is efficient is based

on the quality of its linear solver. The assembly of the FEM linear system is very

fast because the matrix entries are usually computable exactly by using some transfor-

mation from the reference element. A longer time is therefore necessary in the linear

solver than in the assembly of the system. We consider in this document the higher

order setting of the FEM, i.e. the polynomial degree p in each element is allowed to be

larger than unity. In term of convergence, such a setting is advantageous in the case of

elasticity [45, 22] where the elastic properties approach the incompressible materials.

Other simulations where the solution admits some local analiticity benefit also from

higher order settings. The meshes M(ℓ) are supposed to be defined in a nested manner

on a series of levels ℓ = 0, ..., L. Such a case occurs usually in adaptive refinements

but the method here can also be applied to globally uniform refinements. The poly-

nomial degree, which is arbitrary but fixed, is uniformly constant in the entire FEM

mesh. Apart from theoretical considerations, our main purpose here is also to report on

the parallel implementation of the hierarchical p-solver. In addition, we describe some

comparison between the presented approach and ParaSail implementation.

We survey now some pertaining works and we emphasize also our own contribution

when relevant. For the construction of the p-basis functions inside each element, the

basis functions are usually categorized into: vertex-modes, edge-modes, face-modes and

interior-modes. To construct basis functions on the reference triangle (resp. tetrahe-

dron), some transformations from the reference square (resp. hexahedron) are used

in [41, 42] together with many combinations of 1D-Jacobi polynomials. Ainsworth et

al. [2, 3, 4] and Kirby et al. [28, 29] use Bernstein polynomials which are easier to

implement in the FEM context as the integrals of functions and derivatives on the

reference simplex are expressed in a succinct formula. For the purely p-version, a con-

struction [43] of a sequence up of degree p and of global smoothness Cℓ−1 provides

the estimates ‖u − up‖Hℓ(Ω) ≤ Cpℓ−k‖u‖Hk(Ω) (as p −→ ∞) which is a global ap-

proximation. In term of local approximation, a Clément type quasi-interpolant [31]

provides in an element T the estimate ‖u− Iu‖L2(T)+(h(T)/p(T))‖∇(u− Iu)‖L2(T) ≤
C(h(T)/p(T))‖∇(u)‖L2(ω(T)) where ω(T) is some patch surrounding T . That is usually

applied to convergence results and to a-posteriori analysis when combined with poly-

nomial inverse estimates [34, 35]. For judiciously distributed mesh-size and polynomial

degrees [10, 9], the hp-FEM achieves an exponential convergence of order exp(−µNγ)

1 INTRODUCTION 6

where N designates the degree of freedom (DOF) and µ, γ are parameters indepen-

dent of the discretization and the polynomial degrees. Choosing between applying an

h-refinement or a p-refinement (degree elevation) [20, 21] does affect the convergence.

Some known strategies include the Three Step Texas [33], a method based on local

analyticity [24], devising an error prediction [32] based on the APEE (a-posteriori er-

ror estimator) and choosing the type of refinement whichever gives the better error

reduction. For the Spectral Element Method, we find in [12] an APEE for the hp-case

which has been generalized in [32] to treat hp-FEM [31] for the Poisson problem where

corner singularities are allowed [36]. In the theoretical viewpoint, the main features of

the presented approach are as follows. First, we do not assume any convexity of the

domain Ω. Such a restriction usually facilitates the description of some theory but it

appears to be a serious limitation for practical purpose. Second, the exact solution is

not required to have H2-smoothness. Further, we do not assume any special mesh size

distribution of M(ℓ). That latter point is one substantial difference from the work in

[23] where the mesh is somehow concentrated in the vicinity of the boundary ∂Ω. The

mesh in [23] is very fine at the boundary and it becomes coarser and coarser toward the

interior. That is, for an element T ∈ M(ℓ) touching the boundary T ∩ (∂Ω) 6= ∅, the
mesh size is of order hT ≈ h0(1/2)

ℓ on level ℓ where h0 is some initial mesh size. For

remote elements from the boundary, the mesh size is of order of the distance from the

boundary such as hT ≈ dist(T, ∂Ω). Apart from discarding that assumption, the detail

of the theoretical approach here is also different from [23] where the above assumption

is used very extensively. In the study of the preconditioner lower bound, our analysis

of the stability uses a series of hierarchical Scott-Zhang operators which are defined

on every level and which inherit some properties from the previous levels. In addition,

the method in [23] was applied to scalar-valued equations whereas the method here

is applied to Navier-Lamé equations implemented on parallel machines. For the case

p = 1, there are a large number of analysis and implementation of preconditioners

and we survey here only a few. The theoretical approach here has a similarity with

the MDS (Multi-Diagonal Scaling) of [46] where the author requires H2-smoothness

combined the Aubin-Nitsche trick to derive the stability property. In addition, it re-

quires that the sizes of the elements on mesh M(ℓ) is of order O(hℓ) which we do not

assume in this document. In [46], the analysis about the relation between the MDS

and the BPX (Bramble-Pasciak-Xu) [15] preconditioner is documented. We make use

also of the spider-averaging operator based on level-sets [39] to deduce some important

inter-level properties. For ease of presentation, the theoretical part is limited to fixed

polynomial degree but they could be applied with minor modifications to hp-method

where the polynomial degree is bounded by a certain prescribed maximal value pmax

1 INTRODUCTION 7

(a) (b)

Figure 1: (a)Mesh distribution among the processors, (b)Typical hp-polynomial distri-

bution where p = 1,, pmax = 9.

as illustrated in Fig. 1(b). As for the p-version, we mention the very mathematically

sound 2-level preconditioner in [39] showing a very good condition number. In term of

BEM (Boundary Element Method), the most recent approach presenting a parallel im-

plementation is documented in [27]. By using a sophisticated hardware (27 peta-flops)

it can handle about 1.5 million unknowns. The setup phase takes about 30mn followed

by a BEM linear solver of less than 1h30mn. The model BEM solver treats a Poisson

equation using a piecewise constant finite dimensional trial space. An optimal domain

decomposition is not used which results in a high memory consumption but some at-

tempts are made to avoid multiple identical copies of the BEM data structure. By

increasing the BEM-unknowns, the error appears to stagnate with small fluctuations

after a starting good reduction.

The outline of this document is as follows. In the following section, we introduce the

higher order multilevel discretization with view on solving the linear system on the

finest level. That will be followed by section 4 containing the analysis of the precondi-

tioner upper bound. Section 3 will be occupied by the stability analysis providing the

preconditioner lower bound. After exposing in section 5 the generalization to elliptic

2 PROBLEM SETTING 8

systems, we report on some computer implementation and some numerical results. The

proposed theory estimates only the number of required iterations. We need numerical

tests because the dependence of all various constants with respect to the problem pa-

rameters is not established theoretically. Although the method here is valid for any

elliptic systems, we restrict to the Poisson and the Navier-Lamé equations in the nu-

merical experiments.

2 Problem setting

2.1 Additive Schwarz Method

We briefly recall only the setting of ASM (Additive Schwarz Method) which is needed

in this document. For more comprehensive results, consult [46, 39, 15, 23] and the

reference therein. Consider a symmetric, continuous and coercive bilinear form a(•, •)
on a linear space V spanned by Φ = [φ1, ..., φN]

T. Let A =
[
a(φi, φj)

]N
i,j=1

be the

corresponding SPD matrix (symmetric positive definite). Instead of solving Ax = b, one

solves the preconditioned system (C−1A)x = C−1b. The ASM is a means to construct a

preconditioner C in which one considers some subspaces Vi of V such that V =+m

i=1 Vi.

The ASM uses P :=
∑m

i=1 Pi where Pi is the orthogonal projection:

Piu ∈ Vi : a(Piu, v) = a(u, v) ∀v ∈ Vi. (2.1)

Any function u ∈ V can be written in vectorial form as u = ΦTu where u ∈ R
N . Since

Vi is a subspace of V , there is some matrix Ri of size Ni × N such that any function

ui ∈ Vi is written in vector form as ui = ΦTRiui where ui ∈ R
Ni . For any fixed

i = 1, ..., N , the expression of ui := Piu in (2.1) is as follows for any v = ΦTRiv ∈ Vi:

a(ui, v) = a(ΦTRiui,Φ
TRiv) = vTRT

i ARiui (2.2)

a(u, v) = a(ΦTu,ΦTRiv) = vTRT
i Au. (2.3)

Equalizing both equations for any v ∈ R
Ni yields

RT
i ARiui = RT

i Au i.e. ui = (RT
i ARi)

−1RT
i Au. (2.4)

Computing w = Pu for any given u = ΦTu ∈ V in vector form where w = ΦTw ∈ V

proceeds as follows. One has w =
∑m

i=1wi where wi = Piu = ΦTRiwi ∈ Vi. From (2.4),

one has wi = (RT
i ARi)

−1RT
i Au. Therefore,

ΦTw =
m∑

i=1

ΦT[Riwi] = ΦT
[m∑

i=1

Ri(R
T
i ARi)

−1RT
i

]
Au, (2.5)

2 PROBLEM SETTING 9

or equivalently,

w =
[m∑

i=1

Ri(R
T
i ARi)

−1RT
i

]
Au. (2.6)

The ASM preconditioner is given by

C−1 :=
m∑

i=1

Ri(R
T
i ARi)

−1RT
i (2.7)

which amounts to solvingm smaller problems (RT
i ARi)

−1 of size (Ni×Ni) and applying

the restriction and prolongation operators RT
i and Ri. Suppose one has

µ0 a(u, u) ≤ a(Pu, u) ≤ µ1 a(u, u) ∀u ∈ V. (2.8)

According to (2.6) and (2.7), one deduces a(Pu, u) = uTAC−1Au. Hence,

µ0 u
TAu ≤ uT(AC−1A)u ≤ µ1 u

TAu ∀u ∈ R
N . (2.9)

Any eigenvalue (C−1A)u = λu is an eigenvalue of (AC−1A)u = λAu. From (2.9) the

Rayleigh quotient
uTAC−1Au

uTAu
(2.10)

has value in the range [µ0, µ1]. Hence one has the condition number of the precondi-

tioned system

κ(C−1A) =
λmax(C

−1A)

λmin(C−1A)
≤ µ1

µ0
. (2.11)

By using the conjugate gradient iterative solver for (C−1A)x = C−1b, the expected

convergence speed for the k-th iterate is

O
[√

κ(C−1A)− 1√
κ(C−1A) + 1

]k

(2.12)

which means that a large condition number results in a slow convergence. Our purpose

in this document is to determine a space decomposition V = +m

i=1
Vi and to prove

for P =
∑

i Pi the upper/lower bounds in (2.8) by determining the constants µ0 and

µ1. Convergence is not the only important property when choosing a preconditioner.

Other valuable factors include: (1)efficiency of applying the preconditioner C−1 to a

given vector, (2)memory capacity required to store the preconditioner, (3)facility of

updating a current preconditioner if the FEM setting changes.

2 PROBLEM SETTING 10

2.2 Higher order multilevel discretization

Let Ω ⊂ R
d where d = 2, 3 be some polyhedral domain which is not necessarily convex.

The space of square integrable scalar valued functions is

L2(Ω) :=
{
f : Ω → R, ‖f‖2L2(Ω) :=

∫

Ω

∣∣f(x)
∣∣2dx <∞

}
. (2.13)

The Sobolev space on Ω for a non-negative integer k is

Hk(Ω) :=
{
f ∈ L2(Ω) :

∥∥∂αf
∥∥
L2(Ω)

<∞ for all |α| ≤ k
}

(2.14)

where the differentiation ∂αf is interpreted in the sense of distribution. The Sobolev

space Hk(Ω) is endowed with the norm

∥∥f
∥∥2

Hk(Ω)
:=

∑

|α|≤k

∥∥∂αf
∥∥2

L2(Ω)
. (2.15)

Consider a nested sequence of meshes of the same domain Ω:

M(0) ⊂ M(1) ⊂ · · · ⊂ M(ℓ) ⊂ · · · ⊂ M(L). (2.16)

Each mesh M(ℓ) is composed of triangular or tetrahedral elements admitting the next

properties: (1)a nonempty intersection of two different elements Ti, Tj ∈ M(ℓ) is either

a common node, a complete edge or a complete triangular face (for d = 3), (2)we have

the covering Ω =
⋃

T∈M(ℓ) T . For an element T ∈ M(ℓ), we denote

h(T) := diam(T) = sup
{
|x− y|, x,y ∈ T

}
,

ρ(T) := supremum of the diameters of all balls contained inT,

σ(T) := h(T)/ρ(T) = aspect ratio of T.

We assume quasi-uniformity in the sense that there exists a constant σ0 > 0 which is

independent of ℓ such that

σ(T) ≤ σ0 <∞ for all T ∈ M(ℓ), ℓ = 0, ..., L. (2.17)

By denoting

M(ℓ) = {T (ℓ)
i : i = 1, ..., Nℓ} (2.18)

where T
(ℓ)
i are triangular or tetrahedral elements for the 2D and 3D cases respectively,

we have

h(ℓ) := max
i=1,...,Nℓ

h(T
(ℓ)
i) (2.19)

h(0) ≥ h(1) ≥ · · · ≥ h(ℓ) ≥ · · · ≥ h(L) ≡ h. (2.20)

2 PROBLEM SETTING 11

Denote by N (ℓ) and J (ℓ) the set of all nodes and the set of internal nodes of M(ℓ)

respectively. The patch centered at a node n ∈ N (ℓ) with respect to the mesh M(ℓ) is

defined as

ω(ℓ)
n := ∪{T ∈ M(ℓ) : n ∈ T} (2.21)

and let N (ℓ)
n denote the set of nodes of ω

(ℓ)
n . We define the patch size and the patch of

second layer as

h(ℓ)n := diam(ω(ℓ)
n) (2.22)

ω
(ℓ)
n,2 := ∪

{
T ∈ M(ℓ) : T ∩ ω(ℓ)

n 6= ∅
}
. (2.23)

The node sets Λ(ℓ) are defined as follows:

Λ(0) := J (0) (2.24)

Λ(ℓ) :=
[
∪ {N (ℓ)

n : n ∈ (J (ℓ) \ J (ℓ−1))}
]
∩ J (ℓ) ∀ℓ ≥ 1. (2.25)

The members of Λ(ℓ) for ℓ ≥ 1 consist of two categories of nodes: (1)the newly created

internal nodes of M(ℓ) which are not in M(ℓ−1) and (2)the internal nodes of M(ℓ) which

are connected by some edges with nodes from the first category (see Fig. 2).

For ease of presentation, we first concentrate on the Poisson problem with homoge-

neous Dirichlet boundary condition in this section. Thus, we consider the bilinear form

a(u, v) := 〈∇u,∇v〉Ω. For a given degree p ≥ 1, the higher order FEM setting uses the

next finite dimensional subspace of H1
0(Ω) on the highest level

Sp
h(Ω) :=

{
u ∈ C0(Ω) ∩H1

0(Ω) : u ∈ Pp(T) ∀T ∈ M(L)
}

(2.26)

where Pp(T) denotes the space of polynomials in T spanned by the monomials xi11 · · ·xidd
where 0 ≤ i1+· · ·+id ≤ p. Constructions of flexible basis functions for Sp

h(Ω) are found

in [41, 42, 5, 4, 23, 28, 29] while efficient FEM-implementations using Bernstein-Bézier

are found in [3, 2]. The basis functions are usually categorized as vertex modes, edge

modes, face modes (in 3D only) and internal bubble modes.

