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ABSTRACT

The investigation of element pairs features one of the main diffi-
culties in the finite element analysis of mixed problems. In this document,
the stability of various well known finite element pairs is taken into consid-
eration with special emphasis in anisotropic meshes. The model problem
describes the incompressible Stokes equation which is frequently met in nu-
merical flow analysis. The most important theoretical tool that will be used
is the macroelement technique which will be detailed precisely. A couple
of macroelement approaches are proved and formulated in a succinct fash-
ion which facilitates their subsequent use. Outcomes from numerical tests
which analyze different anisotropic meshes are also reported in order to con-
firm the theoretical results. Some counterexamples provide the evidence of
pairs which are isotropically stable but which become unstable in anisotropic
discretizations.
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Important notations:

1. The following notations concern the domain:

®
I
S
2

N'ﬂ&."l

it is a bounded open simply connected subset of R?
whose properties are specified in each section

it is the boundary of €2

dimension of 2, d =2 or d =3

a finite element

a macroelement composed of finite elements.

2. The following ones deal with polynomials:

Py
o)
Qr,s
A;

set of all polynomials p(z,y) = Xo<iyj<r iy

set of all polynomials p(z,y) = Yo<; j<k i 'Y

set of all polynomials p(z,y) = ZSEE’; aijx'y’

the i-th barycentric coordinate with respect to the apices
of a given triangle (aj, as, a3) and which is given by \; €
Pl and )\i(aj) = 52'3'

3. The following ones deal with function spaces:

c(Q)

L2(Q)
Li()
HY(Q)

set of all continuous functions in €2

set of all square integrable functions in €2

set of functions in L?(Q) whose integrals are vanishing
the Sobolev space of order one which is the space of all
square integrable functions f such that ||f||1.0 < oo

set of all functions in H'(Q2) with vanishing boundary
trace

set of all functions in L?(T") that are boundary values of
functions in H'((2)

the dual space of H} ()

set of functions in H2(T';) whose zero extensions to all
I belong to Hz ().

4. The following ones are for general purpose:

X*

XJ_

XO

Ran (A)
ker (A)

the dual of X

the orthogonal complement of X
the polar of X

the range of the operator A

the kernel of the operator A

x1



xii

CONTENTS
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Chapter 1

Introduction

1.1 Preliminary ideas

The analyses and applications of anisotropic grids have developed
tremendously since the eighties and they are still in the range of ongoing re-
search topics nowadays (see for example [Ape99], [SSS97]), [ANS99], [Kun97],
[ANS00]). In this preliminary chapter, we are going to introduce what an
anisotropic mesh is. To that end, we recall briefly the concept of the classical
finite element partitioning. We will see afterwards that anisotropic meshes
are very useful in various flow simulations and mechanical problems. We will
see also in this introductory chapter many interesting properties which are
useful both in the theoretical and in the numerical viewpoints. Before going
any further, it should be noticed that the goal of this document is not at all
to simulate mechanical problems, but rather to analyze in a rigorous fashion
the stability of several element pairs in anisotropic grids.

1.1.1 Recall of a standard FE-mesh

Let Q be a bounded polygonal (resp. polyhedral) domain of R? (resp. R?).
A discretization 7T, of 2 is called admissible if the following four conditions
are fulfilled:

(C0) Q is the union of all closures of the elements of Ty, i. e.

a=U T (1.1)

TeTh

1
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(C1) The elements of 7, are disjoint, i. e.
T;NT; =0 for two distinct elements T;, T; € Tp. (1.2)

(C2) Every edge (resp. face) of any element T; € T, is either a part of the
boundary 0 or an edge (resp. a face) of another element 7T} of 7.

(C3) If for any T € Ty, we define:
hT) = diam(T) = max{||x — y||lre¢, x,y € T'}
p(T) := supremum of the diameters of all balls contained inT
o(T) = MT)/p(T),

then the classical FE-theory requires that there is a constant x > 0 such that

o(T) <k YT €T, (1.3)

where £ is independent of the chosen 7" and h.

il ‘|

A A

Figure 1.1: Very thin triangle and rectangle.

Roughly speaking, condition (C3) means that very thin triangles or rectangles
(i. e. one edge is very long compared with another) are not allowed to belong
to the mesh 7y; in Figure 1.1, we can see a graphical illustration of such thin
triangular or rectangular elements which can become anisotropic if € < A.

Unless otherwise stated, the quantity o(7") will be the aspect ratio of the
element 7. And the aspect ratio of the mesh 7}, is the maximum of all ¢(T’)
i. e.

Oh = max o(T).

1.1.2 Anisotropic FE-discretizations and some appli-
cations

An anisotropic FE-discretization still satisfies the previous conditions (C0),
(C1) and (C2), but the condition (C3) is not any more required. In other



1.1. PRELIMINARY IDEAS 3

words, very stretched triangles like in Figure 1.1 can be present in the mesh.

In some mechanical or physical phenomena, some variable is varying sig-
nificantly in one direction (for example in z-direction) compared with the
variation in the other directions. That can be found for example in flows
presenting boundary layers which are very well known in fluid mechanics. A
boundary layer is an extremely thin region next to the boundary of a domain
in which the value of the solution is increasing considerably. Such discussions
can be found for example in [Zdr97]. Simulations of such problems invoke
the use of anisotropic grids because the solution only changes significantly
in one direction where we need a very fine discretization. And for the other
directions, since the variation of the solution is comparatively very small, we
can let the mesh be very stretched. The layers can sometimes also be located
within the domain (not necessarily in the boundary), we have therefore the
so-called internal layers. Such problems are certainly very appropriate to
anisotropic meshes for the same reasons.

An illustration is the simulation of fluid flows past an airfoil (scientific word
for the wing of an airplane) with very high Reynold number. There, a very
thin domain in the proximity of the airfoil suffers from a very high variation
of the solution. The phenomenon is predicted by the fact that the higher the
Reynold number is, the thinner the layer is and also the more stretched the
grid must be. We need therefore an anisotropic mesh in this case. For more
information about engineering viewpoints of the application of anisotropic
mesh in high Reynold number flow, we can read [Mav97]. We can think
of still using standard FEM in such problems by refining the mesh in all
directions but that would surely be very computationally expensive. For
example imagine a refinement of magnitude 107° in all directions, then we
would end up at a large number of grid points in order to treat isotropically
problems having layers.

Figure 1.2: An example of anisotropic mesh for boundary layers.
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As a simple graphical illustration, we can find in Figure 1.2 a discretization
of a rectangle for problems having layers in the left boundary of the domain.
As a matter of fact, we are in a situation of having a mesh refinement toward
the left boundary. We can see clearly the presence of stretched elements next
to the boundary. In the proximity of the boundary, rectangles are getting so
thin that we see only a thick dark line.

1.2 Some paramount facts from Sobolev spaces

In this section, some well known results from the theory of Sobolev spaces
are recalled since they will be of so much use later due to the fact that most
of our stability analysis is partially based on them. Many of the theorems
in this section are mentioned without proofs. It would take a large number
of pages to repeat all their proofs in this document. If one wants to read
the proofs, one can find them in many books which contain sufficiently large
descriptions about Sobolev spaces like [Gri85].

Let © C RY be a domain whose boundary I' is supposed to be sufficiently
regular. We recall that a measurable function f € L?(f) if

1fl30 = /Q |f(x)Pdx < oo .

The space that we will most frequently use is the Sobolev space H*(2) which
is precisely the set of all square integrable functions f with:

of
8xi

2

< 0.
0,0

I1f

%,Q = || f|

2
0,0 +
i=1,....d

We will repeatedly use also the seminorm in H*(£2) which is given by:

%,Q = Z

i=1,...,d

2

f

a.%‘i

0,Q

Now we should be able to introduce the boundary spaces. Firstly, it is to be
reminded that:

HE(T) = {f € I*(T)| Ig € H() : gle = [} .
Its norm can be defined by:

1flyr = inf lglo-

glp=f
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Second, let us recall a space defined on a boundary piece. For that purpose
let us assume that I' = I';y UT'y. We suppose furthermore that the boundary
pieces I'; are of nonzero measures. Then we have

1 1 1
Hg(Ty) = {u € H2(I;) : the zero extension @ of u to allT'is in Hi} .

The following theorem provides a characterization of the last space and it
specifies also a norm thereof at the same time.

Theorem 1 If we denote
p(x) := dist(x, dL;),
then we have the following characterization:

Hg (L) = {U € H%(Fi) L p iy e L2(I‘Z-)}.
1
This theorem permits us to introduce the following norm in Hg(T;):

lol2 gop = lol g + [ s
3,000 " 2T T p :

Now that we have met all the necessary definitions and introductions, it is
time we recalled some important theorems from Sobolev space theory. The
first one is the Poincaré-Friedrichs inequality.

Theorem 2 (Poincaré-Friedrichs inequality) Let Q be a bounded do-
main. We suppose further that 2 has a Lipschitz boundary I". Then there
exists a positive constant K which depends only on 2 such that:

o]0 < Klv

1,0
holds for all v € V := {u € H(Q) : w =0 on 'y} where I'; is a part of I'

with nonzero measure.

Theorem 3 (A trace theorem) Let 2 C R? be a bounded domain with
Lipschitz boundary I'. Then the trace mapping:

t: HY(Q) — Hz()
u — ulr

is a continuous surjective operator.
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1.3 Brief remark about the saddle point prob-
lem

Although this document deals mainly with the Stokes problem, some infor-
mation about the general saddle point problem is worth being said in order
to formulate well the unique solvability, the a-priori error analysis, and the
eigenvalue problem related to the LBB-condition. Therefore the current sec-
tion will focus briefly on it.

Let V and @ be two Hilbert spaces whose scalar products are (-, )y, (-,-)g
respectively and whose norms are || - ||v, || - || respectively. Let

a:VxV =R b:Vx@—=R

be two continuous bilinear forms.

The general saddle point problem can be formulated as in the following equa-
tion: Let f € V* and g € Q* be given.

Search for (u,q) € V x @ such that:

P) { a(u,v) +b(v,q) = < f,v> VveV

b(u, p) = <g,p>Vpe Q. (1.4)

Two continuous operators A: V — V* and B : V — Q* can be defined with
the help of the bilinear forms a(-,-) and b(-, -). The adjoint operator B*of B
can be deduced immediately. And we have in fact:

<Au,v > = a(u,v) Yu,veV
< Bu,p> = b(u,p) YueV,Vpe Q
<uv,B*p> = blv,p) Vve VVpe Q.

We have:

U:=ker(B) = {ue V:blu,q)=0Vqe Q}
ker(B*) = {pe Q:b(u,q) =0Vue V}.

Before we go further let us recall the definition of the polar and the orthogonal
complement of the closed subspace U:

U = {leV*:<lv>=0W e U}
Ul = {weV: (u,v)y=0YueU} .