Corresponding to the nested meshes (2.16), let V(ℓ) denote the piecewise linear FE-

subspaces satisfying

V(0) ⊂ V(1) ⊂ · · · ⊂ V(ℓ) ⊂ · · · ⊂ V(L). (2.27)

On level ℓ = 0, ..., L, the linear shape function centered at the node n ∈ J (ℓ) with

respect to the mesh M(ℓ) is denoted by φ
(ℓ)
n . Further, we introduce the next linear

spaces

V(ℓ)
n := span

{
φ(ℓ)
n

}
for ℓ = 0, ..., L and n ∈ Λ(ℓ) (2.28)

V(Λ(ℓ)) := span
{
φ(ℓ)
n : n ∈ Λ(ℓ)

}
⊂ V(ℓ). (2.29)

3 PRECONDITIONER LOWER BOUND 12

Figure 2: Newly created nodes in a mesh.

For the polynomial degree p and a node n ∈ J (L) on the finest level, introduce

V(p,n) := {u ∈ Sp
h(Ω) : supp(u) ⊂ ω(L)

n } (2.30)

which is defined on the finest mesh M(L). In addition, we will need the following Ritz

projections P (ℓ)u ∈ V(ℓ), P
(ℓ)
n u ∈ V(ℓ)

n and P(p,n)u ∈ V(p,n):

a(P (ℓ)u, v) = a(u, v) ∀v ∈ V(ℓ) for ℓ = 0, ..., L, (2.31)

a(P (ℓ)
n u, v) = a(u, v) ∀v ∈ V(ℓ)

n for ℓ = 0, ..., L, n ∈ Λ(ℓ), (2.32)

a(P(p,n)u, v) = a(u, v) ∀v ∈ V(p,n). (2.33)

Our purpose is to investigate the following ASM operator

P :=
L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n +

∑

n∈J (L)

P(p,n). (2.34)

3 Preconditioner lower bound

This section describes the lower bound inequality from (2.8). From here onward, we

use the usual shorthand X - Y if there is a constant c such that X ≤ cY in which

c is independent on h, p and L. In addition, X ≃ Y amounts to X - Y - X . With

regard to the ASM operator (2.34), we define the hierarchical piecewise linear (HPL)

operator

PHPL :=
L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n (3.35)

which corresponds to the linear part of (2.34). Introduce the next local higher order

(LHO) operator of degree p ≥ 1 which corresponds to the final term of (2.34)

PLHO
p :=

∑

n∈J (L)

P(p,n). (3.36)

3 PRECONDITIONER LOWER BOUND 13

For a node n on a mesh M, recall that φn denote the piecewise linear hat function

centered at n. Introduce the level sets [39]:

γn(s) := {x ∈ ωn : φn(x) = s} for s ∈ [0, 1], (3.37)

γn(x) := γn(φn(x)) for x ∈ ωn (3.38)

such that γn(0) coincides with the patch boundary ∂ωn. The spider averaging operator

[39] for an integrable function u is defined as

(Πnu)(x) :=
1

|γn(x)|

∫

γn(x)

u(y)dy for x ∈ ωn (3.39)

where |γn(x)| denotes the measure of the set γn(x). Since Πn is not necessarily zero on

∂ωn, a correction term is added:

Π̃nu := Πnu− (Πnu)|∂ωn
(1− φn) (3.40)

in order to have homogeneous boundary values. The next properties are found in [39].

PROPERTIES. One has the boundedness

‖Πnu‖L2(ωn) - ‖u‖L2(ωn), (3.41)

‖∇(Πnu)‖L2(ωn) - ‖∇u‖L2(ωn). (3.42)

If the function u is continuous, then

(Πnu)(n) = (Π̃nu)(n) = n. (3.43)

For rn(x) := |x− n|, one has

∥∥r−1
n (φnu− Π̃nu)

∥∥
L2(ωn)

- ‖∇u‖L2(ωn). (3.44)

Since we will construct multilevel Scott-Zhang operators, let us briefly recall some

definitions [40] on a mesh M. The original Scott-Zhang operator is defined for higher

polynomial degrees but we need it only for the piecewise linear setting in dimension d.

For each node ni ∈ N , choose a (d− 1)-simplex σi according to the next criteria. (1)If

ni 6∈ ∂Ω, pick any (d− 1)-simplex σi such that

ni ∈ σi. (3.45)

(2)If ni ∈ ∂Ω, pick a (d− 1)-simplex σi such that

ni ∈ σi and σi ⊂ ∂Ω. (3.46)

3 PRECONDITIONER LOWER BOUND 14

The choice of the simplex σi is therefore not unique. Let {ni,j}dj=1 be the nodal points

of σi and {φi,j}dj=1 their corresponding basis functions. Their dual basis {ψi,j}dj=1 in σi

satisfies ∫

σi

φi,j(ζ)ψi,k(ζ)dζ = δj,k for j, k = 1, ..., d. (3.47)

Denote ni ≡ ni,1 and ψi ≡ ψi,1. The Scott-Zhang operator on an arbitrary mesh M is

given by

(SZ)v :=
∑

ni∈N
αiφni

where αi :=

∫

σi

ψi(ζ)v(ζ)dζ. (3.48)

3.1 Construction

This section is occupied by the construction of the decomposition of a function with

respect to the spaces V(Λ(ℓ)). Denote by Π̃
(ℓ)
n the spider averaging operator (3.40) with

respect to the node n in the mesh M(ℓ) from (2.16).

LEMMA. Consider a polygonal domain Ω which is not necessarily convex. For any

uh ∈ V(L), there exist

u(ℓ) ∈ V(ℓ), v(ℓ) ∈ V(Λ(ℓ+1)) (3.49)

such that

uh = u(0) +

L−1∑

ℓ=0

v(ℓ) (3.50)

∑

n∈Λ(ℓ+1)

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

- |u(ℓ+1)|2H1(Ω) + |v(ℓ)|2H1(Ω). (3.51)

In particular,

V = V(0) + V(Λ(1)) + · · ·+ V(Λ(L)) (3.52)

holds.

PROOF. Let (SZ)(ℓ) : L2(Ω) −→ V(ℓ) denote the Scott-Zhang operator w.r.t. the

mesh M(ℓ). Set u(L) := uh ∈ V(L) and define recursively for ℓ = L− 1, L− 2, ..., 0

u(ℓ) := (SZ)(ℓ)u(ℓ+1) ∈ V(ℓ) (3.53)

v(ℓ) := u(ℓ+1) − (SZ)(ℓ)u(ℓ+1) ∈ V(ℓ+1). (3.54)

For the nested sequence of meshes M(ℓ), the following construction of (SZ)(ℓ) aims

at ensuring that v(ℓ) ∈ V(Λ(ℓ+1)). Since the construction of the Scott-Zhang operator

is not unique, the process relies on the choice of the (d − 1)-simplices σi. Concerning

the construction of (SZ)(0) on the coarsest mesh M(0), for a node ni in J (0), choose

σi according to (3.45)–(3.48). Suppose (SZ)(ℓ−1) has been constructed on the mesh

3 PRECONDITIONER LOWER BOUND 15

M(ℓ−1) and let us construct (SZ)(ℓ) on the mesh M(ℓ). Consider a node ni ∈ J (ℓ)

and distinguish two cases. (1)If ni 6∈ Λ(ℓ), thus necessarily ni ∈ M(ℓ−1), keep the

choice of σi as in the construction of (SZ)(ℓ−1). (2)If ni ∈ Λ(ℓ), i.e. ni is either a

newly created node or a node adjacent to a newly created one, choose σi according to

(3.45)–(3.48) with respect to the mesh M(ℓ). Repeat that procedure recursively until

(SZ)(L) is constructed. The functions u(ℓ+1) and (SZ)(ℓ)u(ℓ+1) coincide at all nodes of

N (ℓ+1)\Λ(ℓ+1) according to (3.45)–(3.48). Hence, v(ℓ) = u(ℓ+1)−(SZ)(ℓ)u(ℓ+1) belongs to

V(Λ(ℓ+1)) ⊂ V(ℓ+1). At the top level L, one has (SZ)(L)uh ≡ uh because the Scott-Zhang

operator preserves functions in V(L) ≡ V. We have

uh = u(L−1) + v(L−1) (3.55)

= u(L−2) + [v(L−2) + v(L−1)] = · · · = u(0) +
L−1∑

ℓ=0

v(ℓ). (3.56)

As a consequence, one has the space decomposition

V =
L

+
ℓ=0

V(Λ(ℓ)). (3.57)

Since the local spider averaging operator Π̃
(ℓ)
n preserves the nodal values according to

(3.43), we have

v(ℓ) =
∑

n∈Λ(ℓ+1)

Π̃(ℓ+1)
n [v(ℓ)] ∈ V(Λ(ℓ+1)). (3.58)

From the definition of the correction term (3.40) for each node n ∈ Λ(ℓ+1)

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

=
∣∣Π(ℓ+1)

n [v(ℓ)]− (1− φ(ℓ+1)
n)Π(ℓ+1)

n

∣∣
∂ω

(ℓ+1)
n

[v(ℓ)]
∣∣2
H1(ω

(ℓ+1)
n)

. (3.59)

Since Π
(ℓ+1)
n |

∂ω
(ℓ+1)
n

[v(ℓ)] is constant on the whole ∂ω
(ℓ+1)
n = γn(0), one has

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

≤
∣∣Π(ℓ+1)

n [v(ℓ)]
∣∣2
H1(ω

(ℓ+1)
n)

+ (3.60)
∣∣Π(ℓ+1)

n

∣∣
∂ω

(ℓ+1)
n

[v(ℓ)]
∣∣2∣∣1− φ(ℓ+1)

n

∣∣2
H1(ω

(ℓ+1)
n)

. (3.61)

From |(1− φ
(ℓ+1)
n)|2

H1(ω
(ℓ+1)
n)

- 1, obtain

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

-
∣∣Π(ℓ+1)

n [v(ℓ)]
∣∣2
H1(ω

(ℓ+1)
n)

+
∥∥Π(ℓ+1)

n [v(ℓ)]
∥∥2

L∞(ω
(ℓ+1)
n)

-
∣∣Π(ℓ+1)

n [v(ℓ)]
∣∣2
H1(ω

(ℓ+1)
n)

+
1

diam(ω
(ℓ+1)
n)2

∥∥Π(ℓ+1)
n [v(ℓ)]

∥∥2

L2(ω
(ℓ+1)
n)

.

By using (3.41) and (3.42) obtain

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

-
∥∥∇[v(ℓ)]

∥∥2

L2(ω
(ℓ+1)
n)

+
1

[h
(ℓ+1)
n]2

‖v(ℓ)‖2
L2(ω

(ℓ+1)
n)

=
∥∥∇[v(ℓ)]

∥∥2

L2(ω
(ℓ+1)
n)

+
1

[h
(ℓ+1)
n]2

∥∥u(ℓ+1) − (SZ)(ℓ)u(ℓ+1)
∥∥2

L2(ω
(ℓ+1)
n)

.

3 PRECONDITIONER LOWER BOUND 16

Let η = η(n) ∈ J (ℓ) be such that ω
(ℓ+1)
n ⊂ ω

(ℓ)
η and h

(ℓ+1)
n ≃ h

(ℓ)
η . One has

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

-
∥∥∇[v(ℓ)]

∥∥2

L2(ω
(ℓ+1)
n)

+
1

[h
(ℓ)
η]2

∥∥u(ℓ+1) − (SZ)(ℓ)u(ℓ+1)
∥∥2

L2(ω
(ℓ)
η)
.

(3.62)

Use the local approximation property [40] of the Scott-Zhang operator (SZ)(ℓ) in the

patch ω
(ℓ)
η ∣∣Π̃(ℓ+1)

n [v(ℓ)]
∣∣2
H1(ω

(ℓ+1)
n)

-
∣∣v(ℓ)

∣∣2
H1(ω

(ℓ+1)
n)

+
∣∣u(ℓ+1)

∣∣2
H1(ω

(ℓ)
η,2)
. (3.63)

Taking the sum over the nodes of Λ(ℓ+1),

∑

n∈Λ(ℓ+1)

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

-
∑

n∈Λ(ℓ+1)

|v(ℓ)|2
H1(ω

(ℓ+1)
n)

+
∑

n∈Λ(ℓ+1)

|u(ℓ+1)|2
H1(ω

(ℓ)
η(n),2

)
. (3.64)

Due to the quasi-uniformity of the meshes, the patches mutually intersect only in a

finite number of times. Deduce

∑

n∈Λ(ℓ+1)

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

- |v(ℓ)|2H1(Ω) + |u(ℓ+1)|2H1(Ω). (3.65)

�

3.2 Stability analysis

We will study now the stability of the function decomposition which was constructed

in the previous section. In particular, that provides the ASM lower bound in (2.8).

THEOREM. Consider a polygonal domain Ω which is not necessarily convex. Sup-

pose Card(N (0)) = O(1). For any uhp ∈ Vp
h(Ω), one has

a(uhp, uhp) ≤ Ca((PHPL + PLHO)uhp, uhp). (3.66)

where C is a constant independent of the mesh sizes h(ℓ), the polynomial degree p ≥ 1

and the maximal level L.

PROOF. Consider any u(L) ≡ uh ∈ V(L). A hierarchical tree is immediately defined by

the decomposition (3.53) and (3.54). Process the hierarchical tree (see Fig. 3) bottom-

up

I(0) := |u(0)|2H1(Ω) +
∑

n∈Λ(1)

∣∣Π̃(1)
n [v(0)]

∣∣2
H1(ω

(1)
n)
. (3.67)

By using (3.51) for ℓ = 0, obtain

I(0) = |u(0)|2H1(Ω) + |v(0)|2H1(Ω) + |u(1)|2H1(Ω) (3.68)

=
∣∣(SZ)(0)u(1)

∣∣2
H1(Ω)

+
∣∣u(1) − (SZ)(0)u(1)

∣∣2
H1(Ω)

+ |u(1)|2H1(Ω). (3.69)

3 PRECONDITIONER LOWER BOUND 17

u(1) ∈ V (1)

u(1) − (SZ)(0)u(1) = v(0) ∈ V(Λ(1)) u(0) = (SZ)(0)u(1) ∈ V (0)

u(ℓ+1) ∈ V (ℓ+1)

u(ℓ+1) − (SZ)(ℓ)u(ℓ+1) = v(ℓ) ∈ V(Λ(ℓ+1)) u(ℓ) = (SZ)(ℓ)u(ℓ+1) ∈ V (ℓ)

u(L) ≡ uh ∈ V (L)

u(L) − (SZ)(L−1)u(L) = v(L−1) ∈ V(Λ(L)) u(L−1) = (SZ)(L−1)u(L) ∈ V (L−1)

Figure 3: Binary tree of hierarchical function decomposition.