The following lemma will be important in the proof of the existence and
uniqueness of the continuous as well as the discrete problems.
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Lemma 1 We have the equivalence of the following three statements:

-3y >0 Vpe @

b(u, p)
sup > 7”p”Q’ (1'5)
we v ||ullv
2- B: U+ — Q* is an isomorphism and :

[Bullgr = llvllv Vv e U™,

3- B* : Q — UY is an isomorphism and :

|B*pllv- = 7llplle Vp € Q. (1.6)

Proof

Part 1: Let us prove that (1.5) and the inequality (1.6) are equivalent. Sup-
pose first that (1.5) is true. By using the operator notations, we have for all

pin Q:

. < B*p,u > b(u,p
1Bplly- = sup ~DPu> g blwp)
S Tl o, Tl

> |Ipllo-

Thus, (1.6) is proved.
The converse can certainly be proved in a very similar fashion.

Part 2: Now, let us prove that the inequality (1.6) implies that B* is an
isomorphism from @ onto U°. From (1.6), we can deduce that

ker (B*) = {0} .

That means that B* is a 1-to-1 mapping. It follows then that B* is bijective
from @ onto Ran(B*). It remains therefore to see that

Ran(B*) = U . (1.7)

The inequality (1.6) implies in particular that the operator B* has a contin-
uous inverse so that Ran(B*) is a closed subspace of V*. According to the
closed range theorem then we have

Ran(B*) = (ker (B))°,
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which gives (1.7).
Part 3: The equivalence of 2- and 3- can be clearly seen by noting that U°
can be identified with (U~+)*.
Theorem 4 (Existence and Uniqueness) Suppose a(-,-) is coercive on
ker (B). That is:

Fy > 0: a(u,u) > v||ul|?, Vu € ker (B).

Suppose furthermore that the inf-sup condition is satisfied, i.e.:
b
f (wp)
072€ Qozue v [|ullollplle
Then problem (P) in (1.4) has a unique solution.

(1.8)

Proof

Because ¢ belongs to Q*, Lemma 1 ensures the existence of a unique ug € U+
such that Bug = g.

Let us first introduce an auxiliary problem (Q):
Search for u € U(g) := {v € V : b(v,p) =< g,p > Vp € Q} with
(Q) a(u,v) =< f,o > YveU. (1.9)
According to Lax-Milgram’s theorem, there exists a unique w € U with:
a(w,v) =< (f — Aup),v> Yo eU.
That means that the problem (@) has a unique solution which is:
u:=uy+w € U(yg).
(because any solution of (Q) gives a solution of the latter problem, and vice
versa).
As a consequence, (f — Au) € UY because for any v € U,
< f—Au,v >=< f,v > —a(u,v) = 0.

According to Lemma 1 again, there exists a unique p € @ such that

B'p = f — Au,
or equivalently,
b(v,p) =< f,v > —a(u,v) YveV. (1.10)
On the other hand, since u € U(g), we have:
b(u,q) =< g,q> VqgeQ. (1.11)

The combination of (1.10) and (1.11) then gives the desired result.
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1.4 The Stokes problem

The Stokes equation is one of the most exciting applications of the general
abstract saddle point problem stated earlier. We consider for our analysis a
bounded connected domain  which is a subset of R%. The purpose of the
investigation is to search for the velocity u = (uy, ..., u4) and the pressure p
such that:

—vAu+gradp = f in 2
divau = 0 in €2
u =20 on 0f) |

where
Au = é@fgxi , (1.12)
gradp = (%,...,%)T, (1.13)
divu = égz (1.14)

The quantity v has a mechanical interpretation: it is effectively the kine-
matic viscosity which is the inverse of the Reynold number of the flow. But
mathematically speaking, it is considered as no more than a constant.

Multiplying this equation by appropriate functions and integrating by part

gives the following variational formulation: Find (u,p) € H(Q)? x L3(f)
such that:

v(Vu,Vv) — (divv,p) = (f,v), Vve H}Q) (1.15)

(diva,g) = 0 Vg € L§(Q), '

where (-, -) denotes the inner product in L?(12).

It can be seen that it has a form of a saddle point problem with: V = Hg(Q)¢,
Q = L%(Q) and the bilinear forms are given by:

8Ui 8Ui
a(u,v) = v(Vu,Vv)=v /Q X]: o (1.16)

b(u,p) = —/Qdivvq. (1.17)
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We are going to apply the preceeding theory about the abstract saddle point
problem in order to see the unique solvability of the Stokes problem. But
before doing that, we ought to specify the ker (B) of the latter. We can
verify that it is in fact given by:

ker (B) = {u € Hy(Q)*:divu=0inL*(Q)}.

We only need to show the coercivity of a(-,-) on ker (B) and the stability
of b(-,-). The coercivity is a one line proof, since by the Poincaré-Friedrich
inequality (see Theorem 2), we have:

a(u,u) =viufio > Cvfulfi,.

The most difficult point is then to prove the stability (1.8) which is equivalent,
in the case of Stokes problem, to:

di
inf sup (divu, p) > 6. (1.18)
0#£p€ L§(Q) 0£ue HE(Q)4 [ul1]lpllo

This last relation is referred to as the continuous inf-sup condition.

The proof of the continuous inf-sup condition uses the following lemma whose
proof could be found in [GR86] on page 24.

Lemma 2 Denote by

U = {veH}N)?:divv =0}
U = {ye HY(Q)4:<y,¢>=0V¢p € U}.

Then we have:

i) The operator grad is an isomorphism of L3(£2) onto U?;

ii) The operator div is an isomorphism of U+ onto LZ((2).

Theorem 5 (continuous inf-sup condition) For the Stokes problem, the
continuous inf-sup condition in (1.18) holds.

Proof

Let ¢ be an arbitrary pressure function in LZ(€). The preceeding lemma
ensures the existence of some v € U~ such that:

divv=¢ and |v|; < C||qlo-
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Consequently:

(¢, divv)  lqll3 ( 1 )
=\C ||CI||0

\V|1 \V|1

We can deduce the continuous inf-sup condition (1.18) with § = .
Remark 1 The contributions of Ladyzhenskaya, Babuska and Brezzi to the
analysis of the inf-sup condition (1.18) were very remarkable. Therefore, it
is often referred to as the LBB condition. It is however to be noted that
it has a lot of other names. Among others, it is called divergence stability
condition, stability condition, Babuska-Brezzi condition, BB condition, inf-
sup condition.

1.5 FE-approximation and the LBB-condition

This section will contain the FE-discretization of the continuous problem.
That is to say, it will ensure the existence and uniqueness of the solution
of the discrete problem for each mesh size h. We will see as well the error
analysis, that is, the estimation of the error of the approximated solution
from the exact solution. And finally we will see the importance of the LBB
condition in order to have a nice approximation.

1.5.1 Abstract finite element discretization

The finite element discretization consists mainly of considering two finite
dimensional subspaces V;, C V and @), C ). The discrete problem deals
then with searching for (up,pp) € Vi, X @, such that:

a(uh, Vh) +b(Vh,ph) = < f, vy > Vvh - Vh
P 1.19
(Pn) { b(un, qn) = <g,qn> Vg € Qp (1.19)

Like in the case of the continuous problem, we can also introduce the following
discrete continuous operators:

< Apup, vy, > = a(uh,vh) Yup,vp € Vp
< Bpup,pn > = b(un,pn) Vpn € Qn, Vup € Vj.

Similarly to the continuous problem, we have the following uniqueness and
existence result of the FE-approximation problem (7P). Define:



12 CHAPTER 1. INTRODUCTION

Up = {vn € Vi : b(vn,pr) =0 Vpn € Qn}-

Theorem 6 Suppose we have coercivity on Uy, i. e.

Ja* > 0: a(vp,vp) > oF||onll} Vo, € U

Suppose further that we have the following discrete LBB condition: There
exists v* > 0:

b
inf sup WP o (1.20)

PREQR ye Vi, ||u||V||p||Q N

Then the problem P, in (1.19) has a unique solution.

Proof

It is the equivalent of Theorem 4 for the discrete problem.

Lemma 3 (Fortin’s Lemma) Assume that the continuous inf-sup condi-
tion (1.8) is satisfied.

The discrete inf-sup condition (1.20) holds with a constant v* independent
of h if and only if there exists a continuous linear operator 7, € L(V,V},)
satisfying:

(A1) b(v — mpv,pp) =0 Vp, € QpVv € V, and
(A2) ||mpo|ly < C|lvlly Vv eV
with a constant C' > 0 independent of A

Proof
Part 1:

First, suppose we have an operator m, € L(V,V},) satisfying the assumptions
(A1) and (A2). Let us prove that the discrete inf-sup condition (1.20) follows.
Let p, be an arbitrary element of (). We have:

sup b(vn, pn) > sup blmav, pn) because Im(m,) C V;,

mevn nllv — vev [|mavllv

According to the assumption (A1), we have therefore:

sup b(vh,ph) > b(vaph)-
veVe nllv — vev |lmnv|lv
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Applying (A2) implies consequently:
b(vn,pn) _ 1 b(v,pn)
wmeVe lnlly = Coev |lvllv

Now, we can use the continuous inf-sup condition in order to have:

b(vh,ph) y
sup ———— > —||pnllo-
vRLE V) ||Uh||V

That means that the discrete inf-sup condition (1.20) is satisfied.
Part 2:

Now let us suppose that the discrete inf-sup condition (1.20) is satisfied and
let us prove that we have an operator m, € L(V,V}) having the properties
(A1) and (A2).

We need to apply Lemma 1 to the discrete operator Bj,. For each v € V', we
have Bpv € Q*. Since By is an isomorphism from V;- onto Q7, there exists
a unique element of V- that we denote by m,v such that:

Bh (’/ThU) = Bhv.

That means simply that: b(mpv, pr) = b(v,pr) Vpn € Qn. Lemma 1, applied
to the discrete operators, implies also in particular that

Y| mrolly < || Br(mrv)]

Q">
which implies that:
1 1l
lmnolly < $||Bhv| o < —vllv,
where b(v.p)
v, p
I11= 28, ol ple
0#£peQ

is a finite number because b is a continuous bilinear form.

1.5.2 Error estimation for the Stokes approximation

The preceding result of the abstract FE-discretization of the saddle point
problem can certainly be applied to the Stokes problem. In this subsection,
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we are estimating the error between (uy, py) and (u, p). That is precisely the
purpose of the next theorem which summerizes our error estimation result for
the Stokes problem. Vj, and @ are finite dimensional subspaces of H;(Q)?
and L2(9)

Theorem 7 Let V;, and @), be discrete finite dimensional subspaces for the
velocity and for the pressure respectively. Moreover we suppose that those
subspaces satisfy:

di
inf  sup Jodivinpn _ Yn  withay, > 0. (1.21)

0#£pn€Qn 0w e Vi, [U[1,0]|Pllo,0

Then we can estimate the error as:

C
u—u < — inf [lu=-v +C inf - ; 1.22
I rlle < -t I nllL,0 Jnf lp = anllo0 (1.22)
C C
- < — inf [[u—v + — inf — , 1.23
lp = Prlloe < o2 vt [ rll1e o Il — anllog (1.23)

where C' depends only upon §2.
Proof See [BF91].

Remark 2 In the preceding theorem it can be very well noticed that the
velocity and the pressure errors depend mainly on 7y, L and Y 2 respectively.
The first remark that should be pointed out is that the velocity is better
approximated than the pressure because (1.23) has a v, ! more factor than
(1.22).