From the global stability [40] of the Scott-Zhang operator (SZ)(0), obtain therefore

I(0) - |u(1)|2H1(Ω). (3.70)

Define for ℓ ≤ L− 1

I(ℓ) := |u(0)|2H1(Ω) +

ℓ+1∑

λ=1

∑

n∈Λ(λ)

∣∣Π̃(λ)
n [v(λ−1)]

∣∣2
H1(ω

(λ)
n)
. (3.71)

Suppose by induction that I(ℓ−1) - |u(ℓ)|2
H1(Ω). We have by using (3.51) of the former

lemma and the stability of (SZ)(ℓ)

I(ℓ) = I(ℓ−1) +
∑

n∈Λ(ℓ+1)

∣∣Π̃(ℓ+1)
n [v(ℓ)]

∣∣2
H1(ω

(ℓ+1)
n)

(3.72)

- I(ℓ−1) + |v(ℓ)|2H1(Ω) + |u(ℓ+1)|2H1(Ω) (3.73)

- |u(ℓ)|2H1(Ω) + |v(ℓ)|2H1(Ω) + |u(ℓ+1)|2H1(Ω) - |u(ℓ+1)|2H1(Ω). (3.74)

Processing in the same manner till I(L−1), obtain

|u(0)|2H1(Ω) +
L∑

ℓ=1

∑

n∈Λ(ℓ)

∣∣Π̃(ℓ)
n [v(ℓ−1)]

∣∣2
H1(ω

(ℓ)
n)

- |u(L)|2H1(Ω). (3.75)

3 PRECONDITIONER LOWER BOUND 18

Define u
(ℓ)
n := Π̃

(ℓ)
n [v(ℓ−1)] ∈ V(ℓ)

n and obtain from (3.75)

a(u(0), u(0)) +
L∑

ℓ=1

∑

n∈Λ(ℓ)

a(u(ℓ)n , u
(ℓ)
n) - a(u(L), u(L)). (3.76)

In particular, since Card(N (0)) = O(1), one has

L∑

ℓ=0

∑

n∈Λ(ℓ)

a(u(ℓ)n , u(ℓ)n) - a(u(L), u(L)). (3.77)

The next procedure is treated as in [23] where the function uhp ∈ Sp
h(Ω) is decomposed

in the highest level M(L) using [39] such that uhp = u(L) + uLHO in which

u(L) ∈ V(L), uLHO ∈ +
n∈J (L)

V(p,n) , (3.78)

a(u(L), u(L)) + a(uLHO, uLHO) - a(uhp, uhp). (3.79)

By combining them with (3.77), a function decomposition is found such that

L∑

ℓ=0

∑

n∈Λ(ℓ)

a(u(ℓ)n , u
(ℓ)
n) + a(uLHO, uLHO) - a(uhp, uhp). (3.80)

From the standard LIONS’ lemma, deduce

a(uhp, uhp) - a
(
(PHPL + PLHO)uhp, uhp

)
. (3.81)

�

REMARK. The above result is still valid if Card(N (0)) is not necessarily O(1) but

the coarsest mesh M(0) has to be treated as a particular case and (2.34) becomes

P = P (0) +

L∑

ℓ=1

∑

n∈Λ(ℓ)

P (ℓ)
n +

∑

n∈J (L)

P(p,n). (3.82)

�

REMARK. We briefly want to recall some typical method (see e.g. [46]) for decom-

posing a function uh ∈ V(L) which is the FE-approximation of

a(u, v) = 〈f, v〉H−1(Ω)×H1
0(Ω). (3.83)

The function is represented as

uh =
L∑

ℓ=0

∑

n∈D(ℓ)

u(ℓ)n s.t. a(uh, uh) -
L∑

ℓ=0

∑

n∈D(ℓ)

a(u(ℓ)n , u(ℓ)n) (3.84)

4 PRECONDITIONER UPPER BOUND 19

in which D(ℓ) are related to some domains on level ℓ. The main difference between the

method in this section and the usual methods requiring H2-smoothness of u is that they

first decompose uh on the levels:

uh = u(0) + · · ·+ u(L) such that
L∑

ℓ=0

|u(ℓ)|2H1(Ω) - |uh|2H1(Ω). (3.85)

On each level ℓ, the function u(ℓ) is further decomposed into v
(ℓ)
n (by using for e.g. a

partition of unity) such that

∑

n

|v(ℓ)n |2H1(Ω) - |u(ℓ)|2H1(Ω). (3.86)

That is obtained for example from Aubin-Nitsche trick to derive an H1-bound from

the H2-smoothness which is naturally guaranteed if the domain is convex. The idea

proposed in this section applies if the solution u is non-smooth and the domain is not

necessarily convex. As opposed to (3.86), the presented estimate uses

∑

n

|v(ℓ)n |2H1(Ω) - |v(ℓ)|2H1(Ω) + |u(ℓ+1)|2H1(Ω) (3.87)

where the second term on the right hand side involves an expression on the upper level

(ℓ + 1). In addition, the regions Λ(ℓ) are not constrained to any size restriction and

no special type of mesh distribution is required either. The approach does not even

necessitate that uh be a FE-approximation of any boundary value problem.

�

4 Preconditioner upper bound

4.1 Reordering according to the patch diameters

At first sight, the presented approach has similarities with [46]. The main difference

from [46] is that (1)the elements of M(ℓ) are not necessarily of the same size O(hℓ),

(2)for each level ℓ, the union of ω
(ℓ)
n for n ∈ Λ(ℓ) does not cover the whole domain

Ω. Those points make the present method fit with adaptive refinements where only

certain regions of Ω are successively refined several times. Throughout this document,

the next chromatic decomposition is assumed on every level ℓ = 0, 1, ..., L. One needs

at most B colors to group the patches of the mesh M(ℓ) where B 6= B(ℓ, L). Since the

4 PRECONDITIONER UPPER BOUND 20

patches are centered at nodes, one uses the nodes as subset indices

X
(ℓ)
k :=

{
n ∈ J (ℓ) : ω(ℓ)

n has chromatic index k
}

k = 1, ..., B (4.88)

X
(ℓ)
k1

∩ X
(ℓ)
k2

= ∅ ∀ k1, k2 = 1, ..., B, k1 6= k2 (4.89)

ω(ℓ)
n1

∩ ω(ℓ)
n2

= ∅ ∀n1, n2 ∈ X
(ℓ)
k , n1 6= n2. (4.90)

The last property means that patches admitting the same chromatic index k form

disjoint subsets. Note that, the collection of all patches in all X
(ℓ)
k , k = 1, ..., B covers

the whole domain Ω. Introduce for each level ℓ the space

V(X(ℓ)
k) := span

{
φ(ℓ)
n : n ∈ X

(ℓ)
k

}
k = 1, ..., B. (4.91)

Define the nonnegative integer

µ(ω(ℓ)
n) :=

⌊
− log2 diam(ω(ℓ)

n)
⌋

for n ∈ Λ(ℓ), ℓ = 0, ..., L, (4.92)

diam(ω(ℓ)
n) = O

(
2−µ(ω

(ℓ)
n)

)
. (4.93)

From the collection of all patches ω
(ℓ)
n where n ∈ Λ(ℓ), ℓ = 0, ..., L, there is a certain

maximal level M which is generally different from L such that µ(ω
(ℓ)
n) = 0, ...,M . For

any level m = 0, ...,M , define

W (m) :=

{
ω(ℓ)
n patch

∣∣∣∣∣
n ∈ Λ(ℓ) ℓ = 0, ..., L

µ(ω
(ℓ)
n) = m

}
(4.94)

corresponding to patches of diameterO(2−m). Note that, although two identical patches

could appear on two meshes M(ℓ1) ⊂ M(ℓ2), each patch in W (m) does not appear more

than once because in the set Λ(ℓ), only newly created nodes and their nearby nodes are

considered. The set of indices on level m = 0, ...,M is

R(m) :=
{
r = (ℓ, n) : ω(ℓ)

n patch in W (m)
}
. (4.95)

For a patch and its corresponding linear shape function w.r.t. W (m), we use the short-

hand

ωr ≡ ω(ℓ)
n and φr ≡ φ(ℓ)

n r = (ℓ, n) ∈ R(m) (4.96)

where r is a bold letter, or as a reminder that it is on level m = 0, ...,M we write ω
(m)
r ,

φ
(m)
r . For every level m = 0, ...,M , define the subspace

U (m)
r := span{φr} where r = (ℓ, n) ∈ R(m) (4.97)

so that diam
[
supp(u)

]
= O(2−m) for u ∈ U (m)

r . Define also the space

U (m) := span
{
φr, r ∈ R(m)

}
. (4.98)

4 PRECONDITIONER UPPER BOUND 21

By introducing

Z(m) := U (0) + · · ·+ U (m) for m = 0, ...,M, (4.99)

one has the diametric nestedness

Z(0) ⊂ · · · ⊂ Z(m) ⊂ · · · ⊂ Z(M). (4.100)

We will use both nestedness (2.16) and (4.100) and we note that V(L) ≡ Z(M). The

orthogonal projections Q(m)u ∈ Z(m) and Q
(m)
r u ∈ U (m)

r with respect to a(•, •) satisfy

a(Q(m)u, v) = a(u, v) ∀v ∈ Z(m) for m = 0, ...,M (4.101)

a(Q(m)
r u, v) = a(u, v) ∀v ∈ U (m)

r for m = 0, ...,M, r ∈ R(m). (4.102)

We deduce immediately from the definitions that

V(L) =
L

+
ℓ=0
+

n∈Λ(ℓ)

V(ℓ)
n =

M

+
m=0

+
r∈R(m)

U (m)
r = Z(M), (4.103)

PHPL =
L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n =

M∑

m=0

∑

r∈R(m)

Q(m)
r . (4.104)

Consider a fixed level m = 0, ...,M . We assume a similar chromatic decomposition as

(4.88)–(4.90)

C(m)
s :=

{
r ∈ R(m) : ωr has chromatic index s

}
s = 1, ..., B (4.105)

C(m)
s1

∩ C(m)
s2

= ∅ ∀ s1, s2 = 1, ..., B, s1 6= s2 (4.106)

ω(m)
r1

∩ ω(m)
r2

= ∅ ∀ r1, r2 ∈ C(m)
s , r1 6= r2. (4.107)

We define also

QC(m)
s

:=
∑

r∈C(m)
s

Qr. Thus, QC(m)
s
u ∈ U (m) ⊂ Z(m). (4.108)

4.2 Multilevel strengthened Cauchy inequality

With regard to the former patch reordering, we want to investigate now a multi-level

strengthened Cauchy-Schwarz inequality.

LEMMA. For µ = 0, ...,M , consider a function u ∈ Z(µ) from the diametrical

nestedness (4.100) and let m be such that µ ≤ m ≤ M . One has for each s = 1, ..., B

a(QC(m)
s
u, u) -

(2µ

2m

)
a
(
QC(m)

s
u,QC(m)

s
u
)1/2

a(u, u)1/2. (4.109)

4 PRECONDITIONER UPPER BOUND 22

(a) (b)

Figure 4: (a)Impossible: some fine elements are partly inside and partly outside a coarse

element, (b)Typical situation and chromatic intersections.

PROOF. All patches corresponding to Z(µ) have diameters larger than O(2−µ) ac-

cording to (4.92) and (4.93). Hence, due to the hierarchical refinements (2.16), there is

some M(ℓ) whose smallest patch has diameter O(2−µ) and all patches corresponding

to Z(µ) are union of elements of M(ℓ). Thus, u ∈ Z(µ) ⊂ V(ℓ).

Part 1. Consider first the case u ∈ V(X(ℓ)
k) for some fixed k = 1, ..., B such that

u =
∑

n∈X(ℓ)
k

un. Define J := a(QC(m)
s
u, u) =

∑
n1,n2∈X(ℓ)

k

a(QC(m)
s
un1, un2). A fine element

of a patch corresponding to Z(m) is either completely inside or completely outside a

coarse element of M(ℓ) (illustrated in Fig. 4). Hence,

int
[
supp(QC(m)

s
un1)

]
∩ int

[
supp(un2)

]
= int

[
supp(QC(m)

s
un1)

]
∩ int(ω(ℓ)

n2
) = ∅. (4.110)

As a consequence, J =
∑

n∈X(ℓ)
k

a(QC(m)
s
un, un). According to (4.108), one has

In := a(QC(m)
s
un, un) =

∑

r∈C(m)
s

a(Q(m)
r un, un) ∀n ∈ X

(ℓ)
k . (4.111)

Consider the patch ω
(ℓ)
n . For a patch ω

(m)
r which is inside an element T of ω

(ℓ)
n , one has

a(Q
(m)
r un, un) = aT (Q

(m)
r un, un) = 0 because ∇un is constant in T . Hence,

In =
∑

r∈F(m)
s

a(Q(m)
r un, un) = a(QF(m)

s
un, un) (4.112)

4 PRECONDITIONER UPPER BOUND 23

where F (m)
s consists of the indices of the patches in C(m)

s which intersect the faces (edges

in 2D and triangles in 3D) of ω
(ℓ)
n . Thus, define F := (∪

r∈F(m)
s
ω
(m)
r) ∩ ω(ℓ)

n . Deduce

In = aF (QF(m)
s
un, un) (4.113)

≤ aF (QF(m)
s
un, QF(m)

s
un)

1/2aF (un, un)
1/2 (4.114)

≤ a(QF(m)
s
un, QF(m)

s
un)

1/2aF (un, un)
1/2 (4.115)

= a(QF(m)
s
un, un)

1/2aF (un, un)
1/2 (4.116)

= a(QC(m)
s
un, un)

1/2aF (un, un)
1/2. (4.117)

Hence, I
1/2
n = a(QC(m)

s
un, un)

1/2 ≤ aF (un, un)
1/2. As a result,

In ≤ aF (un, un) ≤
vol(F)

vol(ω
(ℓ)
n)

a(un, un) ≤
vol[∪

r∈F(m)
s
ωr]

vol(ω
(ℓ)
n)

a(un, un) (4.118)

≤
∑

r∈F(m)
s

vol(ωr)

vol(ω
(ℓ)
n)

a(un, un) ≤ card(F (m)
s)

2−md

2−µd
a(un, un). (4.119)

By using mesh shape regularity, the number of fine patches ωr of diameters O(2−m) on

the faces of a coarse patch ω
(ℓ)
n of minimal diameter O(2−µ) is of order card(F (m)

s) =

O(2−µ(d−1)/2−m(d−1)) in dimension d = 2, 3. Hence,

In -
2µ

2m
a(un, un) ∀n ∈ X

(ℓ)
k . (4.120)

By taking the sum over X
(ℓ)
k whose patches are mutually disjoint,

J = a(QC(m)
s
u, u) -

∑

n∈X(ℓ)
k

2µ

2m
a(un, un) =

2µ

2m
a(u, u) ∀u ∈ V(X(ℓ)

k). (4.121)

Part 2. Now suppose u ∈ Z(µ) ⊂ V(ℓ) such that u =
∑B

k=1 uk where uk ∈ V(X(ℓ)
k).

Since B is finite, deduce from (4.121)

a(QC(m)
s
u, u) = a(QC(m)

s
u,QC(m)

s
u) =

∣∣∣QC(m)
s

(B∑

k=1

uk

)∣∣∣
2

H1(Ω)
(4.122)

-

B∑

k=1

|QC(m)
s

(uk)|2H1(Ω) =
B∑

k=1

a(QC(m)
s
uk, uk) (4.123)

-
2µ

2m

B∑

k=1

|uk|2H1(Ω) ≤
2µ

2m
|u|2H1(Ω) (4.124)

because the reunion of the patches of X
(ℓ)
k covers the entire Ω.

�

4 PRECONDITIONER UPPER BOUND 24

4.3 Multilevel higher order estimate

In the next description, we want to analyze the upper bound from (2.8).

THEOREM. For a polynomial degree p ≥ 1 and a function uhp ∈ Sp
h(Ω), the local

higher order operator PLHO
p and the hierarchical piecewise linear operator PHPL

p satisfy

a((PLHO
p + PHPL)uhp, uhp) ≤ C1

[
a(PHPL[P (L)uhp], P

(L)uhp) + a(uhp, uhp)
]

(4.125)

a(PHPL[P (L)uhp], P
(L)uhp) ≤ C2a(P

(L)uhp, P
(L)uhp) (4.126)

and hence

a((PLHO
p + PHPL)uhp, uhp) ≤ C3a(uhp, uhp) (4.127)

where C1, C2, C3 are constants independent of the mesh sizes h(ℓ), the polynomial degree

p and the maximal level L.