It is to be noticed as well that if 7, is tending to zero then we have a very bad
estimate for the velocity and the pressure estimate is even still worse because
;! is tending to infinity. It is therefore of overwhelming importance to have
vy, independent of h or equivalently to have some v > 0 with ~;, > v for all
h. That means simply:

. fQ div Up Ph
inf sup T — 0 —
0£0n€Qn 02upe vy [U]1.0]Pn]l0.0

1.6 Numerical evaluations of LBB-constants

In this section, a couple of approaches for the computation of inf-sup quan-
tities are detailed.
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1.6.1 First approach

In this first approach, a generalized eigenvalue problem is invoked. The
relationship between the eigenvalue problem and the inf-sup constant can be
seen in [Mal81] where the author gives full details about this topic. But it
can also be found in many other documents like [BF91], [BIC00], [CB93]. In
the following discussion, we will review this eigenproblem in order to evaluate
the inf-sup constants.

Eigenproblem pertaining to the discrete inf-sup constant

Let V}, and Q) be finite dimensional subspaces of Hg ()¢ and L3(f2) respec-
tively. We are interested in computing, for all mesh width h, the discrete
inf-sup constant which is given by:

Japrdivvy

o (1.24)

inf sup
PhEQR vi,e V), |V11

1,0 0,Q

Let us first formulate the discrete problem in vector and matrix forms. Be-
cause we are dealing with finite dimensional spaces, the functions vy, and g
can be written as:

N M
Ve =Y 0ib;  ph= Y B
i—1 iz

where {¢;}Y | and {+;}}4, are bases in V}, and Q}, respectively.

We can define immediately the following vectors:

The introduction of the following matrices K, B, M is of capital importance.

b(vh,pr) = < Bu,p>pu=<uv,BTp>gn
|Vh|%,9 = < Kuv,uv>gn
Ipallse = < Mp,p>gw .

The discrete problem can in fact be formulated with the help of those matrices
as:

vK : BT F

|

SE
o

B : 0
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Those diverse definitions permit us to observe right away that the square of
the initial inf-sup constant (1.24) is given by:

b {Slip (yTgﬁij)j@) } '

If we make Cholesky factorizations K = LLT, M = GGT then it is equal
to:

. (p" Bv)®
inf {S‘ip (L) T (L70)][(GTp)T (G7p)] } '

After putting w = LTv and q= G’Tz_a, we obtain:

1 TLleTGfT 2 1

4 w g

= inf {%qTG—l(BK—lBT)G—Tq} = Amin [GH(BK'BT)G7T].
¢ \g'e” B

And the eigenvalues of this last matrix are the generalized eigenvalues of
(BK 'BT)p=AMp . (1.25)

because [G_I(BK_IBT)G_T] ¢ = Aq implies:

(BK 'BT)p=AGG"p=AMp ,

where p = G Tq.
We have therefore the following property:

Property 1 Let us consider the following generalized eigenvalue problem:
(BK 'BT)p=AMp . (1.26)
If 47 is the smallest eigenvalue of this generalized eigenproblem, then

. Jo qn divvy,
Y, = inf sup ———————
hEQR vy eV, |Vh 1,9”(]}1

0,Q
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Remark 3 In practical point of view, it is very difficult to find a basis {1;}
of the space @ C Lj(Q) because it demands that every function of L§(f)
has zero integral over (2. Therefore, one consider a basis {t;} of Q, C L?(),
where

QnN LY(Q) = Qp .

Of course, every function in J, can be written as linear combination of {&,}
because @), is a subspace of Q). In this situation, the inf-sup constant is
the square root of the smallest nonzero eigenvalue. This property has been
discussed in [Mal81], [BF91], [BIC00], [CB93].

Algorithm

We can implement a numerical computation of inf-sup quantities by using
facts which are based on the previous eigenvalue theory.

1. Generate the mesh whose inf-sup constant is to be computed,

2. Assemble the matrices K, B, M which were defined in the preceding
section,

3. Determine the smallest (nonzero) eigenvalue v, of:
(BK™'B")p = AMp,

4. The wanted inf-sup constant is \/Ymin-

1.6.2 Second approach

As for the second approach, it invokes theory from constrained nonlinear
optimization. Before giving numerical instructions of how to compute our
inf-sup constants, some further definitions and notations are necessary. Let
us pick for example finite dimensional subspaces

Q, C L*Q),
Vi C H&(Q)d

Let us consider again the problem of computing the following inf-sup con-
stant:

b(Vh, ph)

v, = inf sup plon

0£PLEQR 0£v, eV, | Vi

1,0
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where Qh = Qh N Lg(Q)

In the our present discussion, we adopt the following dimensionalities:

N = dimQ,
M = dimV,.

We denote by {9;}i=1,.. n a basis of Q. If we define
a; = / %dx and a = (alu "'aa'N) )
Q

and if we introduce the following hyperplane in RY by:

N
H= {((h,...,qN) eRY Y qa; = ()} ’

i=1

then we can obtain the following characterization of ()}, from Qn:

N
Z(Mﬁz’ €eQn <= (@1, qv) €EH .

Now we are able to reformulate our inf-sup constant in matrix-vector form.
It gives in fact:

v BT
v, = inf g

0?546“ O;éveRM VuTKuv,/qT g

Or equivalently:

For all ¢ € RV\ {0},q e H v B
e EET e VTR

> ny/q" Mg .

Now we can perform a Cholesky factorization of K = LLT and so we can
simply obtain:
v Ky = (LTv)" (L) .

And by replacing w = L¥v, we should obtain:

MTLleTq
sup = ——

> /4" Mg.
0£weRM w

w
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And we should notice that the left hand side is nothing else but ||L B ¢q||gx
where || - ||g denotes the usual Euclidian norm in R™. Our initial inf-sup
constant is finally equivalent to:

In other words, we have to solve the following constrained nonlinear opti-
mization problem:

_ LB gl

v/ 1" Mq

Let us first denote by F(q)

Our problem is then:

{ F(q) — min (1.27)

sub_ject to g € H.

There are efficient numerical algorithms to minimize such a problem of non-
linear programming. You can find below one of them. The following algo-
rithm is commonly known as Gradient Projection Method (Gradientenpro-
jektionsverfahren or GPV in German literature).

A preliminary remark will be established before we give a description of the
algorithm: since H is a convex set in RY, let us denote by Py the orthogonal
projection in H, i.e.:

lg — Pugllry = min ||g — pllr~- (1.28)
PEH

Now, the Gradient Projection Method consists of performing the next steps:
Step 0. Choose an arbitrary initial guess 4, €M and set £ =0,

Step 1. For the point g, and the direction d := —VF(q,), we compute a
line search for the following unconstrained problem:

F(¢q) — min
g €RY,

in order to obtain a step length oy,

Step 2. Establish the projection PH(Qk + agdy),
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Step 3. In the case PH(Qk + apdy,) = q,, we terminate, otherwise the new
iterate is

By = Prulgy, + ondy)

and we come back to step 1. with the incrementation k := k + 1.
A further remark ought to be mentioned about step 2: since the definition
(1.28) of the orthogonal projection on the hyperplane H does not seem to be

easy in computational aspect, a practical formula for its evaluation is found
below:

<Q,g >RN —O T

Pu(q) = q —
W@ =9- e,

‘a ,

where a =< a,r > with r an arbitrary vector belonging to H.

One can therefore follow the following direction if one is interested in the
second approach:

Generate the mesh whose inf-sup constant is to be computed,

Assemble the matrix K, B, M which were defined in the previous section,
Compute a Cholesky factorization of K = LLT,

Establish the function of N-variables F',

Establish the coefficients a; defining the hyperplane H,

A

Solve the nonlinear programming (1.27) subject to the hyperplane con-
straint.

1.6.3 Comparison

For the sake of comparison, I have computed once the inf-sup constant of
a certain mesh both with this current method and the one in the preceding
section and the results agree very well. It is however to be noticed that
this algorithm of Gradient Projection Method has the disadvantage of being
extremely slow, in particular if accurate results are needed. It is however to be
mentioned that many improvements of this algorithms are in existence. There
are other very efficient algorithms of such a nonlinear optimization. This is
however not the place to give details of these methods because the main
purpose of our analysis is presently to investigate FE-stabilities. Readers
who are interested in such an approach is well advised to browse existing
documents in constrained nonlinear programming such as [NW99].
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Macroelement approaches

2.1 Arbitrary macroelement partitioning

Another possibility to prove the divergence stability is to use macroelement
partitioning. The following idea was used first by Boland & Nicolaides but
it can also be found in some other document like [GR86]. The technique
consists in fact in partitioning the domain into subdomains and having some
local stability besides a reduced macrowise stability which imply the stability
of the initial pair of spaces. Therefore, instead of proving the stability, we
have two smaller problems which should be easier to prove. We should see
in this section the detailed description of it because it will be of much use
later on. A similar technique can also be found in [Ste84] and [Ste90]. Before
telling the results, let us first introduce some notations:

We suppose that we have a partitioning of the initial domain €2 into a finite
number of disjoint subsets. That is:

J— R_
Q:UK'I‘)

r=1
where K, is a Lipschitz continuous open subset with boundary T',.

Now let us introduce the following subspaces

V, is a finite dimensional subspace of H}(Q)¢ ,
@y, is a finite dimensional subspace of L*(Q) ,

Qn =QnNI3Q).

21
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Figure 2.1: Macroelement partitioning.

We suppose furthermore that Q), contains all the constant functions, i.e.

ECQ’L;

where R is the set of all constant functions in 2.

The partitioning is graphically illustrated in Figure 2.1. Please note that the
macroelement boundaries are indicated by bold lines.

Now, we are in a position of introducing the local spaces. These are those
which are related to each macroelement. For each r € {1, ..., R}, let us define
the following:

K,) = {veV,:v=0inQ\ K.},
Qn(K,) = {~p|KT pEQn},
K,) = QunK,)NLiK,).

Remark 4 Note that in this chapter and in the following ones, elements are
denoted by 7" and macroelements are denoted by K which may have some
indices.

Remark 5 The macroelement partitioning must fulfill the condition that
an element must belong to one and only one macroelement. In other words,
every element must be located in one macroelement and no element should
be shared by two or more macroelements.
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We have then the following theorem which is the most important result in
this section. Only a sketch of the proof will be given here, readers who are
interested in seeing the proof in full detail are advised to read Theorem 1.12
of [GR86].

Theorem 8 Suppose we have the following assumptions:
(A1) Local stability:

There is a positive constant « such that for all p, € Qn(K,) we have:

sup / prdivvy > o||ppllox, Vr e {1,..., R}, (2.1)

vrEVR(EKT)

where « is independent of h and 7.
(A2) Reduced global stability:

We define @), to be the macrowise constant space, i.e.:

Qn=1{p € L) : p|k,is constant,1 < r < R}.

Suppose there is a subspace Vj, of V}, for which:

sup
VREVR

/ prdivvy > Bllpnlloe  Von € Qn, (2.2)

where (3 is a constant independent of h.

Under the assumptions (A1) and (A2), we have then stability for the initial
pair of spaces (V3,Qp), i-e. there exists v > 0 such that:

sup

/PhleVh > Yllpulloe  Vou € Qn,
vLEV |Vh|1Q

where « depends only on «, 3 and the dimension d of Q2 (d = 2, 3).

Proof (Sketch)

For each p, € Qh(Kr), there exists (p,,p}) € Qn(K,) x R such that p, =
Dr + Dy

Indeed, we can take:

1

br = meas(K,) KTpT

Dr = Dr _p:-
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Furthermore, Q,(K,) "R = {0}.
Hence, we have the following direct sum:
Qn(K;) = Qu(K,) & R. (2:3)

The relation (2.3) is even an orthogonal decomposition since

(P, )k, =0 Vp, € Qu(K,) VeceR.

Let us consider now an arbitrary function ¢, € Q). It can then be written
as:

qn = Gn + qn,

where Gu|x, € Qu(K,) and g, € Qh.

By the orthogonality (2.3), we have moreover:

lgnllg e = lldnll5.c + ll6.0- (2.4)

Define now the function ¢, := ¢k, -

By the local stability (2.1), there exists a function v, € V;,(K,) with:

{ I, ¢-divvedz = [|g. |3 ., (2.5)

Vel < Zllarllo,x, -

Similarly, the reduced global stability (2.2) ensures the existence of a function
vy, € Vj, with:

{ Jo @ndiv Vhdz = ||Gal|5 o (2.6)

¥nl1e < Fllanlloe-

Let us define v, € V}, to be the function whose restriction in K, is coinciding
to v,.

The velocity associated with ¢, will be then:
Vp = ‘7h -+ (5\7h.

The coefficient 6 > 0 will be appropriately chosen later on. We have the
following relation:

(qh,divvh) = ((jh,div \h'/'h) + (Qh, dlv{/h) + 5(@}1, diV\_fh) + 5(@” diV\_fh).
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If we combine this last relation with (2.5) and (2.6), we obtain after some
calculations:

. 1, . od \ , _
(ndiven) = Gl +5 (1 555 ) Il
This last inequality is true for any ¢, now if we take 6 = %2, we obtain:

. 1, . B
(qn, divvy) > §||Qh||g,n + ﬁ“%”g,ﬂ'

And we have therefore:

. . (1 p? ~ 12 _
(i) 2 min (3,22 (1o + lan

2
0,) -

As for the estimation of |vy|; o, we have with the help of (2.5),(2.6) and (2.4):

Vil < |[Vilio+0|Vhlie

< Va[2+ (@] I

lo,0-

We have then:

. 1 2
1 min (5, 2—)
2

(qha div vh) Z

d
Vi1 \/5[%_’_ (g)

1/2 ||qh 0,Q2-

The stability of the pair (V}, Q) is then obtained with an inf-sup constant
v > 0 which is only depending on «, 3, d.

Remark 6 In Theorem 8, we should note that the final inf-sup constant
is independent of the number of the macroelement R.

Remark 7 It must be remarked that this method is a very general one
because in the proof the uniformity of the mesh is nowhere involved.
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2.2 Uniform macroelement partitioning

In this section, we do not demand the macroelement partitioning to be quite
arbitrary. We will give a detail here of how the foregoing section can be
simplified if the macroelement partitioning is x-uniform. It is not at all a
restrictive assumption because a lot of meshes can be treated that way. We
can even still deal with anisotropic meshes because the triangulation within
each macroelement can be arbitrary and every element there are allowed to
have arbitrary high aspect ratio. Before introducing the main result in this
section, let us first see some further definitions and notations.

2.2.1 The considered macroelement

The properties of our future meshing are as follows. We will take into con-
sideration a s-uniform macroelement partitioning 7,,. That means that for
every macroelement K of 7,

>

ME) < K < o0. (2.7)

(K)

)

We want also that every macroelement K € 7, are affine images of a refer-
ence domain K. That means simply that :

K= FK(K'), where Fy : K — K affine mapping .

2.2.2 The meshes on each macroelement

Let F stand for a family of meshes on the reference macroelement K. An
illustration will be given when sufficient definitions are introduced. Any mesh
on a macroelement K will be an affine image of a mesh belonging to F. In
other words, a mesh 7k inside a macroelement K is given by:

Ti = FK('f') for some € F.

The mesh 7 on the whole domain €2 is then the union of all 7z, K macroele-
ment. Or similarly, the restriction of 7 to K is the mesh Tx.
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TO T1 T2
T3 T4 T5
T6 T7 T8
T9 T10 T11
T12 | T13 T14

Figure 2.2: Illustration.

2.2.3 Illustration

As an illustration, let us consider a two dimensional rectangular domain €2
and the reference domain will be K = (0,1)2. F will be the set of all tensor
product mesh on the reference macroelement K. In Figure 2.2, we can see an
example of rectangular domain 2 composed of two macroelements and each
macroelement is subdivided into tensor product meshes. The discretization

of the domain € is therefore 7 = {7;: ¢ =0, ..., 14}.

2.2.4 Discrete spaces

The following discrete spaces are important for the formulation of the next
theorem. We will adopt these notations in this section. The initial abstract
pair of spaces whose stability is to be established is (V}, Qp) where:

Vi = {u= (uy,...,uq) € Hy ()" : us|p o Fr € Rk17k2(K) VI eT}
Qn = {peLy(Q) :plroFre Ry u(K)VT €T},

where Ry, , and Ry i1 are some space of polynomials whose degrees are
related to some constant parameters ki, ky and ki, k5. In practice, they will
be Py, Qi or Q, ; or some such matter. But for our abstract analysis, we let
them to be very general.

The next notations are for local purposes:
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VR) = [Res(K) 0 HY(E)]
Q(K) = Ry w(K)NLj(K).

And for any T e F, we define:

V(T) = {u=(u,....,uq) € HY(K) : wilr o Fr € Ry, ,(K) VT € T}

We should remark that for the mesh 75 consisting of only one element which
is K itself, we have:

V(T) = V(K)
QT) = Q).

Finally, for a macroelement K, we introduce:

V(K,Tx) = {u=(u,.,us) € H(K) : wilr o Pr € Ry, 4,(K) VT € Tgc},
Q(K, TK) = {p € L%(K) :p|TO Fr e Rk'l,ké(K) VT € TK}

2.2.5 Main result

In this subsection, we will give the relationship of the stabilities of the preced-
ing discrete spaces. It will be noted that the analysis of the initial stability
can then be reduced in three easier and independent stability analyses. The
next theorem will contain in detail that statement.

Theorem 9 We suppose first that the underlying macroelement partitioning
T is k-uniform. We suppose furthermore the following assumptions:

(B1) Reduced global stability:

We define again @), to be the macrowise constant space, i.e.:

Qn = {p € L}(Q) : p|xis constant, VK € T,,} .

Suppose there is a subspace Vj, of V}, for which:

1
sup ———

v, [Vhli0 /Qph divvy, > Cillpalloe Vpn € @, (2.8)
VieEVL s
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where (' is a positive constant which is independent of A and which is allowed
to depend on k.

(B2) Reference stability:

sup / pdivv > Collpllyz VP € Q(K) . (2.9)

veV(K |v‘1K

(B3) F-uniform reference stability:

sup / prndivvy > Csllprlly 2 Von € Q( T, (2.10)

vaeV(T) |Vh|1K

where ('3 is a positive constant which is independent of h and the mesh
TeF.

Under those hypotheses, we have stability of the initial pair (V}, Q). In
other words, there exists some positive constant C4 for which:

sup

/ prdivvydz > Cyllprlloe  Von € Qn, (2.11)
vpEV), \thn

where 'y does not depend on the number of macroelements in 7,,; it depends
only on Ci(k), Cs, Cs.

Remark 8 Although this second macroelement technique seems to be a lit-
tle bit restrictive compared to the first one, it can treat a lot of practical
problems. But in the analytical aspect, it is easier to verify since we need to
handle only a k-uniform global smaller problem and problems on the refer-
ence domain. Note that the constant Cy; does not depend on the anisotropy
of the mesh inside the macroelements. We will see application of this theo-
rem in the subsequent section when we treat realistic spaces. This technique
can be found namely in [SSS97].

Proof

The proof uses the Piola transform by exploiting the uniformity property.

Let g, € V},. First, we do a similar decomposition as in the previous proof:
ah=q + g

This decomposition has the property that: ¢, € Q, and ¢} := ¢*|x belong
to Q(K, Tk) for all macroelement K € 7T,,. The idea is to report ¢} to
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the reference domain K and apply the known hypothesis on this reference
domain.

Consider a macroelement K, we define:
0% = qx © Fr .
The reduced global stability (2.8) ensures the existence of v,,, € V}, such that:

(div Vi, gm)a > Cillgml|3 q
|Vm|1,Q < ||CIm |0,Q :

We have Ty = FK(’f: ) for some T € F if K has more than one element; and
Tx = Fx(T) with 7 = K if the macroelement K is only composed of one
element which is K itself (refer to previous subsection 2.2.2 for the definition

The relations (2.9) and (2.10) imply then the local existence of v € V(T)
so that:

{ (div v, g5) g > Cllggll? & (2.12)
Vi Lig < 4% |

0,K *

Let v be the Piola transform of v%.. That means:

V;{ = ‘JK‘ileV}. e} Flzl,

where Jg is the Jacobian of Fi and |Jk| is its determinant. Since Jg is
constant, v belong to V(K, Tx).

A property of Piola transforms gives (see Lemma 1.5 of [BF91]):
(le V;(v q;"()f( = (le V;('v q;{)K

Consequently, we have the following inequality thanks to the relation (2.12):

(div vy, gi)x = Cllgglls = Cllzelly xe» (2.13)

C
h(K)4
where C' is a constant which does not depend on any parameter (C=1in
the case K = (0,1)? and K is a rectangle).
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An analogous application of the scaling argument to the Piola transform
provides:

; hE) | . hME) | . hE) .
|VK‘1,K < C2W|Vf<‘1,f( < sz”%g”o,f( < Czp(T)H_d”CIKHO,K .
(2.14)
If we define u% € V(K, Tx) by the following scaling:
. _ pEYT
=—— .V
uK Czh(K) K »
then relations (2.14) and (2.13) become:

. * * C P K L+d * *
(ivuie i > & ookl and e

L& < llakllox -

Let us define v := & 5. Therefore, the uniformity of the macroelement

partitioning, that we have discussed in the relation (2.7), together with the
last equations give:

(divug,gi)x > Yllakllsx  and  |uilix < llgillox -
Let us now introduce
vii= > ay

KeTm

where 0}, is the zero extension of uj; in the whole domain (2.