PROOF. On the one hand, we have

a
(
(PLHO

p + PHPL)uhp, uhp
)
= a(PLHO

p uhp, uhp) + a
(L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n uhp, uhp

)
. (4.128)

I := a
(L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n uhp, uhp

)
(4.129)

=

L∑

ℓ=0

∑

n∈Λ(ℓ)

a(P (ℓ)
n uhp, uhp) (4.130)

=
L∑

ℓ=0

∑

n∈Λ(ℓ)

a
(
P (ℓ)
n uhp, P

(L)uhp
)

(becauseP (ℓ)
n uhp ∈ V(L)) (4.131)

=

L∑

ℓ=0

∑

n∈Λ(ℓ)

a
(
P (ℓ)
n uhp, P

(ℓ)
n [P (L)uhp]

)
(becauseP (ℓ)

n uhp ∈ V(ℓ)
n) (4.132)

=
L∑

ℓ=0

∑

n∈Λ(ℓ)

a(uhp, P
(ℓ)
n [P (L)uhp]) (becauseP (ℓ)

n [P (L)uhp] ∈ V(ℓ)
n) (4.133)

=
L∑

ℓ=0

∑

n∈Λ(ℓ)

a(P (L)uhp, P
(ℓ)
n [P (L)uhp]) (becauseP (ℓ)

n [P (L)uhp] ∈ V(L)) (4.134)

= a(PHPL[P (L)uhp], P
(L)uhp). (4.135)

On the other hand, from the fact that supp(P(p,n)uhp) = ω
(L)
n , obtain

a(PLHO
p uhp, uhp) =

∑

n∈J (L)

a
ω
(L)
n

(P(p,n)uhp, uhp), (4.136)

4 PRECONDITIONER UPPER BOUND 25

a
ω
(L)
n

(P(p,n)uhp, uhp) = a
ω
(L)
n

(P(p,n)uhp, P(p,n)uhp). (4.137)

As a consequence,

J := a
ω
(L)
n

(uhp, uhp)− a
ω
(L)
n

(P(p,n)uhp, uhp) (4.138)

= a
ω
(L)
n

(P(p,n)uhp, P(p,n)uhp) + a
ω
(L)
n

(uhp, uhp)− 2a
ω
(L)
n

(P(p,n)uhp, uhp)(4.139)

= a
ω
(L)
n

([P(p,n)uhp]− uhp, [P(p,n)uhp]− uhp) (4.140)

= |P(p,n)uhp − uhp|2
H1(ω

(L)
n)

≥ 0. (4.141)

Hence,

a
ω
(L)
n

(P(p,n)uhp, uhp) ≤ a
ω
(L)
n

(uhp, uhp). (4.142)

By combining that with (4.136), obtain

a(PLHO
p uhp, uhp) ≤

∑

n∈J (L)

a
ω
(L)
n

(uhp, uhp) =
∑

n∈J (L)

|uhp|2ω(L)
n

. (4.143)

Since the patches intersect at most a finite number of times due to mesh shape regu-

larities and the reunion of ω
(L)
n for n ∈ J (L) covers the whole domain Ω, we have

a(PLHO
p uhp, uhp) ≤ |uhp|2H1(Ω). (4.144)

A combination of (4.128), (4.135) and (4.144) yields (4.125). Define uh := P (L)uhp ∈
Z(M) ≡ V(L) and

uµ := [Q(µ) −Q(µ−1)]uh ∈ Z(µ) if µ ≥ 1 (4.145)

u0 := Q(0)uh ∈ Z(0). (4.146)

Thus, one has Q(m)uh =
∑m

µ=0 u
µ. Use (4.108) and the fact that supp(Q

(m)
r1 uh) ∩

supp(Q
(m)
r2 uh) = ∅ for r1, r2 ∈ C(m)

s and r1 6= r2 to obtain:

K := a(QC(m)
s
uh, uh) = a(Q(m)uh, QC(m)

s
uh) (4.147)

= a(QC(m)
s
Q(m)uh, Q

(m)uh) = a(QC(m)
s
Q(m)uh, QC(m)

s
Q(m)uh) (4.148)

= |QC(m)
s
Q(m)uh|2H1(Ω) -

(m∑

µ=0

|QC(m)
s
uµ|H1(Ω)

)2

(4.149)

=
(m∑

µ=0

a(QC(m)
s
uµ, uµ)1/2

)2

. (4.150)

Since uµ ∈ Z(µ), use the strengthened Cauchy inequality (4.109) to obtain

K -
[m∑

µ=0

√
2µ

2m
a(uµ, uµ)1/2

]2
≤

[m∑

µ=0

√
2µ

2m

] [m∑

µ=0

√
2µ

2m
a(uµ, uµ)

]
, (4.151)

4 PRECONDITIONER UPPER BOUND 26

m∑

µ=0

√
2µ

2m
=

(1

2m

)1/2(1− (
√
2)m+1

1−
√
2

)
=

1

2m/2
O(2(m+1)/2 − 1) = O(1). (4.152)

As a result,

a(QC(m)
s
uh, uh) -

m∑

µ=0

√
2µ

2m
a(uµ, uµ). (4.153)

Take the sum over s and use

∑

r∈R(m)

Q(m)
r =

B∑

s=1

QC(m)
s

(4.154)

to obtain

∑

r∈R(m)

a(Q(m)
r uh, uh) -

B∑

s=1

m∑

µ=1

√
2µ

2m
a(uµ, uµ) = B

m∑

µ=1

√
2µ

2m
a(uµ, uµ). (4.155)

From (4.104), deduce

a(PHPLuh, uh) =
M∑

m=0

∑

r∈R(m)

a(Q(m)
r uh, uh) -

M∑

m=0

m∑

µ=1

√
2µ

2m
a(uµ, uµ). (4.156)

The remaining part is processed as above by noting from the orthogonality that

a(uh, uh) =
∑M

µ=0 a(u
µ, uµ) to obtain a(PHPLuh, uh) - a(uh, uh). That is,

a(

L∑

ℓ=0

∑

n∈Λ(ℓ)

P (ℓ)
n

[
P (L)uhp

]
, P (L)uhp) - a(P (L)uhp, P

(L)uhp) (4.157)

which provides (4.126). Proceed as in (4.137)– (4.142) to obtain a(P (L)uhp, uhp) ≤
a(uhp, uhp). By combining that with (4.144) and (4.157), deduce

a((PLHO
p + PHPL)uhp, uhp) - a(uhp, uhp). (4.158)

�

REMARK. The assumptions (4.88)–(4.90) are natural for quasi-uniform meshes.

Indeed, they are based on graph theory in the context of chromatic problems (see [16]

and the references there). One defines a graph G where one associates a graph vertex

to a patch. Two graph vertices are connected by a graph edge if the closure of their cor-

responding patches intersect. The degree of the graph vertex v is the number of graph

edges emanating from v. The maximum vertex degree ∆ is bounded due to mesh regu-

larity. Hence, the chromatic decomposition is derived from graph theoretic arguments.

The above number B is any number larger than the chromatic number χ(G) which is

either ∆ or (∆ + 1) due to Brook’s theorem.

�

5 HIGHER ORDER FEM FOR ELLIPTIC SYSTEMS 27

5 Higher order FEM for elliptic systems

In this section, we want to carry the previous method over to elliptic systems. Through-

out, vector values are supposed to be column vectors. Thus, the scalar product of a and

b is denoted by aTb while the norm is denoted by |a| =
√
aTa. The vector/matrix val-

ued Sobolev spaces are component-wise of the scalar valued Sobolev spaces. A partial

differential operator acting on u : Ω ⊂ R
d −→ R

m which is a vector valued function is

Lu = −
d∑

i=1

d∑

j=1

∂i
(
Aij(x)∂ju

)
+

d∑

i=1

Bi(x)∂iu+C(x)u (5.159)

such that Lu : Ω −→ R
m. The coefficients are matrix valued functions Aij(x) =

[aklij (x)]
m
k,l=1, Bi(x) = [bkli (x)]

m
k,l=1, C(x) = [ckl(x)]mk,l=1 such that aklij : Ω −→ R

m,

bkli : Ω −→ R
m, ckl : Ω −→ R

m. The associated bilinear form is

A(u,v) =

∫

Ω

(d∑

i=1

d∑

j=1

(
Aij(x)∂ju

)T
∂iv+

d∑

i=1

(Bi(x)∂iu)
Tv+(C(x)u)Tv

)
dx. (5.160)

The coefficients of L are assumed to have adequate properties such that A is continuous

and coercive with respect to [H1(Ω)]m. They are related by

(Lu,v)Ω = A(u,v)− (Bnu,Trace(v))Γ (5.161)

where Bnu is the conormal derivative

Bnu =

d∑

i=1

niTrace
[d∑

j=1

Aij∂ju
]

on Γ = ∂Ω (5.162)

with n = (n1, ..., nd) being the outward unit normal vector. We consider only the

Poisson and the elasticity cases. In the former case, one has d = 2, 3 and m = 1 while

the coefficients in the principal part of (5.159) are Aij = δi,j and the other coefficients

vanish. In the case of elasticity, the domain Ω is an elastic model which admits the

elastic properties that are specified by the Lamé coefficients (λ, µ) whose relation with

the Young’s modulus E and the Poisson ratio ν is:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (5.163)

When the model Ω is subject to a body force and prescribed boundary conditions, it

has the displacement function u : Ω −→ R
d whose strain tensor is defined as

εij(u(x)) :=
1

2

(
∂jui(x) + ∂iuj(x)

)
for x ∈ Ω. (5.164)

5 HIGHER ORDER FEM FOR ELLIPTIC SYSTEMS 28

According to the Hook’s law for the stress-strain relation, the stress tensor is given by

σij(u) = µ(∂jui + ∂iuj) + λ
∑

k

(∂kuk)δi,j (5.165)

= 2µεij(u) + λ(divu)δi,j . (5.166)

In term of tensors where ∇u denotes the matrix having ∂iuj as coefficients, we have

ε(u) =
[
εij(u)

]
i,j

= 0.5
[
(∇u) + (∇u)T

]
and σ(u) =

[
σij(u)

]
i,j
, (5.167)

We consider the interior Navier-Lamé equation with Dirichlet boundary condition:

−div
[
σ

(
u(x)

)]
= f(x) for x ∈ Ω

σ

(
u(x)

)
= 2µε

(
u(x)

)
+ λTrace

[
ε

(
u(x)

)]
Id for x ∈ Ω

u(x) = 0 for x ∈ Γ = ∂Ω

(5.168)

in which f represents a given body/volume force function. The above Navier-Lamé

equation corresponds to the partial differential operator L coinciding with its principal

part
(
Bi(x) = C(x) = 0

)
such that m ≡ d and the coefficients in 2D and 3D are

respectively

A11 =

[
E(1−ν)

(1+ν)(1−2ν)
0

0 E
2(1+ν)

]
,A12 =

[
0 E

4(1+ν)(1−2ν)
E

4(1+ν)(1−2ν)
0

]
,

A21 =

[
0 E

4(1+ν)(1−2ν)
E

4(1+ν)(1−2ν)
0

]
,A22 =

[
E

2(1+ν)
0

0 E(1−ν)
(1+ν)(1−2ν)

]
,

(5.169)

A11 =

E(1−ν)
(1+ν)(1−2ν)

0 0

0 E
2(1+ν)

0

0 0 E
2(1+ν)

 ,A12 =

0 Eν
(1+ν)(1−2ν)

0
E

2(1+ν)
0 0

0 0 0

 ,

A13 =

0 0 Eν
(1+ν)(1−2ν)

0 0 0
E

2(1+ν)
0 0

 ,A21 =

0 E
2(1+ν)

0
Eν

(1+ν)(1−2ν)
0 0

0 0 0

 ,

A22 =

E
2(1+ν)

0 0

0 E(1−ν)
(1+ν)(1−2ν)

0

0 0 E
2(1+ν)

 ,A23 =

0 0 0

0 0 Eν
(1+ν)(1−2ν)

0 E
2(1+ν)

0

 ,

A31 =

0 0 E
2(1+ν)

0 0 0
Eν

(1+ν)(1−2ν)
0 0

 ,A32 =

0 0 0

0 0 E
2(1+ν)

0 Eν
(1+ν)(1−2ν)

0

 ,

A33 =

E
2(1+ν)

0 0

0 E
2(1+ν)

0

0 0 E(1−ν)
(1+ν)(1−2ν)

 .

(5.170)

5 HIGHER ORDER FEM FOR ELLIPTIC SYSTEMS 29

The differential operator L is associated to the bilinear form

A(u,v) =

∫

Ω

∑

i,j

2µεij
(
u(x)

)
εij

(
v(x)

)
+ λdiv

(
u(x)

)
div

(
v(x)

)
dx (5.171)

=

∫

Ω

ε(u(x)) : σ(v(x)) dx (5.172)

where A : B :=
∑

i,j AijBij . The resulting energy norm ||| • |||E := A(•, •)1/2 is

∣∣∣∣∣∣u
∣∣∣∣∣∣2
E
= 2µ

∥∥
ε(u)

∥∥2

[L2(Ω)]d×d + λ
∥∥div(u)

∥∥2

L2(Ω)
. (5.173)

The conormal derivative (5.162) of a function u is given component-wise by

[Bnu]i(x) =
d∑

j=1

nj(x)σij [u(x)] (5.174)

which coincides with the traction in engineering applications. The Galerkin variational

formulation is
∫

Ω

ε[u(x)] : σ[v(x)]dx =

∫

Ω

[f(x)]Tv(x)dx ∀v ∈
[
H1

0(Ω)
]d
. (5.175)

The approximated variational formulation consists in searching for uh ∈ Sp
h such that

∫

Ω

ε[uh(x)] : σ[vh(x)]dx =

∫

Ω

[f(x)]Tvh(x)dx ∀vh ∈ Sp
h(Ω) (5.176)

where

Sp
h(Ω) :=

{
W ∈

[
C0(Ω) ∩H1

0(Ω)
]d

∣∣∣∣∣
W = (W1, ...,Wd),

Wi ∈ Pp(T) ∀T ∈ M, ∀ i = 1, ..., d

}
.

Under some adequate assumptions on the Lamé coefficients, there exists some constant

C > 0 such that

C

d∑

j,l=1

(ηlj)
2 ≤

d∑

i,j,k,l=1

aklijη
l
jη

k
i . (5.177)

In addition, the continuity of A(•, •) with respect to
[
H1(Ω)

]d
is obvious because

the coefficients Ai,j ∈
[
L∞(Ω)

]d×d
. Thus, the description from the former sections

can be repeated for elliptic systems where A(•, •) plays the role of a(•, •) and the

Sobolev norm of
[
H1(Ω)

]d
is considered component-wise. We briefly expose now some

a-posteriori error estimates because we will need it to conduct adaptivity in the next

description. We define the following mutually disjoint subsets of faces (edges for d = 2

and triangular faces for d = 3)

E
0
h := set of faces of M on the boundary Γ = ∂Ω,

E
int
h := set of faces of M which are not included in Γ.

5 HIGHER ORDER FEM FOR ELLIPTIC SYSTEMS 30

Note that a face of Eint
h may have an endpoint in Γ. We introduce in addition the set

of all faces

Eh := E
0
h ∪ E

int
h . (5.178)

For a face e ∈ Eh, we denote

h(e) := diameter(e) = sup
{
|x− y|, x,y ∈ e

}
,

N (e) := set of elements of M having e as a side,

n(e) := unit normal vector orthogonal to e.

The direction of the normal vector n(e) is pointed toward the exterior of Ω if the

face e ∈ E
0
h. For the interior faces in E

int
h , the normal vectors n(e) are pointed in an

arbitrary but fixed orientation. For an element T = {(x0, y0), ..., (xd, yd)}, we denote

the barycentric coordinates by λi,T for i = 0, ..., d. The barycentric weight function is

expressed as

ωT (x) = λ0,T (x) · · ·λd,T (x) for x ∈ T (5.179)

which takes zero values at the boundary of the element T . It is a generalization of the

uni-dimensional Gegebauer weight (also known as Jacobi weight) which is defined on

the unit interval [0, 1] as

ω[0,1](t) := t(1− t) ∀ t ∈ [0, 1]. (5.180)

In [31, 32], the following weight function has been used

ωT (x) = distance(x, ∂T) ∀x ∈ T (5.181)

which is a bubble function vanishing at the boundary ∂T . The advantage of the Gegen-

bauer weight (5.179) is that it is not expensive to evaluate in practical computations.

We have described in [34] the following result related to inverse estimates in weighted

Sobolev spaces.

THEOREM. Given α, β such that −1 < α < β and some δ ∈ [0, 1]. By using the

generalized Gegenbauer weight

ωT̂ (x) = λ0,T̂ (x) · · ·λd,T̂ (x) (5.182)

for x = (x1, ..., xd) in the reference element

T̂ =
{
x = (x1, ..., xd) ∈ R

d : 0 ≤ xi ≤ 1, i = 1, ..., d, 0 ≤ x1 + · · ·+ xd ≤ 1
}
, (5.183)

5 HIGHER ORDER FEM FOR ELLIPTIC SYSTEMS 31

one has for every bivariate polynomial πp of degree p ≥ 1
∫

T̂

[
πp(x)

]2
ωα
T̂
(x)dx ≤ C1p

2(β−α)

∫

T̂

[
πp(x)

]2
ωβ

T̂
(x)dx (5.184)

∫

T̂

∣∣∇πp(x)
∣∣2ω2δ

T̂
(x)dx ≤ C2p

2(2−δ)

∫

T̂

[
πp(x)

]2
ωδ
T̂
(x)dx (5.185)

∫

T̂

∣∣∇πp(x)
∣∣2ωT̂ (x)dx ≤ C3p

2

∫

T̂

[
πp(x)

]2
ωT̂ (x)dx. (5.186)

The constants are C1 = C1(α, β), C2 = C2(δ), C3 which do not depend on p.

For the case of Poisson, we apply the APEE from [31, 32] with the exception that we

use the barycentric weights (5.179) instead of (5.181). As for the elasticity, we suppose

that we dispose of the approximated solution uh and our purpose is to estimate the

error ‖u− uh‖[H1(Ω)]d. For an element T ∈ M, the interior estimator is defined as

ηinterα,T :=
h(T)

p

∥∥∥
(
fT + µ∆uh + (µ+ λ)grad(divuh)

)
ω
α/2
T

∥∥∥[
L2(T)

]d (5.187)

where fT designates the L2(T)-projection of the body force f onto the element T . The

estimator for an interior face e ∈ E
int
h having a normal vector n(e) is defined by means

of the stress tensor σ(uh) as

ηfaceα,e :=

√
h(e)

2p

∥∥∥
(
σ(uh)|T(1,e)n(e)− σ(uh)|T(2,e)n(e)

)
ωα/2
e

∥∥∥[
L2(e)

]d (5.188)

where T(1,e) and T(2,e) are the elements incident upon the face e. Since one needs com-

putable local estimators for an element-by-element computation, an interior element

T ∈ M is introduced

ηlocα,T :=
[
(ηinterα,T)2 +

∑

e⊂∂T, e∈Eint

h

(ηfaceα,e)2
]1/2

(5.189)

The local estimators add up to the global estimator:

ηα :=

√∑

T∈M
(ηlocα,T)

2. (5.190)

By using the above theorem the APEE ηα is reliable and efficient with respect to the

exact error. The principal role of an a-posteriori error estimator is twofold. For one,

it serves as gaining some idea of whether to continue or to abort a simulation. The

computation is aborted when the desired precision is provided by the estimator. A

further purpose of the error estimator is to identify the regions within the domain Ω

where the precision is unsatisfactory. Mesh refinements are therefore applied at those

regions to improve the local precision.

6 NUMERICAL EXPERIMENTS 32

6 Numerical experiments

We want now to present some results of the former method which was implemented

in C functions together with C++ classes. RABOOL is our in-house software which

treats h, p and hp FEM implementation. Its parallelization is based on message passing

carried out with MPI. The current hardware for the execution of this program is very

moderate in term of parallel computing but the program is designed to work on large

number of CPUs. We concentrate for now on optimizing the programming task (load

balancing, enhancing the local computing tasks, data compression and minimization

of inter-process communication), rather than on increasing the CPU counts. Porting

this program to a more powerful hardware is a matter of a little or no modification.

The computations have been executed on a computing equipment possessing a total

processing power of 4.1 GHz, a total memory 32 GB RAM and 8 CPUs. We have

already presented a partial result in [37] on a hardware admitting a larger number of

computing units (no more than 100 CPUs in general). Since then, the programming

has considerably developed in performance and in efficiency.

6.1 Numerical convergence

Before presenting our results about the higher order linear solver, we want to display

in this section some results about the convergence. Because a fast linear solver does

not make sense if the FEM-convergence is not even obtained. The scope of this section

is a little larger than the former description.

6.1.1 h-performance

Our first test consists in studying the h-performance in 2D and 3D where the polyno-

mial degree is fixed and the mesh size h is variable. The precisions of the solutions to the

Poisson and the Navier-Lamé equations are measured with respect to theH1-accuracies

|u−uh|H1(Ω),
∣∣u−uh

∣∣
[H1(Ω)]d

. Concerning d = 2, the exact solution is u(x) = sin(2πx1)

sin(2πx2) for the Poisson equation while it is u(x) =
[
sin(2πx1) sin(2πx2),sin(2πx1)

sin(2πx2)
]T

for the elasticity on the domain Ω which the unit square. Similar exact

solutions are used in the 3D case inside the unit cube. The expressions of the right hand

side are computed according to the Laplace operator and the Navier-Lamé operator

(5.168). One level incrementation amounts to reducing the mesh size from h to h/2

and we consider the polynomial degrees p = 1, 2, 3, 4. For each polynomial degree, the

FEM-level ranges from one to six in the 2D case, while it is from one to five in the

6 NUMERICAL EXPERIMENTS 33

3D case. For the elasticity simulation, the Lamé coefficients are (λ, µ) = (2, 1) in both

2 and 3 dimensions. The ratio ρp between the accuracy on level ℓ and the accuracy

on the preceding level ℓ − 1 for the polynomial degree p will be termed contraction

ratio. The accuracy results as well as the contraction ratios are collected in Table 1.

For the linear case where the polynomial degree p = 1, one has the contraction ratios of

ρ1 ≈ 2. Since the elastic parameter λ is small, the contraction ratio for p = 1 coincides

with the expectation. When the elastic material approaches incompressibility, i.e. the

value of the Poisson ratio ν is very close to 1/2 (or equivalently λ is very large), the

piecewise linear setting is not theoretically guaranteed to converge. That inconvenience

is better known as locking phenomenon [8, 45]. Known methods for avoiding the lock-

ing phenomenon include: (1)increase of the polynomial degree as done here where the

displacement formulation is used, (2)using mixed formulation. The contraction ratios

for the quadratic case are ρ2 ≈ 4, while those for the cases p = 3, 4 are ρ3 ≈ 8, ρ4 ≈ 16.

Those contraction ratios are not well perceived when the level is low. But as the levels

grow, they approach those ideal values for both equations and for both dimensions.

6.1.2 p-performance

Our next test consists in investigating the software for the case of increasing polyno-

mial degree which ranges from 1 to 13. That means, the whole mesh is kept intact from

beginning till the end of the simulation in both 2D and 3D. The corresponding results

are collected in Figure 5 where we consider the H1-accuracy in function of the polyno-

mial degrees. In the case of elasticity, the Lamé coefficients are again (λ, µ) = (2, 1).

Since the vertical axis is logarithmically scaled, this experiment highlights that all the

accuracies decrease exponentially proportional with the polynomial degree. For both

the Poisson and the elasticity equations, the slope of the curves are linear with respect

to the polynomial degree. The slope should somehow depend on the material proper-

ties. But this should be robust against the locking phenomenon even when the elastic

material approaches the incompressiblity.

6.1.3 hp-performance

The next tests related to hp-simulation need a reliable and efficient a-posteriori error

estimator. In our former investigation [34, 35], we conducted a comparison between

the H1-error and the error estimator ηα. We observed that the proposed estimators

capture the exact precision up to some constant factors. In fact, the decrease of the

exact and the estimated precisions follow the same pace as the FEM-level increases.

6
N
U
M
E
R
IC

A
L
E
X
P
E
R
IM

E
N
T
S

34

edge p = 1 p = 2 p = 3 p = 4

H1 ratio H1 ratio H1 ratio H1 ratio

P2 h 1.499157E+00 — 2.058470E-01 — 1.847078E-02 — 1.404930E-03 —

h/2 7.687939E-01 1.950012 5.287170E-02 3.893330 2.311419E-03 7.991100 8.908065E-05 15.771439

h/4 3.868795E-01 1.987166 1.331219E-02 3.971676 2.884402E-04 8.013512 5.586588E-06 15.945448

h/8 1.937528E-01 1.996769 3.334088E-03 3.992753 3.601128E-05 8.009718 3.493854E-07 15.989758

h/16 9.691559E-02 1.999191 8.339036E-04 3.998170 4.498358E-06 8.005428 2.183746E-08 15.999361

h/32 4.846270E-02 1.999798 2.084998E-04 3.999541 5.620954E-07 8.002837 1.364771E-09 16.000824

P3 h 9.240404E-01 — 1.821920E-01 — 2.604170E-02 — 2.970825E-03 —

h/2 4.719950E-01 1.957733 4.835779E-02 3.767583 3.293234E-03 7.907637 1.930138E-04 15.391775

h/4 2.372405E-01 1.989521 1.229169E-02 3.934186 4.121108E-04 7.991137 1.219399E-05 15.828601

h/8 1.187766E-01 1.997367 3.085998E-03 3.983052 5.152107E-05 7.998879 7.642363E-07 15.955785

h/16 5.940785E-02 1.999342 7.723235E-04 3.995732 6.440302E-06 7.999791 4.779921E-08 15.988471

E2 h 2.649210E+00 — 3.595189E-01 — 3.193651E-02 — 2.524193E-03 —

h/2 1.318714E+00 2.008934 8.993155E-02 3.997695 3.927106E-03 8.132327 1.610897E-04 15.669487

h/4 6.531989E-01 2.018855 2.241408E-02 4.012279 4.871867E-04 8.060782 1.012826E-05 15.904973

h/8 3.255080E-01 2.006706 5.597219E-03 4.004503 6.070882E-05 8.024974 6.340125E-07 15.974859

h/16 1.626051E-01 2.001831 1.398866E-03 4.001255 7.578446E-06 8.010721 3.964223E-08 15.993361

h/32 8.128354E-02 2.000468 3.496879E-04 4.000327 9.467285E-07 8.004878 2.481653E-09 15.974123

E3 h 1.794166E+00 — 1.033938E+00 — 3.444999E-01 — 7.299233E-02 —

h/2 1.641967E+00 1.092693 3.300826E-01 3.132361 4.712105E-02 7.310956 5.367026E-03 13.600145

h/4 8.555156E-01 1.919272 8.813140E-02 3.745346 5.973199E-03 7.888746 3.505492E-04 15.310336

h/8 4.332360E-01 1.974710 2.246687E-02 3.922727 7.486531E-04 7.978594 2.219947E-05 15.790881

h/16 2.176447E-01 1.990565 5.648322E-03 3.977618 9.368404E-05 7.991256 1.392836E-06 15.938323

Table 1: h-performance for fixed p: P2 (Poisson 2D), P3 (Poisson 3D), E2 (Elasticity 2D), E3 (Elasticity 3D).

6 NUMERICAL EXPERIMENTS 35

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Laplace 2D
Laplace 3D

Elasticity 2D
Elasticity 3D

Figure 5: p-performance for fixed h: H1-accuracy in function of the polynomial degrees.

We made also some tests consisting in considering several values of the parameter α.

For all values of α, the results highlight that the estimator ηα provides an efficient

estimation of the exact precision as predicted theoretically. In addition, the decrease of

the exact precision agrees well with the decrease of the error estimator ηα. In fact, the

estimations by ηα are somewhat influenced by the values of the chosen α. Nonetheless,

the values of ηα are comparatively of the same order up to some constant scaling factors.

For the choice between h-refinement (local mesh refinement) and p-refinement (eleva-

tion of the local polynomial degree), the algorithm of Melenk and Wohlmuth in [32]

is adopted. One considers the mean value (ηmean)2 = (1/NEL)
∑

T∈M(ηlocα,T)
2 and the

elements which are marked for refinements are those such that (ηlocα,T)
2 ≥ σ(ηmean)2

where σ ∈]0, 1[. The objective is to obtain errors which are almost evenly distributed

over the whole mesh. It estimates some error prediction ηpredT of the local error based

on the current a-posteriori error ηlocα,T and the local polynomial degree p(T). In the

case the a-posteriori error ηlocα,T is larger than the error prediction ηpredT , one applies

an h-refinement. Otherwise a p-refinement is applied. The prediction ηpredT is initial-

ized to be zero for each element T of the coarsest mesh. The prediction is updated

after each level by using some user defined parameters γh, γp and γn. Those param-

eters specify the predicted errors from the a-posteriori errors if an h-refinement, p-

refinement or no refinement is applied. We adjusted that algorithm [32] for the present

approach because the original algorithm in 2D subdivides each square element into 4

6 NUMERICAL EXPERIMENTS 36

LEV 2D-Poisson 2D-Navier-Lamé

DOF H1-precision e−b 3√DOF DOF H1-precision e−b 3√DOF

0 4 1.107624E-01 2.649138E-01 8 8.815498E-02 2.648880E-01

1 5 1.103790E-01 2.390882E-01 10 8.809492E-02 2.390632E-01

2 13 1.077094E-01 1.397896E-01 20 8.770824E-02 1.648068E-01

3 29 1.073813E-01 7.646354E-02 36 8.706460E-02 1.115570E-01

4 53 9.971684E-02 4.314053E-02 50 8.562632E-02 8.655094E-02

5 89 9.144426E-02 2.384604E-02 68 6.639722E-02 6.646144E-02

6 145 7.870403E-02 1.232349E-02 94 5.511038E-02 4.879548E-02

7 201 6.185181E-02 7.432974E-03 164 5.029478E-02 2.636375E-02

8 257 4.598861E-02 4.891222E-03 206 4.415346E-02 1.978428E-02

9 285 4.036611E-02 4.058640E-03 256 3.949101E-02 1.473456E-02

10 349 3.054567E-02 2.762501E-03 444 3.336900E-02 6.299483E-03

11 389 1.299518E-02 2.223630E-03 546 2.808065E-02 4.387905E-03

12 437 4.660595E-03 1.746417E-03 620 2.048220E-02 3.469132E-03

13 493 3.832219E-03 1.346005E-03 896 1.124385E-02 1.655756E-03

14 557 1.572809E-03 1.022898E-03 984 7.033895E-03 1.351387E-03

15 629 4.042444E-04 7.694428E-04 1,202 4.888993E-03 8.567602E-04

16 953 1.034520E-04 2.652396E-04 1,550 3.338474E-03 4.587395E-04

17 1,277 1.137615E-05 1.140711E-04 2,022 8.960010E-04 2.250312E-04

18 1,757 7.360366E-06 4.117962E-05 2,510 2.331511E-04 1.201331E-04

19 2,157 4.458395E-06 2.015441E-05 3,302 6.283955E-05 5.062823E-05

20 2,249 2.433081E-06 1.731962E-05 4,902 2.325025E-06 1.258035E-05

21 2,841 1.161687E-06 7.125928E-06 7,618 4.822623E-07 2.108407E-06

22 3,901 4.347448E-07 1.901241E-06 10,016 1.798561E-07 6.050828E-07

23 4,357 1.545851E-07 1.159540E-06 12,474 4.996987E-08 2.041158E-07

24 5,717 2.251104E-08 3.174668E-07 16,060 1.132655E-08 5.271890E-08

25 7,449 1.006277E-08 7.987819E-08 19,030 3.372471E-09 1.988127E-08

26 8,513 3.355966E-09 3.796796E-08 22,562 8.000827E-10 7.058949E-09

27 9,937 1.445934E-09 1.537449E-08 27,408 4.071905E-10 2.007069E-09

28 10,973 8.442681E-10 8.398452E-09 31,972 2.080706E-10 6.988078E-10

29 13,029 4.828502E-10 2.808004E-09 36,566 9.953700E-11 2.662628E-10

30 16,669 2.018127E-10 5.205461E-10 41,452 4.906904E-11 1.038840E-10

Table 2: Two dimensional hp-convergence by using pmax = 9 for the Poisson and the

Navier-Lamé admitting the material properties (λ, µ) = (2, 1).