We may note that v* belongs to V}. Besides, we have:

(divv*,¢*)a > 7ll¢*I5 o
V10 < ¢ loq -

The continuation of the proof is just like in the proof of the preceding theo-
rem. That means, we define

v=v'+0v, ,
where 0 > 0 will be suitably chosen in order to obtain:

{ (divv,q)q > 04”(]“%,9
viLe < llallog -
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Chapter 3

The ()2 — )y pair

In this section, we approximate the velocity by functions whose components
are piecewise ()2 and we approximate the pressure by piecewise constant
functions. For the isotropic case, the proof of the stability of this pair can be
found in many documents (see [GR86],[BF91]). In the following discussion,
we show that we still have stability for the anisotropic mesh in meshes which
will be explained later on. To that end, we invoke the macroelement tech-
niques. In the first section, we deal with stability on the reference domain
with stripped mesh. The second section treats stability on the reference ele-
ment with corner mesh. And in the last section, we collect everything with
the help of the macroelement techniques in order to conclude the stability
throughout the whole domain (2.

3.1 Uniform reference stability on a stripped
mesh

Definition

In the following analysis, we consider the domain Q = (—1,1)2% T, is sup-
posed to be an arbitrary discretization of I = (—1,1). We define the grid T
as the tensor product mesh (see Figure 3.1):

T={T:T=T,xI,T, € T,}.

We aim at establishing the inf-sup condition in @ independently of 7.

33
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Figure 3.1: stripped mesh.

Theorem 10 Define the discrete velocity and pressure spaces as:
V={veHNQ):v|roFre Q(Q) VT eT}

Q={g€ L3(Q): qlro Fr € Qu(Q) VT €T},
where F is the affine mapping from Q toT.

Then the inf-sup condition holds with a constant which is independent of the
discretization 7,. That means:

N
inf  sup VYV S o (3.1)
0£p€ Q ozve v2 [V1allplloe

A

where C' = C(Q).

We will prove this theorem when enough definitions and properties are in-
troduced.

Definition

First we define the following space:
H(Q) :={ve H(Q) : vfr, = vlr, = 0},

where I'; and I's are the boundary sections given in:

Fl = {(-T,y) € R*:z € (_171)7 y= _1}7
Ly:={(z,y) eR?*:2=1, ye (-1,1)},
I3:={(z,y) eR*: 2 € (-1,1), y=1},
Ty:={(z.y) eER*:2=-1, y € (-1,1)}.
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And let us introduce a projection 79

~

79 H(Q) — H(Q)N Q2(Q), by:
for v € H(Q), 79 is defined as the only function in H(Q)NQ1(Q) satisfying:

(r9v)(M;) =0  i=1,2,3,4 (3.2)

/Fi(ﬂQv)(s)ds = /Piv(s)ds i=1,2,34 (3.3)
) (x)dx = | v(x)dx )

[0 x)x = [ () (3.0

where M; are the four corner nodes:
M, =(-1,-1), My=(1,-1), M;=(1,1), Ms=(-1,1).

Before we prove Theorem 10, we shall need to state the following lemma
which gives some important properties of the projection 7.

Lemma 4 There exists a constant C such that:
| (x ) Ollus 2

‘ w||§Q <
|(79v) < C(H’U@”g@ + ||U||2;00,1~2 + ||U||2%,00,p4)7

2
QHO,Q

for all v € H(Q).

Proof

The proof of this lemma is extremely long and it can be found for example
in [SS97].

Definition For all elements 7" of T, define:
7l H(T) — H(T) N Qo(T)

7ty = [7%(v o Fr)] o Fy?,
where X
H(T):={ve H(T):vo Fr € H(Q)}.

Theorem 11 Consider an element 17" € 7. There exists a constant C' > 0
which does not depend upon 7" such that:

\ﬂ'Tv\iT < C’\v|iT Vve H(T).
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Proof

By using the continuity (Take p = 2 in the Theorem 1.5.2.3 of [Gri85] on
page 43) of the trace operator

A 1 1
H(Q) — Hg(l2) x Heo(T'y)
v (’U|I‘2’U‘I‘4)7
we can see the existence of some constant C' = C'(Q) > 0 such that:

<Clf2y Ve H(Q), (3.5)

||?)||100r2+||'1)| 1,0

after applying the Poincaré inequality.

Due to Lemma 4 and the relation (3.5), we may write the following inequality:

1@ 20)lI2 5 < Clllogll g + Iv3g) Vo € HQ). (3.6)
Consider now an element 7" of 7. It is consequently of the form
T = (z1,22) X (—1,1) with —1<z; <2y <1.

Define ¢ := %(1'2 — 7). As a result, it is seen that the affine mapping Fr is
provided by:
{ T = 0%+ 3(x1+ 32)
y = 4

By this change of variables, we can easily conclude in integration that:

Iwo Fr)sll; = Sllvcldr , N(@®[vo Frl)al; 5 = 6ll(x"0)a
I(v o Fr); ||0Q sloglle > (@ o Fr))gl o = 5ll(xTv),y

Hence we have |v o Fp|? 6 < 5/v[3 7. Due to the previous lemma, we have:
)

S 0)all} = (7w 0 Frl)sll3 5 < Cll(w o Fr)sll? o = 6Cvallfr -

Hence

(7" 0)all6z < Cllvallg.r- (3.7)
With the help of (3.6), we have:

I(xfw o Fr))slls o < Cll(v o Fr)sllh o+ v o Frl? ).
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And so: . . .
@0 < CSlivy i + 3 loR ).

Hence we obtain:

I(x™0)y 5z < Clllvyllr + vl 7)- (3-8)
We can conclude from (3.7) and (3.8) that:
‘WTUH,T < C|”‘%,T'
Definition
For v = (v1,v2) € [H(T)]?, we define

7v := (77vy, 70 vy).

Lemma 5 Consider an element 7' of 7 and v € [H(T)]>. Then for all
p € Qo(T) (i. e. locally constant), we have:

(le v, p)T = (le HTV) p)T

Proof

If we denote by n the unit exterior normal vector to 07, then the Green
formula gives:

(divv,p)r =/ (v-n)p becausepis constant.
aT

For the considered T, its four edges I'y(T"), I's(T'), I's(T), ['4(T") will be de-
fined in a similar way as in the definition of I'y, I'y, I's, T'y.

InI'(T),n = ( _01 ) In the continuation of the proof, v will be written

componentwise as v = (vq, v2).

/ vanp = — Vap = —p v9(x)dx
I'y(T) Iy(T) T(T)

= —p| voFp(X)odk=—p wQ(v2 o Fr)ddx
I I't
= - vy 0 Fp)] o Fr'd
p/rl(T)[W (v2 0 F)] o Fr"dx

= —p ﬂTvde:/ (IT"v).n p dx.
T'(T) T (T)
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We can repeat the same thing for T's(7"),['3(7"),T4(T). And so we should
obtain afterwards that:

| wap= [ (@).n)p.

Making use of the Green formula anew and taking into consideration the fact
that p is constant we obtain:

/a (v).m) p = (div(IT'v), p)r

And the lemma is consequently proved.
Proof of Theorem 10

With the help of the local projections II7, we can define element-wise a
projection II on the whole [H}(Q)]?:

II: [Hy(Q) — V,
such that for v € [Hé(Q)P,
(HV)|T = HT(V|T), YT € T

The continuity of (IIv) across interelements is evident because of (3.2) and

~

(3.3). According to Lemma 5 and Theorem 11, there is C; = C((Q)) with:

= (divllv,p) Vpe @,
|HV|1Q S 01|V‘.

On the other hand, we have the continuous inf-sup condition:
(divv,p)

> C5(Q) > 0.
Ipllo.0 (@)

inf sup
0#p€ L§(Q) 0£ve [HL(Q)]? v

1,Q

According to Fortin’s lemma (see Lemma 3), we conclude the evidence of the

. "y . _ 02((,?)
discrete inf-sup (3.1) with C AR

And we conclude at the same time that C' is a constant depending only on

0.

3.2 How can corner problems be handled?

In this section it will be detailed how corner problems are handled. We will
need the result from the first section here.
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A

0 a 1

Figure 3.2: The examined domain and its grid.

3.2.1 Trouble with the corner

In a quite general mesh for a corner grid, we cannot expect any unconditional
stability. The following very simple experiment that has been investigated
in [SSS97] illustrates that fact.

We have done a program in C++ in order to reconstruct the inf-sup results
which had been reported in [SSS97]. The generalized eigenvalue problem
that we have discussed in Property 1 of section 1.6 was used in order to
perform the numerical evaluations of LBB-constants. The mesh is explained
graphically in Figure 3.2. The numerical experiment consists of varying the
value of a and analyzing the inf-sup constants. The result of the numerical
test is to be found in Figure 3.3. It can be very well seen that the inf-sup
constants tend to zero as the mesh becomes anisotropic. And that fact shows
precisely that the stability result is a function of the aspect ratio.

We need however to find some remedy for that problem, and that is the
purpose of this section. We will see that we have stability on the reference
element with a tensor product geometric mesh independently of the aspect
ratio.

3.2.2 Stability on a geometric tensor product mesh
Explanation of A2 j and A, ,

First, we need to explain the mesh for which we have stability. To that
end, we need to take a real positive parameter o € (0,1) which will be the
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Figure 3.3: Inf-sup of (2 — @y in function of a.

geometric grading factor. In this section the domain of study will always be
the unit square Q = (0,1)2. Let us consider an integer parameter n € N.
The z-unit interval I, = (0,1) will first be refined geometrically towards the
origin 0. In other words, we subdivide it into subintervals I; = (z; 1,x;), i =
1,...,n+ 1, with

g = 0
r; = ont1—i,

Afterwards, we do the same thing for the y-unit interval I, = (0,1). The
mesh A2 on Q will then be the tensor product of the resulting refinement
along the x and the y axes. A graphical illustration can be found in the
following figure (Figure 3.4) for the case n = 4 and the geometric grading
factor is ¢ = 0.5. Afm is displayed in the left mesh. To prove the stability
on Afw, we want again the macroelement technique and the result from the

stripped mesh.

The macroelement partitioning that we will consider then is the isotropic
mesh A, , which is drawn in solid line in right hand side of Figure 3.4. We
need therefore a reduced stability on A, ,. We cannot just apply the well
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Figure 3.4: A%,a and the underlying macroelement.

known stability result from the standard isotropic analysis to A, ,, because
A, contains nonconforming nodes. In the next figure the scheme of A, ,
without the mesh A2 | is reported in order to see that fact clearly. One can
then find there the existence of a lot of hanging nodes.

Figure 3.5: A, , and its hanging nodes.

Statement of stability on A? |

We are now able to state the main result of divergence stability on the ge-
ometric tensor product mesh A2 . The following theorem states that fact
precisely.
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Theorem 12 Let us define
Vie = {u€ HYQ): ulr € Qx(T) VT € A2}
Qh,o = {p € L%(Q) :p|T € QO(T) VT € A'/Z“L,(f}‘

Then we have stability, i.e. there exists a positive constant C' for which:

d4i
inf sup (divvipr) >C, (3.9)

0FPrE Qh,o 0v, e V2, Vilyallprlloo

where (' is independent of n and the aspect ratio of each element. C' depends
only on ) and the geometric grading factor o.

We will prove this theorem later on. But we need first to see a lot of prelim-
inary results which will be the main purpose of the next two subsections.

3.2.3 Preliminary definitions and results
Introduction of the domains K;; and the j-th layers

We label first the macroelements of A, ,. More precisely, we adopt the
following numbering:

Ape={Kn}U{K;:1<i<3,2<j<n+1}

The numbering of Kj; are well explained in Figure 3.6. In the sequel, the
reunion Ki; U Ky; U K3; will be referred to as the layer number j.