6 NUMERICAL EXPERIMENTS 37

LEV 3D-Poisson 3D-Navier-Lamé

DOF H1 e−b 3√DOF DOF H1 e−b 3√DOF

0 21 3.81048E-03 5.68031E-01 63 6.59995E-03 5.50538E-01

1 27 3.80946E-03 5.40641E-01 81 6.59819E-03 5.22562E-01

2 35 3.79708E-03 5.11418E-01 267 6.59219E-03 3.80644E-01

3 133 3.78926E-03 3.51194E-01 357 6.57491E-03 3.45040E-01

4 205 3.77641E-03 2.98569E-01 543 6.56485E-03 2.94126E-01

5 423 3.70100E-03 2.14624E-01 1,209 6.47061E-03 2.02308E-01

6 633 3.63861E-03 1.72015E-01 2,076 6.30864E-03 1.47560E-01

7 1,019 3.35010E-03 1.27085E-01 2,790 5.90435E-03 1.21036E-01

8 1,531 3.11533E-03 9.41638E-02 4,278 4.43860E-03 8.75949E-02

9 2,133 2.51039E-03 7.14422E-02 6,789 3.53437E-03 5.84098E-02

10 3,153 1.81730E-03 4.94871E-02 9,540 2.35681E-03 4.15308E-02

11 4,019 1.36151E-03 3.84147E-02 12,282 1.99425E-03 3.14035E-02

12 5,735 1.19859E-03 2.54911E-02 20,298 1.75844E-03 1.67100E-02

13 6,913 1.07537E-03 2.01370E-02 34,179 1.20732E-03 7.68926E-03

14 8,451 8.21117E-04 1.53653E-02 54,213 5.09351E-04 3.42351E-03

15 10,397 4.95044E-04 1.13984E-02 112,845 1.51172E-04 7.11194E-04

16 16,229 2.37751E-04 5.57087E-03 252,216 2.64908E-05 7.65746E-05

17 22,097 1.32811E-04 3.17448E-03 454,446 5.55873E-06 9.80740E-06

18 27,911 6.60301E-05 1.99242E-03 832,266 1.61573E-06 7.45276E-07

19 33,743 1.46060E-05 1.32754E-03 1,273,572 1.22724E-07 8.68401E-08

20 39,611 3.10167E-06 9.22798E-04 1,670,292 1.63081E-08 1.86513E-08

21 45,425 8.89079E-07 6.65805E-04 — — —

22 51,257 8.69060E-08 4.92986E-04 — — —

23 184,613 1.33682E-08 8.52260E-06 — — —

24 300,971 5.29646E-09 1.08042E-06 — — —

25 417,611 1.00433E-09 2.21460E-07 — — —

26 528,527 2.61980E-10 6.33498E-08 — — —

27 692,291 7.41567E-11 1.33071E-08 — — —

28 1,054,325 2.30800E-11 8.68117E-10 — — —

29 1,323,029 8.49995E-12 1.68364E-10 — — —

30 2,022,995 3.58131E-12 5.49605E-12 — — —

Table 3: Three dimensional hp-convergence by using pmax = 9 for the Poisson and the

Navier-Lamé admitting the material properties (λ, µ) = (2, 1).

6 NUMERICAL EXPERIMENTS 38

sub-squares of the same size where hanging nodes could appear. We use 2D and 3D

bisections where a few elements could be refined without being marked [6, 7]. The

bisection refinement could spread locally in the vicinity of the marked elements but

the spreading is known to be finite and no domino effect could occur. In the case

that an element T has not been marked for refinement but it is anyway refined and

it is flagged to obtain a p-refinement, we modify the flag so that it has only an h-

refinement. The goal is to avoid an over-refinement where an element is both p-refined

and h-refined simultaneously. We used it for both the Poisson equation and the Navier-

Lamé equation where the elastic properties are (λ, µ) = (2, 1). The parameters taken

for the Poisson problem are σ = 0.75, γh = 0.4, γp = 5.0, γn = 1.0 whereas those

for the Navier-Lamé equation are σ = 0.75, γh = 0.6, γp = 9.0, γn = 1.0. By us-

ing pmax = 9, the convergence related to the 2D hp-adaptivity is collected in Table 2

where the H1-accuracies eH1 are displayed alongside the value of exp[−b(DOF)1/3].
The exact solution is taken as u(x, y) = x(x − 1)y(y − 1) exp[(x − 0.5)2 + (y − 0.5)2]

for the 2D-Poisson equation whereas we take that function componentwise for the 2D-

Elasticity. We consider refinements in the range level=0, ..., 30 and the expected accu-

racy of eH1 ≤ C exp[−b(DOF)1/3] is achieved. The used value in the 2D case amounts

to b ≈ 0.83 and b ≈ 0.66 for the Poisson and the Navier-Lamé equations respectively.

A similar computing has been done in the 3D case whose results are shown in Table 3.

The values of the parameters γh, γp and γn remain as in the 2D case. The exact solution

is u(x, y, z) = x(x− 1)y(y − 1)z(z − 1) exp[(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2] for the

3D-Poisson and it is used componentwise in the 3D-elasticity. We have also in the 3D

case the same exponential convergence exp[−b(DOF)1/3] where we use b ≈ 0.21 and

b ≈ 0.15 for the Poisson and elasticity respectively. The 3D-case of the Navier-Lamé

equation is aborted at level 20, on account of memory capacity. For the polynomial

degree pmax = 9, the matrix for the 3D case is rather dense because each tetrahedron

contains O(p3) local DOF for each of the three components. We want now to show the

benefit of hp-adaptivity over other refinements where we consider the exact solution

in both coordinates x(x − 1)y(y − 1) exp
[
− β((x − 0.25)2 + (y − 0.75)2)

]
in which

β = 1.0E + 4 and the elastic material properties are (λ, µ) = (5, 1.25). We take the

estimator η0.5 and we consider the polynomial degrees p = 1, 2, 3. Our next purpose

is to compare the uniform refinements and the adaptive ones. The degree of freedom

is used as a common reference measurement for all the computational tests. The out-

come of the simulation is plotted in Fig. 6 which displays the absolute H1-accuracy

in term of the degree of freedom. The starting mesh consists of a tensor product grid

having 18 elements. The advantage of adaptivity over the uniform refinements is as

follows. For the polynomial degrees p = 1, 2, 3, we need 588290, 588290, 1324802 DOFs

6 NUMERICAL EXPERIMENTS 39

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000 100000 1e+06 1e+07

Uniform refinement using p = 1
Uniform refinement using p = 2
Uniform refinement using p = 3
Adaptive refinement using p = 1
Adaptive refinement using p = 2
Adaptive refinement using p = 3
hp-adaptivity using pmax = 8
hp-adaptivity using pmax = 9
hp-adaptivity using pmax = 10

Figure 6: H1-accuracy as function of DOF for various refinements and polynomial

degrees. Elastic properties (λ, µ) = (5, 1.25).

to achieve the accuracies of 1.063621E − 02, 2.591986E − 03, 2.404479E − 04 respec-

tively in the case of uniform refinements. In contrast, the adaptive case requires only

108738, 136882, 645146 DOFs to produce more precise accuracies 9.490625E − 04,

1.852298E − 05, 6.224150E − 08. In addition, we perceive that for the elastic material

property (λ, µ) = (5, 1.25), the use of higher order FEM (p ≥ 2) already proves more

advantageous than the piecewise linear (p = 1) setting although that material can still

be categorized as absolutely compressible. Indeed, for comparable DOF≈ 100000, the

adaptive simulations using p = 1, 2, 3 yield respectively the accuracies of 9.490625E−04

(DOF=108738), 2.576346E−05 (DOF=99282) and 1.039906E−06 (DOF=104444). As

observed in Fig. 6, that advantage of higher order computation over the piecewise lin-

ear case is also plainly perceived in the uniform case. We consider the maximal degrees

pmax = 8, 9, 10 for the hp-computations. All three outperform the adaptive simulations

using fixed polynomial degrees. For the case pmax = 8, we obtained for DOF = 40590

the accuracy of 3.193302E − 10. The value DOF = 43214 for pmax = 9 yields the

accuracy 4.630825E− 11. As for pmax = 10, an accuracy of 5.695637E− 11 is obtained

from DOF = 34642. In the current implementation, we need to fix the pmax because

our program constructs some set-up phase to accelerate the computations. Extending

the program to the case where pmax is not specified is a work on progress.

6 NUMERICAL EXPERIMENTS 40

6.2 Data distribution and parallel processing

We survey here the implementation infrastructure which is needed to carry out the

parallel multilevel p-FEM solver. The features of our parallel mesh processing are as

follows:

• Simplices other than nodes and elements are involved for the p-FEM while the

program operates in parallel for 2D and 3D.

• It supports parallel adaptive or uniform refinements where load balanced meshes

are distributed among the processors. Ghost tightening and parallel mesh redis-

tributions are supported.

• Element attributes are used for a domain Ω which is composed of subdomains

(e.g. internal/external subdomains in the case of interface problems). Those at-

tributes serve as identification of the belonging of an element to a subregion. They

are also needed if one assigns elastic material properties to the subdomains.

• Boundary conditions are represented as 1D/2D manifold pieces. The mapping

of a manifold element (segment in 2D/triangle in 3D) onto a volume element

(triangle in 2D/tetrahedron in 3D) is updated during parallel mesh refinements.

• For a meshM(ℓ) refined into a meshM(ℓ+1), cascading is used to exactly represent

higher order FE-functions in M(ℓ) as functions in M(ℓ+1) in any degree p.

• We have scalar/vector valued FE-functions in an arbitrary polynomial degree p

for the cascading process which is updated during the parallel mesh refinements.

Next, we want to survey those features briefly.

6.2.1 Load balancing

For a piecewise linear FEM setting, only node and tetrahedral information are required.

Additional information are needed for higher order FEM setting: nodes (0-simplex),

edges (1-simplex), triangular faces (2-simplex), tetrahedral cells (3-simplex), in order

to ensure global continuity of the p-FEM shape functions at incident elements. The

mesh M is decomposed into Np sub-meshes where Np is the number of processors so

that every processor generates, stores and updates its own information concerning its

own simplices. That is, M =
⋃Np

i=1Mloc
i such that Mloc

i ∩Mloc
j is not always completely

disjoint. As an illustration, we have in Fig. 1 a 3D situation where some meshes are

6 NUMERICAL EXPERIMENTS 41

Figure 7: Mesh distribution among the processors

decomposed onto the processors. We organize synchronous indexation of the simplices

at the inter-domain where some σ-simplices are shared by different processors. For a

FEM simulation using polynomials of degree p, every processor manages: (1)the σ-

simplices which are strictly members of its subdomain where σ ∈ Jp,(2)the few shared

duplicated σ-simplices related to the neighboring subdomain for all σ ∈ Jp, (3)the

local σ-simplices incident upon every local tetrahedron. The reason for having such a

non-disjoint mesh decomposition is that during the subsequent FEM matrix assembly,

each unknown FEM-variable on a local processor requires all information related to the

tetrahedra where its corresponding FEM shape function is supported. Only the initial

coarse mesh is stored by the root processor. All subsequent tasks are performed in

a distributed manner: refinements, generation and storing of the geometric simplices.

The size of the parallel data is only limited by the available computer memory and

the processor count. The objective of the distribution is to assign to all processors

comparable amount of computational tasks. The complete mesh M is decomposed

into Np submeshes admitting two properties. First, the submeshes are approximately

of similar size. Second, the measures of the area shared by adjacent submeshes are

as small as possible. As a consequence, the FEM-tasks assigned to the processors are

balanced: matrix assembly, numerical quadrature for the right hand side, the linear

solver and the a-posteriori estimators. Additionally, the communications between the

adjacent processors are minimal. The way of obtaining the distributed decomposition

is to first split M into M =
⋃Np

i=1 M̃loc
i such that the submeshes M̃loc

i are mutually

6 NUMERICAL EXPERIMENTS 42

Proc. σ = 0 σ = 1 σ = 2 σ = 3

count ratio count ratio count ratio count ratio

0 130,767 1.0044 843,290 1.0396 1,410,500 1.0395 697,976 1.0394

1 128,687 0.9885 811,763 1.0008 1,357,966 1.0008 672,126 1.0009

2 131,004 1.0062 822,910 1.0145 1,376,150 1.0142 680,923 1.0140

3 128,860 0.9898 799,451 0.9856 1,337,560 0.9858 662,115 0.9860

4 130,968 1.0060 822,638 1.0142 1,375,831 1.0140 680,825 1.0138

5 128,853 0.9897 798,000 0.9838 1,335,909 0.9846 661,552 0.9851

6 132,085 1.0146 807,937 0.9960 1,350,355 0.9952 667,976 0.9947

7 130,300 1.0008 783,179 0.9655 1,310,582 0.9659 648,882 0.9662

All 1,041,524 6,489,168 10,854,853 5,372,375

Table 4: Load-balancing of the data among 8 parallel processors.

disjoint. Thereafter, each submesh Mloc
i is deduced by enlarging M̃loc

i . Every σ-simplex

M̃loc
i is assigned to one and only one supporting processor Pi. Those simplices will

be termed the adherent simplices with respect to their corresponding processor Pi or

submeshes M̃loc
i , Mloc

i . A σ-simplex s is a ghost simplex w.r.t. a processor Pi if s is

adherent to another processor Pj and if s is incident upon a tetrahedron having an

adherent simplex belonging to Pi. The enlargement margin between M̃loc
i and Mloc

i

is composed of the ghost simplices. Every processor stores its own adherent simplices

and duplications of ghost simplices from incident submeshes. One employs a graph

which is assembled by using a nodal distribution method. It utilizes a graph G based

on the element-element incidence of the mesh. One applies to the resulting graph G a

partitioning algorithm which consists in decomposing the graph G into Np subgraphs

Gloc
i of similar size where the number of graph-edges to be cut is minimal. For the

implementation, we have used METIS to achieve that task about graph partitioning.

Inter-processor information dispatching is unavoidable in order that the global mapping

is coherent. Since the number of graph-edges to be cut from the graph G has been made

minimal, the inter-process data transfer is also kept minimal. We examine now the sizes

of the distributed data among the processors. An efficient FEM computation requires

approximately the same amount of simplices in all processors. In Table 4, we gather

the distribution of the data in which 8 processors indexed from 0 to 7 are used. In that

table, we investigate the difference between the ideal number of σ-simplices and their

actual number in the submeshes Mloc
i . That is quantified by the ratio between the

average number of the σ-simplices and the number of the ones stored and generated

6 NUMERICAL EXPERIMENTS 43

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10

N
E

L
R

A
T

IO
 (

LO
C

/A
V

R
)

REFINEMENTS (WITH REDISTR.)

PROC[0]
PROC[1]
PROC[2]
PROC[3]
PROC[4]
PROC[5]
PROC[6]
PROC[7]

(a)

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

N
E

L
R

A
T

IO
 (

LO
C

/A
V

R
)

REFINEMENTS (WITHOUT REDISTR.)

PROC[0]
PROC[1]
PROC[2]
PROC[3]
PROC[4]
PROC[5]
PROC[6]
PROC[7]

(b)

Figure 8: Load balancing during refinements, ratio between local and average NEL for

each processor: (a)With redistribution, (b)Without redistribution.

by each processor. Although it is impossible to obtain the ideal ratio of unity for all

simplices, it can be observed that the proposed method enables a good balance on

the processors because all ratios approximate the unity in all σ-simplices. In fact, the

ranges of the ratio are [0.9897, 1.0146], [0.9655, 1.0396], [0.9659, 1.0395], [0.9662, 1.0394]

for the nodes, edges, triangles, and tetrahedra respectively.

6.2.2 Refinement redistribution

Most mesh refinements are based on two major methods: the red-green refinement

[11] and the bisection [7, 6]. We have used in this document the bisection approach

because it is simpler to ensure the nestedness (2.16) of the meshes. We adopt the

method in [6, 7] in which a bisection refinement is proposed where the aspect ratios

are guaranteed to be bounded. That method ensures the quasi-uniformity (2.17) of

the sequence of meshes M(ℓ). For local refinements, not only the marked elements

by the error estimator are refined, but also a few nearby elements. The method is

guaranteed to terminate when that local refinement spreading is applied. While the

parallel implementation of the bisection is not complicated except at the ghost region

shared by the processors, the procedure for load balancing is very involved. In fact,

depending on the solution of the PDE and the a-posteriori values, it is possible that the

elements marked by the estimator are accumulated on some processors while the meshes

in other processors are almost left unchanged. Therefore, we need a redistribution which

consists of two stages: (1)computing the new position of each element, (2)transferring

6 NUMERICAL EXPERIMENTS 44

Nb. all tetra. Average nel Min local nel Max local nel

17,252 2,156.5 2,156 2,157

106,626 13,328.25 13,154 13,571

177,866 22,233.25 21,654 22,852

488,807 61,100.88 60,036 62,135

1,339,353 167,419.13 164,121 169,853

3,744,518 468,064.75 452,012 485,463

10,582,995 1,322,874.38 1,281,907 1,364,748

30,348,046 3,793,505.75 3,401,494 3,880,868

Table 5: Global and local number of tetrahedra among processors after refinements

WITH redistribution.

the required mesh entities and updating the ghost region. That involves the assembly

of the parallel graph corresponding to the element-element adjacency of the global

mesh. After a parallel graph partitioning using PARMETIS format, the new positions

of the local mesh entities are determined. In the typical case for the refinement M(ℓ)

to M(ℓ+1), only a few local mesh entities need to be migrated while a large part of

the local mesh is kept unchanged. An efficient inter-processor procedure is used to

transfer as few information as possible. In addition, in each local mesh, local tasks are

minimized to incorporate only the new mesh entities and to discard the obsolete ones.

During the mesh refinements, we update also the boundary manifolds and the cascading

procedure which are described in the next sections. In order to show the importance of

redistributions, we start from the same number of tetrahedra in Tab. 5 and Tab. 6 where

the former uses redistribution while the latter omit mesh redistributions. For both tests,

the whole tetrahedra are distributed among 8 processors. As the refinement proceeds, it

is observed in Tab. 5 that the minimal/maximal numbers of tetrahedra in each processor

do not differ too much from the desired average number of elements. That implies

that the elements are well balanced among the processors. In contrast, the difference

between the minimal and maximal numbers of local elements is considerable in Tab. 6.

When the number of global tetrahedral reaches 30, 348, 046, the maximal number of

local elements (1, 594, 221) is almost 3 times as large as the minimal one (5, 574, 153).

That ratio is highlighted more clearly in Fig. 8 where we use 10 levels of refinements.

The ratios between the local number of elements and the average number of elements

are almost constantly unity when redistributions are utilized. As the refinement level

grows, omitting the redistribution process leads to a very unbalanced load.

6 NUMERICAL EXPERIMENTS 45

Nb. all tetra. Average nel Min local nel Max local nel

17,252 2,156.5 2,156 2,157

106,626 13,328.25 7,343 16,292

177,866 22,233.25 11,074 27,910

488,807 61,100.88 26,914 83,736

1,339,353 167,419.13 71,574 236,144

3,744,518 468,064.75 197,558 676,460

10,582,995 1,322,874.38 556,057 1,934,980

30,348,046 3,793,505.75 1,594,221 5,574,153

Table 6: Global and local number of tetrahedra among processors after refinements

WITHOUT redistribution.

6.2.3 Manifolds for boundary conditions

Our structure represents boundary conditions in form of manifold meshes on some

part of the boundary ∂Ω as illustrated in Fig. 9. It enables different types of boundary

conditions on various manifolds. It supports a mapping of a manifold element (segment

in 2D/triangle in 3D) onto a volume element (triangle in 2D/tetrahedron in 3D). Some

faces of Ω which is represented as a B-rep model can be chosen where different faces

can be combined to form a single manifold. In the case of 2D/3D problems, we have

1D/2D manifolds respectively. We have also some mapping µ of the p-basis functions

φΓ
i on the manifold mesh toward the p-basis functions φµ[i] in the volume mesh. That

functionality is useful when one wants to handle some functions on the boundary

manifold only. That applies also in the case that some functions defined on the boundary

have to be carried toward the volume mesh of the domain Ω. That is the case when

considering nonhomogeneous Dirichlet or Neumann boundary conditions. An instance

is the computation of the load function in the case of Neumann boundary condition:

IΓi =

∫

Γ

F (x)φΓ
i dΓ(x), R(µ[i]) =

∫

Ω

R(x)φµ[i]dx− IΓi . (6.191)

The right hand side using the volume integral has to be substracted from some in-

tegral defined on a boundary manifold. Another instance is the computation of the

a-posteriori error estimator where some values on the manifolds are needed. It simpli-

fies also the interpolation or the projection of any function onto the manifold piece as

piecewise p-polynomials. In our current implementation, the processor which contains

the volume block equally contains the corresponding manifold piece which maps onto

6 NUMERICAL EXPERIMENTS 46

(a) (b)

Figure 9: Boundary condition: (a)Facial manifold mesh mapped onto volume mesh,

(b)Manifolds are updated during volume mesh refinement and redistribution among 8

processors.

that block. The manifolds are updated as one modifies the volume mesh: ghost tight-

ening, refinements, redistributions as illustrated in Fig. 9(b). The backward mapping

is not assembled because some volume elements are unmapped and different manifold

elements may map onto the same volume element. That situation typically occurs in

the case of corners (see the top-left triangle in the unit square of Fig. 9(b)). Just like

the volume meshes, the manifold meshes can contain also some attribute information

in order to distinguish which manifold piece corresponds to which type of boundary

condition.

6.2.4 Scalar/vector valued cascading

The importance of cascading is in the determination of the initial guess of the CG-

iteration. Instead of starting from zero initial guess or a random initial guess on M(L),

it is advantageous to use the last solution from the previous meshM(L−1). That reduces

the total number of CG-iterations significantly although the error reduction between

two consecutive CG-iterates remains unchanged. Sometimes, two CG-iterations are

sufficient to achieve the desired accuracy when starting from a good initial guess. In

order to achieve that cascading procedure, it is important to have a functionality of

exactly expressing a p-FEM function in M(ℓ) in term of a function in M(ℓ+1) during

the refinement tasks. We have scalar/vector valued FE-functions using arbitrary poly-

nomial degrees for the cascading process. In the case of scalar-valued PDE such as the

6 NUMERICAL EXPERIMENTS 47

(a) (b)

Figure 10: Cascading for 8 processors: (a)A piecewise polynomial of degree p = 3 on

a coarse mesh M(ℓ1), (b)The same function expressed on a finer mesh M(ℓ2) ⊃ M(ℓ1).

The mesh distributions are load-balanced.

Laplace equation, a scalar-valued cascading suffices. For the case of vector-valued one

such as the Navier-Lamé equation, the component functions need to be treated as well.

The cascading procedure is performed together with the mesh processing: refinement,

ghost tightening, redistribution. That is, when there is some redistribution of the mesh

elements, requiring some data transfer, the FEM-values have to be shifted also by us-

ing inter-processor communications. For the piecewise linear setup (p = 1), the local

cascading is easily done because the values at the nodes completely determine the FE-

values. Thus, the value at the midpoint is the average of the two edge endpoint values

during each edge bisection. That is, the complicated tasks are those related to mesh

load balancing between the processors. As for the higher order setting (p ≥ 2), one has

to locally determine the new values in each element when one performs a bisection task.

We do the bisections on the reference element, and make a transformation toward the

elements to be bisected. Some look-up tables are precomputed on the reference element.

For a polynomial degree p in dimension d, two local matrices of size
(
p+d
p

)
are exactly

inverted by using an exact solver provided by some LAPACK routines. In Fig. 10,

an instance of cascading for the scalar-valued case is displayed. We consider there a

piecewise polynomial u of degree p = 3 in the unit cube. The function in Fig. 10(a)

corresponds to the projection of sin
[
2π(x+ 0.25)

]
sin

[
2π(y + 0.25)

]
sin

[
2π(z + 0.25)

]

6 NUMERICAL EXPERIMENTS 48

on the piecewise polynomial space on a coarse mesh. We apply a parallel mesh refine-

ment and redistribution using 8 processors where the upper part above the half plane

of the cube is refined. The same piecewise function is shown on the finer mesh on Fig.

10(b). The load is balanced:(1)since the local meshes on the upper blocks are denser,

it can be observed in Fig. 10(b) that the mesh volumes on the upper part are smaller

than those on the lower part, (2)the local numbers of elements for all processors remain

comparable.

6.3 Iteration counts

In this section, we would like to provide some numerical results related to the number

of iterations. We consider the Poisson and the elasticity equations in both 2D and

3D. We apply here a cascading approach, i.e. the initial guess of the CG-iteration on

the current level is derived from the last CG-iterate of the previous level. The abortion

criterion of the CG is when the CG-residual is dropped below 10−6. We consider uniform

polynomial degrees p ranging from 1 to 4. NEL stands for the number of elements. By

denoting by uINI, uFEM, uPDE the initial guess, the FEM-solution targeted by the CG-

iteration and the PDE-solution respectively, we have ‖uFEM−uINI‖ ≤ ‖uFEM−uPDE‖+
‖uPDE − uINI‖ which shows the importance of having a good initial guess. As the FE-

solution gets closer to the PDE-solution, the number of required CG-iterations becomes

small. That is more closely observed in Table 11. For the special case of polynomial

degree p = 4 in 3D simulation, the number of local DOF is already very large. The

size of the ASM block per node n is of order (m/6)(p + 1)(p + 2)(p + 3) where m

denotes the number of tetrahedral elements admitting n as an apex. Due to its large

size, we decompose the blocks further into sub-blocks having much lower local DOF.

We use than the sub-blocks instead of the original ASM blocks. For the other cases

(the 2D-case and the 3D-case where p ≤ 3), that method using sub-blocks does not

seem to be necessary. Our experience about the hp-simulation is that it requires a very

precise accuracy of the CG-solver. In contrast to the fixed polynomial setting, the CG-

residual should be dropped to the order between 10−12 and 10−15 in order to achieve the

Galerkin accuracy of the hp-FEM computation. The proposed theory estimates only the

number of required iterations which is not the only important factor when considering

a preconditioner. Other important practical factors in choosing a preconditioner is a

tight memory requirements, (2)speed of each iteration. The presented preconditioner

PHPL needs only to store A(φ
(ℓ)
i , φ

(ℓ)
i) for every level ℓ. That means that an extra-

storage of O(N) is adequate to store the preconditioner where N denotes the number

of nodes on the finest level. The cost of computation is equivalent to that storage.

6
N
U
M
E
R
IC

A
L
E
X
P
E
R
IM

E
N
T
S

49

Level NEL p = 1 p = 2 p = 3 p = 4

DOF #ITER DOF #ITER DOF #ITER DOF #ITER

1 18 4 2 25 7 64 8 121 9

2 36 13 6 61 8 145 8 265 8

3 72 25 7 121 7 289 7 529 6

4 144 61 10 265 11 613 7 1,105 6

5 288 121 11 529 9 1,225 6 2,209 3

6 576 265 13 1,105 11 2,521 6 4,513 3

7 1,152 529 14 2,209 8 5,041 5 9,025 2

8 2,304 1,105 17 4,513 9 10,225 5 18,241 2

9 4,608 2,209 15 9,025 6 20,449 4 36,481 1

10 9,216 4,513 18 18,241 8 41,185 4 73,345 1

11 18,432 9,025 16 36,481 5 82,369 3 146,689 1

12 36,864 18,241 19 73,345 5 165,313 3 294,145 1

13 73,728 36,481 15 146,689 5 330,625 2 588,289 1

14 147,456 73,345 18 294,145 5 662,401 1 1,178,113 1

15 294,912 146,689 14 588,289 4 1,324,801 1 2,356,225 1

16 589,824 294,145 17 1,178,113 4 2,651,905 1 4,715,521 1

17 1,179,648 588,289 14 2,356,225 3 5,303,809 1 9,431,041 1

18 2,359,296 1,178,113 15 4,715,521 3 10,612,225 1 18,868,225 3

19 4,718,592 2,356,225 12 9,431,041 3 21,224,449 1 37,736,449 1

20 9,437,184 4,715,521 14 18,868,225 2 42,458,113 3 — —

21 18,874,368 9,431,041 11 37,736,449 3 — — — —

22 37,748,736 18,868,225 12 — — — — — —

Table 7: 2D-Laplace: PCG-iteration counts by using cascading and bisection as refinement.

6
N
U
M
E
R
IC

A
L
E
X
P
E
R
IM

E
N
T
S

50

Level NEL p = 1 p = 2 p = 3 p = 4

DOF #ITER DOF #ITER DOF #ITER DOF #ITER

1 18 8 4 50 10 128 11 242 11

2 36 26 9 122 11 290 11 530 10

3 72 50 11 242 12 578 12 1,058 8

4 144 122 15 530 16 1,226 12 2,210 10

5 288 242 16 1,058 14 2,450 11 4,418 6

6 576 530 21 2,210 18 5,042 13 9,026 6

7 1,152 1,058 21 4,418 15 10,082 10 18,050 3

8 2,304 2,210 26 9,026 17 20,450 10 36,482 4

9 4,608 4,418 25 18,050 12 40,898 6 72,962 2

10 9,216 9,026 28 36,482 14 82,370 6 146,690 2

11 18,432 18,050 26 72,962 9 164,738 5 293,378 1

12 36,864 36,482 29 146,690 10 330,626 5 588,290 1

13 73,728 72,962 26 293,378 7 661,250 3 1,176,578 1

14 147,456 146,690 28 588,290 7 1,324,802 4 2,356,226 1

15 294,912 293,378 25 1,176,578 6 2,649,602 2 4,712,450 1

16 589,824 588,290 27 2,356,226 6 5,303,810 3 9,431,042 1

17 1,179,648 1,176,578 24 4,712,450 6 10,607,618 1 18,862,082 4

18 2,359,296 2,356,226 26 9,431,042 6 21,224,450 2 — —

19 4,718,592 4,712,450 24 18,862,082 5 — — — —

20 9,437,184 9,431,042 25 37,736,450 5 — — — —

21 18,874,368 18,862,082 23 — — — — — —

Table 8: 2D-Elasticity: PCG-iteration counts by using cascading and bisection as refinement.

6
N
U
M
E
R
IC

A
L
E
X
P
E
R
IM

E
N
T
S

51

Level NEL p = 1 p = 2 p = 3 p = 4

DOF #ITER DOF #ITER DOF #ITER DOF #ITER

1 192 21 1 187 5 689 7 1,719 8

2 384 27 1 343 5 1,331 7 3,375 7

3 768 91 3 855 7 3,059 8 7,471 8

4 1,536 235 5 1,815 8 6,275 8 15,151 7

5 3,072 343 6 3,375 9 12,167 8 29,791 5

6 6,144 855 9 7,471 11 25,991 9 62,559 8

7 12,288 2,199 12 15,919 12 53,447 8 127,071 6

8 24,576 3,375 9 29,791 9 103,823 7 250,047 3

9 49,152 7,471 12 62,559 12 214,415 8 512,191 4

10 98,304 18,991 14 133,215 11 440,975 7 1,040,575 3

11 196,608 29,791 11 250,047 7 857,375 5 2,048,383 1

12 393,216 62,559 16 512,191 11 1,742,111 7 4,145,535 3

13 786,432 157,791 17 1,089,727 11 3,582,239 5 8,421,759 2

14 1,572,864 250,047 13 2,048,383 6 6,967,871 3 16,581,375 1

15 3,145,728 512,191 19 4,145,535 7 14,045,759 5 — —

16 6,291,456 1,286,335 21 8,814,975 8 — — — —

17 12,582,912 2,048,383 16 16,581,375 6 — — — —

18 25,165,824 4,145,535 23 — — — — — —

Table 9: 3D-Laplace: PCG-iteration counts by using cascading and bisection as refinement.