The space S, ,

Before going further, we want to introduce a space which is of extreme im-
portance to the proof of the reduced global stability. For all macroelement
K € A,,, let us first define the local space £'(K) which will be strictly
located between the spaces Q% and Qg. For any considered macroelement K
of the mesh A, , with vertices a1, as, ag and ag = ao, let f; stand for the
edge [a; 1,a;]. Furthermore, we will denote the outward normal to f; by n;.
We define a;, fi, n; similarly on the reference domain Q

Now we define first some reference polynomials:
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Kgas Kis
o
My
Kaa| Kyg
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M 25
KsiK 13 ?;<
32112 24
112K 23
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Figure 3.6: K;; and the support of the basis function ¢;.

G1 = Z2Z3l4,
@2 == -’i'l-'%S-/i‘b
Gs = ZT1Z214,
@4 = ﬂf@zf&

where Z1, 2o are the two basic reference variables and Z3 and Z4 are defined
by:

5%32=1—.’i'1, £42=1—.’f,‘2.
The local space £!(K) is then defined by:

‘CI(K) = QI(K)2 D Spa‘n(pla P2, Ps3, p4)a

where the functions p; are the functions defined on K by:

pi=ni(GoFl) i=1,..4
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Finally, the space S, , will then be defined as:

Spne={uc H (Q)?:ulg € LYK) VK € A,,}.

A Clément type interpolant

In this part, we are going to discuss about an interpolation which acts sim-
ilarly as the Clément interpolant on the mesh A, ,. Given a function u in
H}(Q), its interpolant Tu will belong to the following discrete space:

Rno={u€ Hg(Q)NC(Q): ulxo Fx € Qi(K) VK € Apo}.

We should first remark that this space R, , has only degrees of freedom at
the nodes M;, ¢+ = 1,..,n which have coordinates:

1—i 1-iy .
M; = (o" " o™ i =1,2,...,n.

They are represented by solid points in Figure 3.6. We shall drop the index
n sometimes in the sequel. The precise expression of the interpolant Iu is
given by:

Tu:=>" B¢,
i1
where ¢; is the usual basis function at the node M;, that is: ¢; € R, , and
¢i(M;) = 0;;. Besides, the coefficient §; is given by the following expression:

_ 1

= udzx.
meas(supp(e;)) /SUPP(@)

We note now that supp ¢;, the support of the function ¢;, is given by the
reunion of the i-th and the (i + 1)-th layers. It can be seen graphically in
Figure 3.6. The following lemma will be stated but the proof will not be
given here. Readers who are interested in knowing the proof are well advised
to see the paper [SSS97].

Lemma 6 We have the following estimates for all u in H}(Q):

1 1
) WHU—I’U”&KJF > lu—Tuli g+ 3 —llu—Tullg, < Clul;y,
KeA, o KeAp,, e€bn,s "€

(3.10)
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and

||IU||%Q < C\U\i@ (3.11)

where C is a positive constant which depends only on the mesh geometric
grading factor o. In the preceding estimate, we used the following notations:

E,, = {e:eedgeofK, Ke€A,,}
he := length of the edge e
h(K) := diameter of the macroelement K.

3.2.4 Proof of the stability on A?M

Reduced global stability on S, ,

In order to prove the stability in the mesh A2 . we need to see the reduced

global stability on the macroelement partitioning which is A, ,. That is
precisely the purpose of Lemma 8 which we will prove carefully. Remember
that we need only to see the stability on a subspace of the discrete velocity
space.

Lemma 7 If we define the following local partitions:

Ni = K1 UKy UKipU Kay

N; == {Ky:1<i<3,j<k<j+1},

and if we introduce the local spaces:

R(N;) = {pe L*(N;): plx € Qo(K)VK C N;}
L(N;) = {veC(N;)?: vlx € LYK)VK C N;}
Lo(N;) = L(N;) N Hg(N;)?,

then the following subspace is one-dimensional and consists of functions
which are constant in N,

NNj = {p € R(Nj) : (diVV,p)Nj =0 Vve L()(N])}
Proof of Lemma 7: See [SSS97].

Lemma 8 (reduced global stability on S, ,) On the mesh A,, ,, we have
stability of the space S, , and the piecewise constant pressure with an inf-sup
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constant which is independent of n and the aspect ratio and which depends
solely on the mesh grading factor o, i.e. we have:

di
inf sup _(div i, pn) >C, (3.12)

0£PhE Rh 0vpe Sno | Va|1,0l[Pr]l0.0

where
Ry, = {pn € L§(Q) : py|x is constant VK € A, ,}.

Proof of Lemma 8:

Let us consider a nonzero function p € R,. By virtue of the continuous
inf-sup condition, we can find v = (v, v,) € Hj(Q)? satisfying:

(divv,p)g = Callpllg o IVlio < lIpllo g (3.13)

where Cj is a constant which depends only on Q.

Let us define vy, = (Ivy, [v3) € R, 5, where [ is the Clément type interpola-
tion defined earlier. We have therefore the following:

(divvy, p)g = (div(vh = v),p))g + (divv,p)e. (3.14)

We shall adopt the notation which was given in Lemma 7. Furthermore, we
denote by E(Nj;) the set of all edges of N; which are not on the boundary
ON;. Next, let us introduce:

Ey(N;) = {e € E(N;) : ehas no hanging node in the mid-point.}

E(A,,) and Ey(A,,) are defined similarly but with respect to the whole
mesh A, ,. We will also need the following quantities:

ik, = 3 WK lgradplix+ 3 ke [ liplds vpe RN)).

KCN; e€Eo(N;)

pRo= 3 h(E)Plgradplii+ 3 he / I[p].|ds.
)

KEA’I’L o eEEo(An T

The latter is in fact a semi-norm in Rj,. For an edge e of a macroelement K,
[ple stands for the jump of p across e. It is:

[ple(x) = tl_l)I(E_p(X +in) — tl_l)Igip(X —tn) Vx€e,
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where n is the unit normal pointing outward from K.

Applications of a partial integration, (3.13), and the Cauchy Schwarz in-
equality to the relation (3.14) yield:

(divva,p)g > D / (v—vy)-gradp+ > / ((v=vp)n)[ple ds+C’3||p||OQ
KEAno' EEEo(Ang
(3.15)
3
{ Y. h(E)Pve—vigx+ D2 2,} plho+Callplls
KEAn,, €Eo(Ano)
(3.16)

According to the property (3.10) of the Clément type interpolation, we have:

(divvp,p) > —C5

o+ Callol 5 > Il (03 L] )
Plos

because of (3.13). It is worth remarking that Cs depends solely on o.

An application of the Clément type interpolation property (3.11) gives |v|, o<
Cllplly o, with a constant C' depending on 0. As a consequence, we have:

(le Vh, p)

> [Ipllo.0 <04 Cs ™ ) (3.17)

Ip ||0Q

On the other hand, we can have an orthogonal decomposition of R(N;) in
L2(N;):

R(N;) = Ny, ® W, (3.18)

where Wy, is the orthogonal complement of Ny;.

According to Lemma 7, Ny, is one dimensional and consists of functions
which are constant in N;.

Therefore Lemma 3.1 in [Ste84] implies

d
sup (v, p)x; >y>0 Vpe Wy, \{0}, (3.19)

0#veLo(N;) |v|1N |p|N

where 7 is independent of 57 but depending on o.
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Let us now denote by p; := p|y;. Due to the decomposition (3.18), we have

b; =¢j + q; with q; S WNj-

According to (3.19), there exists v; € Lo(N;) such that :

(div vy, g)n; > 73, Ny < ajlny, (3.20)
Since ¢; is constant in Nj, [p;le = [g;]e and ||grad p;||§ x = ||grad ;|3 x for
all K C N; and e € Ey(Nj).
Therefore |p;|%; and |g;[%;, are the same.
As a result, we have:
(divvy, pj)n; 2 lpsly,  Iviluwyg < [pilw;, (3.21)
Let v := M1 u;, where u; stands for the zero extension of v; in the whole
Q. We have therefore:
M M M
(divv,p)g = D _(divuy,p)g = > (divvy,p)y; =7 |pj|?vj > C’|p|i’Q,
j=1 j=1 j=1

and
M
2
viig <Z|VJ|1N <> Ipily, < Clpl} o
j=1 j=1

We have consequently a constant C'y > 0 depending only on ¢ satisfying:

(div V,p) Pl ,Q

sup |p‘hQ Cal“OQ“p”OQ

oAvesne  |V0ig

| \/

(3.22)

Combining this last inequality with (3.17), we have:

divv,p)as ) c,C
(7)62 > [Ipllo.o rglélmax{Czl — Cst,Cit} = < L )

Sup Cy + Cs

orvesn. V]G
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Proof of Theorem 12

Here the proof of the theorem about stability on A2 , will be given. It in-
vokes the macroelement techniques. In fact, according to Lemma 8 on the
macroelement partitioning A, ,, the reduced global stability (2.8) is true.
And by the theory which were detailed in Theorem 10, we have stability on
the reference element independently of the chosen partititioning (i.e. on any
stripped mesh). Thus, we have also the uniform reference stability (2.10).
Therefore, we can deduce by virtue of a macroelement technique (see The-
orem 9) the stability of the corner anisotropic mesh Ai,a. And therefore
Theorem 12 is proved.

3.3 Main result

In the next discussion, we are giving details of the anisotropic stability on a
two dimensional domain €2 by using the pair ()2 — (). First, we are explaining
how to obtain the mesh 7, of 2. Let the macroelement decomposition 7, of
Q be k-uniform, i. e. for every macroelement K € 7, ,

h(K)

o(K) <K<o00.
We suppose also that every macroelement K is an affine image of a certain
reference domain. In order to have the final mesh 7, of €, we suppose that
each macroelement of 7, is further partitioned into a striped mesh (see first
section of this chapter) or into a o-geometric tensor product mesh (see second
section of this chapter). Several samples of such a mesh can be found in the
next figure (see Figure 3.7) which will be better explained in the next remark.

Theorem 13 For the following pair of spaces:

V., = {’Uh € H&(Q) : 'Uh|T oFr e Q2(Q), VT e 771}
Qrn = {pn € L§(Q) : pplr o Fr € Qo(Q), VT € Tp},

we have stability, i.e.

.
mf sup _VVmPY) o

0FPE€ Qh vy, € V2 Valiellpnllos

where C'is a positive constant which is independent of A and the mesh aspect
ratio. C' depends only on the uniformity parameter x of the macroelement
partitioning 7,, and the geometric grading factor o.
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Figure 3.7: anisotropic meshes.
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Proof

The first and second sections of this chapter ensure the uniform reference
stability (2.10). Furthermore, the reduced global stability (2.8) and the ref-
erence stability (2.9) follow from the well known stability in ordinary isotropic
meshes for (s — )y because the macroelement partitioning 7, is uniform.
Theorem 13 is then an immediate consequence of the macroelement technique
that was discussed in Theorem 9.

Remark 9 In Figure 3.7, you can find some examples of such a mesh. On
the left hand side you can find the mesh 7, and on the right hand side the
macroelement 7,,,. For the last mesh (E), the macroelement decomposition is
drawn in solid lines. You can find from those figures that each mesh within
a macroelement is either a striped mesh or a geometric tensor product mesh.
We can note that the meshes within macroelements can have high aspect
ratio although the macroelement partitioning are required to be uniform.
Note also in the mesh (D) that we use parallelogram elements. That is still
allowed because parallelograms can be also an affine image of the reference
element. These meshes are not the only possibilities, they show only that
our case is not restrictive at all.
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Chapter 4

The Q11 — Fr—1 pair

In this section we approximate the velocities by functions in ;41 and use
discontinuous pressures which are in P;_;. It is to be remarked that we treat
only the h-version. That means that the polynomial degree is fixed for all
elements. We will only give very short comments about the p-version at the
end. For the treatment of the hp-version, we can have a look at [AC00]. The
pair O — P,_1 is a very appreciated one in the isotropic case but a simple
test shows that it loses its stability as the mesh becomes anisotropic. Such
a numerical test can be found later in the following section (Section 4.3). It
should be mentioned at this beginning of this chapter that £ will always be
an integer parameter which is greater than or equal to 2.

The method that we will use here is again the macroelement technique. Since
this method has already been used in the preceeding chapter about the ()5 —
Qo pair, we are only going to prove things which are new. In fact, we are only
going to show how the reference stability on a stripped mesh can be proved.
The rest of the theory is the same as before with very minor modifications.
Again we will see that the corner macroelement still poses some problem in
our case but we will see two remedies of how to overcome this problem.

4.1 Reference stability on a stripped mesh

4.1.1 Recall of results about Legendre polynomials

The Legendre polynomials can be defined with the help of the following
formula:

93
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1 d "
L,(z) = o o (z2-1"], ze[-1,1,n=0,1,2,3,...

These polynomials have a lot of interesting properties but we will only see
those in which we are interested. For further detail about the properties of
the Legendre polynomials, we can see [WG89].

Property 2 We have the following easy equalities:

Lo(.%‘) = 1, Ll(ﬂ?) =
Ln(l) = 1a Ln(_l)

Il s

(=)™, n>0.

Property 3 (Orthogonality) If we define for all i € N U {0} v; =
then we have the following orthogonality in Lo([—1, 1]):

_1
2i+1°

1

-1

Definition 1 Let us define further L_;(z) = L_»(z) = 0, Vz € [-1,1] and
v-1 = 1, then we can introduce the following polynomials:

Ui(z) = vi1(Li(x) — Li_s(z)) Vx € [-1,1] i=0,1,2,..

Property 4
U(z) = 1, Ui(z)==x (4.1)
Us(z) = /jLil(s)ds P> 1, (4.2)
U(£1) = 0 i>1, (4.3)
Ul(x) = Lii(z) >0, (4.4)

{U;}izo,...xbuild a basis of Py([—1,1]).
It follows immediately that {U;(z)U;(y) i =0,..,r, j =0,...,s} is a basis of
QT’S(Q)v where QQ = [_1’ 1]2.

Definition 2 Let us denote by I'; and I's the following boundaries:

Iy = {(myeR*:z=-1,ye(-1,1)}
Ly == {(m,y)eR?*:z=1,ye (-1,1)}

And so we can also define the following space:

H:={ve HY(Q):v=00nTy, [y}
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Lemma 9 Let v € H'(Q) which can be written as:

v(x,y) = i i Um,nUmH(m) Un-l—l(y).

m=—1n=-1 m Tn

Ifve H thenv_ 1, =v, =0Vn=-1,0,1,...

Proof

First of all we have

Um1(£1)

f}/ == L'm+1 (:i:].) - Lm,]_(:li]_)

In the case that m > 1, the previous expression (4.6) is equal to:

(£1)™ — ()™t =0,

In the case m = 0 and m = —1, (4.6) is respectively equal to:

We have therefore the next relation:

e U, U,
Ozv(ilay) = Z {vl,nL(y)iUOH +1(y)}-
ne——1 Tn Yn
That means immediately that
o0 Un
> (o1 Ev0,0) 0ly)
n=-—1 r}/n

Because the functions U,, form a basis, we have:

%)

(4.5)

(v_1,n, £ Vo) = 0. The sum and the difference are zero, so v_;, = v, =

0Vn=-1,0,1,2, ...
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4.1.2 Preliminaries before the construction of a Fortin
operator

Definition 3 Let us consider any continuous function G : R* — [0,1]. Fix
an integer k > 2. For any function v € H which can be expressed as (4.5),
we define:

’U*(.’E,y): i i v* Um+1(£L‘) Un—l—l(y)’ (47)

where vy, , = G(%, ) Vmn-

Lemma 10 Let £ be an integer which is greater or equal to 2. If the con-
tinuous function G : R? — [0, 1] satisfies:

G(a,b) =0 if (a,b) € A, (4.8)

where
9 1
A= {(:L",y)ER :$21+Eory21},
then v* € Qk-l-l,k'

Proof

We have vy, = 0if m > k+ 1 or n > k, according to the relation (4.8).
That implies immediately that:

k k—1
’U*(.’E, y) _ Z Z ’U:n,n Um+1($) Un+1(y)’

m=—1n=-1 Tm Tn

which belongs to Q1.
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y

1-(K)

-1/k 0 1 X

-1/k

Figure 4.1: The region B.

Lemma 11 Suppose that the continuous function G : R* — [0, 1] satisfies
(see Figure 4.1):

1 1
G(a,b) =1 on B:= {(x,y) € [—— 1] X [—E,I—E] crx+y < 1}.
Let v be as in (4.5),
then for all ¢ € P,_1(Q), we have:

{ (0pv* — 0pv,q) = 0
(Oyv* — Oy, Q)Q =0.

Proof

We need only to show the lemma for functions ¢ such as ¢(z,y) = Li(z)L;(y)
with 7,7 > 0 and 4 +j < k — 1 because every function of P,_1(Q) can be
written as linear combination of such functions. Due to the properties of the
Legendre Polynomials that we have discussed earlier in Property 4, we have:

Z Z _Umn x)Un-}—l(y).

m=0n=-—1 Tm Tn

According to the orthogonality of the Legendre polynomials that we have
met in Property 3, we obtain the next relation:

© 11
(8951), Q)Q = Z __Ui,n27i(Un+1a =2 Z Uzn n—|—1a ) - (Ln—la L])]

n=—1 li In n=-1
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= 2[2vi5-17 — 2vij11%5] = 495 (Vi1 — Vi jr1)-
We can do the same calculations in order to see that

. . . 1 7 —1 1 J+1
(0:v",q) g = 47 (V71— V] j41) = 45 [G (E’ T) vij1—G (E’ A ) ”z’,j+1] :

For i = —1, 0, the coefficient v;, is zero (see Lemma 9) and so we can assume
that ¢ > 1.

Since it +j < k —1, (%,%)EBand(

zu)_ (iﬂ)_
G(k’ k =G Kok )

Consequently, (0,v* — 0,v, q)é2 = 0 . For the partial derivative with respect
to y, we can act similarly.

Lemma 12 Let us consider a function v which can be written as in (4.5),
then we have the following two equalities

o o0
102056 =42 > =" (Umnt1 = Umpn-1),
m=0n=0 Ym
and
[SBINe's) Ym )
”691)”(2)62 =4 Z Z — (V410 = Vmo10)"
' m=0n=0 Tn

If we have furthermore v € H, then there exists a constant C' > 0 such that
for any s € N, we have:

8
Lo 2 2
Z _(vm,fl + vm,O) < Cs |U‘1,Q’
m=0 /™
where C' depends neither on v nor on s.

Proof See Lemma 3.14 and Lemma 3.17 of [SS97] or see Lemma A.1. of
[ACO0].

Corollary 1 Suppose the continuous function G : R? — [0, 1] satisfies

_ | 1 for (a,b) € B
Gla.b) _{ 0 for (a,b) € A,
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then there exists a constant C' > 0 which does not depend on k such that for
all v € H which can be written of the form (4.5) we have:

||8wv*“2 < C’\/_|U|1 O
[0v* IIOQ < CVE||9yv].
Proof

According to the previous lemma, we can write

|a 'U” =4 Z Z ﬁ(vm,n—kl - Um,nfl)za

m=0mn=0 /M

and similarly for v*:
10:0"l5 0 =42 >

Since vj; = G (k, J,;) v;; and G(a,b) is respectively 0 and 1 in A and B, we
deduce immediately that:

(v s ) = Vsl — Vmn—1 if (m<kandn<k-—2)
Umnt1 ™ Umn-1) = if (m>korn>k+1).

Let us define the following index set:
I:=H{0,...,k} x{k—-1,k}.

Let I°¢ stand for its complementary in (NU{0}) x (NU{0}). We can therefore
partition the sum in ||0,v*||2 &

* Y * * Y
||8$v ||(2),Q =4 Z _n(vm,n—l—l - vm,n—1)2 +4 Z _n(vm,n-l-l - /Um,nfl)z-
(m,n)er 'm (m,n)el°

Furthermore, for n > k — 1, we have v}, ., = 0 because G(%, %) = 0. we
haver therefore:

”aw”*Hg, =4 Z Tn Vpn1 ! Z Tn (Um,nﬂ_vm,nfl)z-

(m,n)el Tm (m,n)€Ic

The second sum can be immediately estimated by ||0,v]|? o 80 we have:

771 *
100" 15 <4 30 Fvmn 1"+ 10a0]1F - (4.9)

(m,n)er 'm
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That means that we will need only to estimate the first sum:

On the other hand, it holds:

1 o
Vg < 072 > Y Omjsr — vmg1)?| F C(h 1 — Vo) (4.10)
n—1 |j=0

Indeed,

_ (Um,1 — Um,—1) + Um—1 ifneven
fman—t = (vm’n_l vm’n_3)+(vm,n_3 ”m,n—5)+---+{ ('Um,fz - 'Um,O) + Um,0 ifn odd.