6
N
U
M
E
R
IC

A
L
E
X
P
E
R
IM

E
N
T
S

52

Level NEL p = 1 p = 2 p = 3 p = 4

DOF #ITER DOF #ITER DOF #ITER DOF #ITER

1 24 3 1 45 3 195 7 525 13

2 48 3 1 81 4 375 9 1,029 12

3 96 27 2 273 8 1,023 11 2,565 15

4 192 63 1 561 10 2,067 10 5,157 15

5 384 81 1 1,029 11 3,993 10 10,125 17

6 768 273 9 2,565 15 9,177 15 22,413 21

7 1,536 705 13 5,445 17 18,825 15 45,453 23

8 3,072 1,029 14 10,125 16 36,501 15 89,373 15

9 6,144 2,565 18 22,413 21 77,973 16 187,677 20

10 12,288 6,597 25 47,757 24 160,341 15 381,213 17

11 24,576 10,125 21 89,373 18 311,469 13 750,141 9

12 49,152 22,413 28 187,677 24 643,245 12 1,536,573 12

13 98,304 56,973 36 399,645 26 1,322,925 13 3,121,725 9

14 196,608 89,373 28 750,141 17 2,572,125 9 6,145,149 5

15 393,216 187,677 37 1,536,573 23 5,226,333 10 — —

16 786,432 473,373 43 3,269,181 24 10,746,717 9 — —

17 1,572,864 750,141 31 6,145,149 14 — — — —

18 3,145,728 1,536,573 41 12,436,605 19 — — — —

19 6,291,456 3,859,005 47 — — — — — —

20 12,582,912 6,145,149 36 — — — — — —

21 25,165,824 12,436,605 43 — — — — — —

Table 10: 3D-Elasticity: PCG-iteration counts by using cascading and bisection as refinement.

6 NUMERICAL EXPERIMENTS 53

Level NEL DOF #ITER H1-accuracy L2-accuracy

p-MDS ParaSail

1 18 25 7 6 1.483362E+00 7.804007E-02

2 72 121 10 10 4.442698E-01 1.019997E-02

3 288 529 13 17 1.176018E-01 1.294636E-03

4 1,152 2,209 14 32 2.986315E-02 1.627913E-04

5 4,608 9,025 13 60 7.496013E-03 2.039017E-05

6 18,432 36,481 9 115 1.875926E-03 2.565685E-06

7 73,728 146,689 5 210 4.691064E-04 3.846821E-07

8 294,912 588,289 4 417 1.172908E-04 1.496870E-07

9 1,179,648 2,356,225 6 808 2.932161E-05 1.256920E-08

10 4,718,592 9,431,041 3 1,413 7.331019E-06 8.361510E-09

11 18,874,368 37,736,449 3 2,918 1.833412E-06 6.159913E-09

Table 11: Comparison with ParaSail solver for p = 2.

The contribution of the local higher order term PLHO is computed on the fly as it

applies only locally on the highest level. More results for the hp-simulation will be

defered in a subsequent article because the cascading process is not yet available in

that case.

ParaSail is a general purpose linear solver which is not restricted to PDE applications.

It treats sparse matrices and it functions in parallel using an MPI-implementation.

It uses a sparse approximate inverse. That is achieved by using an approximation in

the least-square sense [17] in term of the Froebenius norm. It does not exploit the

hierarchy in the nested mesh refinement. It only treats the final mesh and it constructs

its own hierarchy internally. We adopt only the default values of the parameters. In

term of higher order FEM, ParaSail appears to perform better in 3D than in 2D for a

reason that we do not know. The ParaSail implementation is described in [18]. We use

it only as a black-box solver by converting our data to its structure. For both tests,

the abortion criterion of the CG is 10−6. Our own experience concerning the parallel

use of ParaSail for the 3D higher order FEM is documented in [37] which includes the

Poisson-Boltzmann equation admitting highly discontinuous coefficients.

6 NUMERICAL EXPERIMENTS 54

Conclusion and outlook

We have exposed a linear solver for higher order FEM which is applied to elliptic sys-

tems. We do not assume H2 smoothness of the solution and the preconditioner lower

and upper bounds have been thoroughly analyzed. Concerning the memory consump-

tion, the preconditioner is light-weight, indeed it necessitates only O(N) extra-storage

where N is the number of nodes. The numerical results corroborate the efficiency of the

solver for both the Laplace and the Navier-Lamé equations. The solver has been suc-

cessfully compared with a black-box solver. We investigated the numerical convergence

and the number of iterations in 2 and 3 dimensions.

As an outlook, the presented preconditioner can be used for other purposes. For in-

stance, in the case of solving generalized eigenvalue problems originating from PDE, say

Ax = λMx where A is the stiffness matrix and M is the mass matrix. The LOBPCG

(Locally Optimal Block Preconditioned Conjugate Gradient) is a standard iterative

method for searching for eigenvalues and their respective eigenvectors. In every iter-

ation of LOBPCG, it is needed to provide a preconditioner P ≈ (A − λM)−1. For a

very small value of λ, it is typical to just use a preconditioner for A, whereas larger

eigenvalues are more difficult to approximate by LOBPCG using P ≈ A−1. Thus, the

use of a black-box preconditioner does not appear to be optimal in such a case. With

that regard, the advantage of the current preconditioner over some other ones is that

it only accesses A(φ
(ℓ)
i , φ

(ℓ)
i) and M(φ

(ℓ)
i , φ

(ℓ)
i) on every level ℓ. Thus, for a certain it-

erate λk provided by the LOBPCG algorithm, accessing A(φ
(ℓ)
i , φ

(ℓ)
i) − λkM(φ

(ℓ)
i , φ

(ℓ)
i)

is adequate to construct a preconditioner of (A − λM), at least when λk is close to

convergence (implied from the LOBPCG residuals). The initial guess for the eigen-

vectors can be deduced from the results of the previous level by using cascading as

presented in this document. We already have an implementation of LOBPCG but it

has not yet been coupled with this preconditioner. A combination of cascading and the

presented preconditioner would provide an efficient multilevel LOBPCG performance.

Another possible utility of this preconditioner is in the solving of saddle-point prob-

lems whose system is composed of blocks including a major block for elliptic systems.

Using the standard Bramble-Pasciak-CG to solve such a system would benefit from

this preconditioner for the elliptic block.

REFERENCES 55

References

[1] V. ADAMS, A. ASKENAZI, Building better products with finite element analysis,

OnWord Press, 1999.

[2] M. AINSWORTH, Pyramid algorithms for Bernstein-Bézier finite elements of

high, non-uniform order in any dimension, SIAM J. Sci. Comput. 36, No. 2, pp.

543–569, 2014.

[3] M. AINSWORTH, G. ANDRIAMARO, O. DAVYDOV, Bernstein-Bézier finite

elements of arbitrary order and optimal assembly procedures, SIAM J. Sci. Comput.

33, No. 6, 3087–3109, 2011.

[4] M. AINSWORTH, O. DAVYDOV, L. SCHUMAKER, Bernstein-Bézier finite el-

ements on tetrahedral-hexahedral-pyramidal partitions, Computer Methods in Ap-

plied Mathematics and Engineering 304, pp. 140–170, 2016.

[5] M. AINSWORTH, T. ODEN, A Posteriori error estimators for the Stokes and

Oseen equations, SIAM J. Numer. Anal. 34, pp. 228–245, 1997.

[6] D. ARNOLD, A. MUKHERJEE, Tetrahedral bisection and adaptive finite ele-

ments, In: Grid generation and adaptive algorithms (Minneapolis, MN). Springer,

Editors: M. Bern, J. Flahery and M. Luskin, 1997.

[7] D. ARNOLD, A. MUKHERJEE, L. POULY, Locally adapted tetrahedral meshes

using bisections, SIAM J. Sci. Comput. 22, No. 2, pp. 431–448, 2000.

[8] I. BABUSKA, M. SURI, Locking effects in the finite element approximation of

elasticity problems, Numer. Math. 62, No. 1, pp. 439–463, 1992.

[9] I. BABUSKA, M. SURI, The hp-version of the finite element method with qua-

siuniform meshes, ESAIM: Mathematical Modelling and Numerical Analysis 21,

No. 2, pp. 199–238, 1987.

[10] I. BABUSKA, On the h, p and h− p version of the finite element method, Tatra

Mountains Math. Publ. 4, No. 5–18, 1994.

[11] R. BANK, A. SHERMAN, A. WEISER, Some refinement algorithms and data

structures for regular local mesh refinement, In Scientific Computing, R. Stepleman

et al. 44, IMACS North-Holland, Amsterdam. pp. 3–17, 1983.

REFERENCES 56

[12] C. BERNARDI, Indicateurs d’erreur en h-N version des éléments spectraux,

Modélisation Mathématique et Analyse Numérique 30, No. 1, pp. 1–38, 1996.

[13] C. BERNARDI, M. DAUGE, Y. MADAY, Polynomials in the Sobolev world,

Preprint of the Laboratoire Jacques-Louis Lions, No. R03038, 2003.

[14] C. BERNARDI, Y. MADAY, Polynomial interpolation results in Sobolev spaces,

Journal of Computational and Applied Mathematics 43, No. 1–2, pp. 53–80, 1992.

[15] J. BRAMBLE, J. PASCIAK, J. XU, Parallel Multilevel Preconditioners, Math.

Comp. 55, pp. 1–22, 1990.

[16] R. BRUALDI, J. QUINN MASSEY, Incidence and strong edge colorings of graphs,

Discrete Mathematics 122, pp. 51–58, 1993.

[17] E. CHOW, Parallel implementation and performance characteristics of least

squares sparse approximate inverse preconditioners, Tech. Report UCRL-MA-

137863, Lawrence Livermore Nat. Lab., 2000.

[18] E. CHOW, A priori sparsity patterns for parallel sparse approximate inverse pre-

conditioners, SIAM J. Sci. Comput. 21, pp. 1804–1822, 2000.

[19] E. CREUSÉ, G. KUNERT, S. NICAISE, A posteriori error estimation for the

Stokes problem: anisotropic and isotropic discretizations, Mathematical Models

and Methods in Applied Sciences 14, No. 9, pp. 1297–1341, 2004.

[20] P. DANIEL, A. ERN, I. SMEARS, M. VOHRAL, An adaptive hp-refinement strat-

egy with computable guaranteed bound on the error reduction factor, 2018.

[21] L. DEMKOWICZ, W. RACHOWICZ, P. DEVLOO, A fully automatic hp-

adaptivity, J. Scientific Computing 17, No. 1–4, pp. 117-142, 2002.

[22] C. DIEDRICH, D. DIJKSTRA, J. HAMAEKERS, B. HENNINGER, M. RAN-

DRIANARIVONY, A finite element study on the effect of curvature on the rein-

forcement of matrices by randomly distributed and curved nanotubes, Journal of

Computational and Theoretical Nanoscience 12, pp. 2108–2116, 2015.

[23] T. EIBNER, J. MELENK, Multilevel preconditioning for the boundary concen-

trated hp-FEM, Comp. Math. Mech. Eng. 196, pp. 3713–3725, 2007.

[24] T. EIBNER, J. MELENK, An adaptive strategy for hp-FEM based on testing for

analyticity, Comput. Mech. 39, No. 5, pp. 575–595, 2007.

REFERENCES 57

[25] S. FUNKEN, D. PRAETORIUS, P. WISSGOTT, Efficient implementation of

adaptive P1-FEM in MATLAB, Comput. Methods Appl. Math. 11, No. 4, pp.

460–490, 2011.

[26] H. HARBRECHT, M. RANDRIANARIVONY, From Computer Aided Design to

wavelet BEM, Comput. Vis. Sci. 13, No. 2, pp. 69–82, 2010.

[27] H. HARBRECHT, P. ZASPEL, A scalable H-matrix approach for the solution of

boundary integral equations on multi-GPU clusters, 2018.

[28] R. KIRBY, Efficient discontinuous Galerkin finite element methods via Bernstein

polynomials, Arxiv Preprint.

[29] R. KIRBY, Fast simplicial finite element algorithms using Bernstein polynomials,

Numer. Math. 117, No. 4, pp. 631–652, 2011.

[30] Y. MADAY, Analysis of spectral projectors in one-dimensional domains, Math.

Comp. 55, No. 192, pp. 537–562, 1990.

[31] J. MELENK, hp-interpolation of non-smooth functions, SIAM J. Numer. Anal.

43, pp. 127–155, 2005.

[32] J. MELENK, B. WOHLMUTH, On residual-based a posteriori error estimation

in hp-FEM, Adv. Comput. Math. 15, No. 1–4, pp. 311-331, 2002.

[33] J. ODEN, A. PATRA, Y. FENG, An hp adaptive strategy, In: Adaptive Multilevel,

and Hierarchical Computational Strategies. ASME 157, pp. 23–46, 1992

[34] M. RANDRIANARIVONY, Finite Element polynomial inverse estimates and elas-

tostatic higher order estimator, preprint 2018.

[35] M. RANDRIANARIVONY, Adaptive mesh for elasticity under traction boundary

condition using higher order FEM, preprint 2018.

[36] M. RANDRIANARIVONY, Anisotropic finite elements for the Stokes problem:

a-posteriori error estimator and adaptive mesh, Journal of Computational and

Applied Mathematics 169, No. 2, pp. 255–275, 2004.

[37] M. RANDRIANARIVONY, Parallel processing of analytical Poisson-Boltzmann

using higher order FEM, ACTA Press, No. 455434, pp. 1–6, 2013.

[38] M. RANDRIANARIVONY, Stability of mixed finite element methods on

anisotropic meshes, Master’s thesis, Faculty of mathematics, Technische Univer-

sität Chemnitz, 2001.

REFERENCES 58

[39] J. SCHOEBERL, J. MELENK, C. PECHSTEIN, S. ZAGLMAYR, Additive

Schwarz preconditioning for p-version triangular and tetrahedral finite elements,

IMA. J. Numer. Anal. 28, pp. 1–24, 2008.

[40] L. SCOTT, S. ZHANG, Finite element interpolation of nonsmooth functions sat-

isfying boundary conditions, Math. Comp. 54, No. 190, pp. 483–493, 1990.

[41] S. SHERWIN, G. KARNIADAKIS, A new triangular and tetrahedral basis for

high-order (hp) finite element methods, Internat. J. Numer. Meths. Engrg. 38, pp.

3775–3802, 1995.

[42] S. SHERWIN, G. KARNIADAKIS, Tetrahedral hp finite elements: Algorithms and

flow simulations, J. Comput. Phys. 124, pp. 14–45, 1996.

[43] M. SURI, The p-version of the finite element method for elliptic equations of order

2l, Modélisation mathématique et analyse numérique 24, No. 2, pp. 265–304, 1990.

[44] M. SURI, The p and hp finite element method for problems on thin domains,

Journal of Computational and Applied Mathematics 128, pp. 235-260, 2001.

[45] M. VOGELIUS, An analysis of the p-version of the finite element method for

nearly incompressible materials. Uniformly valid, optimal error estimates, Numer.

Math. 41, No. 1, pp. 39–53, 1983.

[46] X. ZHANG, Multilevel Schwarz methods, Numer. Math. 63, pp. 521–539, 1992.