We will consider only the case where n is even (the case when n is odd can
be handled similarly)

n—2 1

Umn—1 = Z —7 [\/V_j(vm,jﬂ - Um,j—l)] + Um,—1-
j=0, J

j even

According to the Cauchy Schwartz inequality, we have:

1/2 1/2

n—2 n—2
1
Vma-1 < | Y0 — > ViWmgsr = Umg1)?| A vmor (411)
J=0, Yj j=0,
J even J even

A simple proof by induction also shows that

n

21 C
— < 5
0 Vi Yn—-1

(4.12)

J

The fact that (R+ S)? < 2(R?+ S?) together with the preceding inequalities
(4.11) and (4.12) then imply that:

v2 <C

m,n—1 —

n—2
> Y (Wmger — Vm-1)?| +CvZ
j=0,

j even

2
n—1

The other case where n is odd can be treated similarly, so we skip the de-
ductions but state only the final result:



4.1. REFERENCE STABILITY ON A STRIPPED MESH 61

2 2
vmn 1 Z Yj 'Um,]—f—l ’Um,j—l) +C/Um,0

; odd

Therefore, in both cases (n even or odd) we simply obtain the general in-
equality (4.10). Consequently, the following bound is true:

ko1 1 % | 2 2
Y Va1 <C 5 5 B (v 1= 1)C S — (V1 + o) -
m=1Tm 7n 1 m=0 ;=0 Ym —1 Ym

~ J
-~

S

(4.13)
According to Lemma 12, we can deduce the next fact as follow:

k
1

Z mn 1 = 2 ”aﬂIUHO,Q + Cl{,‘2|’0 iQ
f}/nfl

m—l
Consequently, by taking the sum we have the following estimate:

n=

——10,v]l, ot C”ynk2|v
1

’)’L

k—
- O( Zk Vi 1) 102015 6 + CE* (-1 + W) |0]3
Yi—1
1
< Ol + Chlvl g < Ciklol}
k

1,0

because of the definition of v, = (2k +1)7!
Combining this last inequality with (4.9), we obtain simply:

10207115 o < Crklv]] o + 10avll; g

therefore we deduce simply the conclusion, i. e.

19:07llo,g < CaVklv]y -

We can repeat the same proof for the partial derivative with respect to y.
The difference is that, the term S which we see in the relation (4.13) vanishes
in that case because of Lemma 9 which says that v_1,, = v, =0 Vm =
-1,0, ....
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Theorem 14 Let k£ be a fixed integer which is greater or equal to 2. Then,
there exists a linear operator 7, : H — H which satisfies the following three
relations:

(D1) For all v € H, we have:

(Or(v —m),q)g =0, Vqe€ Pk_l(é?) and
(Oy(v — mv),q)5 =0, Vg€ Ppa(Q)

Y
Y

(D2) mpv € Qpyrp;
(D3) There exists a positive constant C independent of k such that:

10smivllo g < CVE[V] g
10,mvllo o < CVENOylo -

forallv e H.
Proof See [AC00] where the authors use the previous results to deduce this

theogem. Because the set of all polynomials is dense in the Sobolev space
H'(Q), and all polynomials can be written in the form (4.5).

4.1.3 The considered mesh and further results

We will work on the domain Q = (—1,1) x (=1,1). Now we would like to
give some explanations about the mesh. Like in the case of ()2 — Qy, we
would like to consider a stripped mesh that we recall briefly: 7, is again any
discretization of (—1,1). The final mesh 7 on Q is then:

T={T:T=(-1,1)xTy, T, € To}. (4.14)

Most of the following results are the same or use the same techniques as in
the case of QY3 — @y, so we are not going to prove them in detail any more,
we are only telling the results.

Definition 4 For all elements T of the mesh 7, we define the space:
H(T):={ve HY(T):vo Fr € H}.

Let us fix an integer k£ > 2. We can then introduce the following function:
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v := (m(v o Fr)) o Fpt.

Corollary 2 Let T be any element of 7 and k& > 2. Then for all v € H(T),
we have:

mivlir < CVE[v]yr,
where C is a positive constant which is independent of £ and the element 7.

The proof of this theorem is very much like that of Theorem 11 and so it will
be omitted.

Theorem 15 (First main result) Let us consider a stripped mesh like in
(4.14). Define the following spaces:

Vi = {u€H}Q):ulroPr € Quu(T) VT € T}
Qr = {peLi(Q) :plroFreP(T)VT' €T}

Then we have stability, i.e. there exists a positive constant C' for which:

div vy, A
inf sup (divva prlg > C, (4.15)

07Ph€ Qk gy € V2 |Vh 1,Q||ph |0,Q B

where the constant C' depends neither on the aspect ratio nor on 7.

Proof

The goal of the proof is the construction of a Fortin operator. For any element
T of T, we define first the operator II;. This operator will be defined on
H(T)? and it will be expressed componentwise by the 7{. More precisely,
for any v = (vy,vs) € H(T)?, we have:

v := (7!';‘5’01, ’/TZ;"UQ) .

This last operator IT{ inherits the properties of m}: among others we have:
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(div(v —TT{v),q) =0 Vg€ Q. (4.16)

This relation is very much like that in Lemma 5 in the chapter about Qs — Q.
We are now able to introduce an operator which is defined on the whole
H(Q). Tt will be in fact the Fortin operator that we will need. It is precisely:

B: H}(Q)? = Vi,
which is defined elementwise by:
(BV)|p =1} (v|ly) VT €T.

Lemma 3.5 of [AC00] ensures that for any v € H}(Q)?, its image (Bv) will
be continuous on interelements, and so (Bv) will be continuous on the whole
domain Q.

On the other hand, the relation (4.16) implies:

(divv,q)g = (div(Bv),q)y Vq € Q-

Corollary 2 implies in particular the following boundedness:

Bvis= > IBvir= > [E(vio)[ir <Ck Y vlie=Cklv] 4.
TeT TeT TeT

According to the Fortin’s lemma (see Lemma 3), we can conclude the theo-
rem.

4.2 Stability in the corner macroelement

In this section, we intend to analyze the corner macroelement. Similarly
to the case of Q2 — Qo, this Qry1 1 — Pr—1 has a very difficult problem at
the corner. A simple numerical experience can demonstrate that fact (See
section 4.3). In the following discussion, we show two remedies to overcome
that difficulty. The solution to this corner problem is to invoke p-version
FEM. We recall that in the p-version FEM, one has the possibility to have
different polynomial degree in each element. In other words, polynomial
degrees are allowed to be different from one element to another.



4.2. STABILITY IN THE CORNER MACROELEMENT 65

4.2.1 Remedy 1 (Geometric tensor product mesh)

The first remedy that we can do is to invoke again the geometric tensor
product meshes as we have done in the case of Qs — (Qg. We recall briefly
this kind of mesh. Any geometric grading factor o € (0, 1) is first taken. The
z-unit interval (0, 1) is first refined geometrically towards the origin. That
means, it is subdivided into n + 1 subintervals:

Ii = (mi_l,a:i),i = 1, un+ 1,

where

Trog = O,
T, = 0.n+1fz’

(n is any positive integer) .

We do the same for the y-unit interval. And the considered mesh is the
resulting tensor product mesh. Like in the theory about Qs — Qg, we will
denote this resulting mesh by A2 , (see Figure 4.2).

Figure 4.2: AZ  and the underlying macroelement.

We can directly state the following theorem:

Theorem 16 Define
Vo = {u€ HYQ) : ulr € Qs(T) VT € A2}

I

P, = {peL3(Q):plr € Poa(T) VT € A2},

I
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where

(r,s) = (k+1,k) if T is stretched in the z-direction,
(r,s) = (k,k+1) if T is stretched in the y-direction.

Then we have stability, i.e. there exists a positive constant C' for which:

mf sup  _AVVRP) o (4.17)

0#Ph€ Fon 04v,e V2, Viliellprlloe —

where C' is independent of n and the aspect ratio of each element. C' depends
only on ) and the geometric grading factor o.

Proof

The proof follows exactly the same lines as the proof of Theorem 12 which
invokes a macroelement technique, so we do not need to repeat it. The only
thing that we remark is that the space £'(K) which we used in the case of
Q2 — Qo is still a subspace of Q7 ,, , and Q7 ., for k > 2. Consequently the
reduced global stability (2.8) in Theorem 9 still holds here.

Remark 10 If the difference of polynomial degrees in the elements is not
desirable then one has to take only Q1 x+1 for all elements 7" in the definition
of velocity space.

4.2.2 Remedy 2 (Varying corner domain)

The second solution to this corner problem is to use varying corner domain.
That means that we adjust the size of the corner domain according to the
desired aspect ratio.

For any positive number p, we define the domain D, = (0,14 p)?. The mesh
7T, will be then composed of (see Figure 4.3):

= (Oap)2

T = (p,1+p) x(0,p)

T3 = (p’1+p)x(p71+p)
T4 = (Oap) x (p’1+p)

We admit the following polynomial degree partitioning:
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yu
1+p
Ty T3
P T Ts
0 p I+p 7

Figure 4.3: D, and its discretization.

For the z variable, the degree on the element 7} is k,(7) which are:
ky(1) =k, k,2)=k+1, k;3)=k+1, £ky(4) =k.
We define the the y polynomial degrees similarly with:
k,(1) =k, Fky2)=k, k,3)=k+1, k,(4)=k+1.

We have then the following result:

Theorem 17 Define

V, == {ue Hy(D,): ulr, € Qr,(ik,)(T3) Vi=1,2,3,4}
Q, = {peILiD,):plr € Py(T}) Vi=1,234},

then we have stability, i.e. there exists a positive constant C' which is inde-
pendent of p and k such that

inf sup (div Vi, pr) > CVEkmin(1, ky/p). (4.18)

0£PRE Qp 0tv, e V2 Vi |1,Dp |Pn ||0,Dp

Remark 11 We do not prove this theorem because we are more interested
in having more than just four elements. Readers who want to know the proof
can see [AC00]. The theorem has not much value in the h-version because
for a fixed k, the minimum in (4.18) will always be k,/p for sufficiently small
p- But k,/p tends to zero with p, so we do not gain anything in this case.
That means we are restricted to p > Ck %/
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4.3 Numerical results

In this section, we report some numerical tests. It should be remarked that
we have done two different tests that will be discussed independently in this
section. It can be really seen that they are in accordance with our theoretical
results.

4.3.1 Test 1

In this test 1, we compare the effect of high aspect ratio mesh to the pair
Qr — Py-1 and the pair Q41— Pr—1. As expected from the theory the latter
is still stable on high aspect ratio mesh. The mesh that we consider is a very
simple one. It consists of two rectangular elements only. We can see Figure
4.4 for a graphical illustration. Note that the mesh becomes anisotropic when
the value of the positive parameter p becomes small. Because the value of
the mesh aspect ratio is in fact:

1
Aspect Ratio=-.
p

The numerical result can be found in the next table (Table 4.1), where we
considered both Q) — P, and Q32 — P; (that means k = 2):

This test 1 also emphasizes that although @, — Pj_; is a very appreciated
pair in the isotropic FEM, it generally fails to be stable in high aspect ratio
mesh. Besides, test 1 also confirms our theoretical result about anisotropic
stability of the pair Q41 — Pr—1 on stripped meshes.

2*rho

Figure 4.4: Grid 1: The investigated mesh for test 1.

The numerical outputs really show that for the values of p in the interval
[0.15,0.5] the inf-sup constants for both pairs are still somewhat comparable,
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P aspect ratio Q:— P, Qs2— P
0.50 2.000000  0.408248290 0.611386469
0.45 2.222222  0.403946910 0.605544640
0.40 2.500000  0.391232615 0.593358504
0.35 2.857142  0.370546843 0.579870918
0.30 3.333333  0.342321058 0.567487023
0.25 4.000000  0.306771156 0.558411238
0.20 5.000000  0.263797711 0.555452465
0.15 6.666666  0.212934335 0.562186852
0.10 10.00000  0.153265392 0.582152906
0.05 20.00000  0.083216624 0.614649130
0.01 100.0000  0.017902167 0.640500494
0.001 1000.000  0.001822100 0.645032131
0.00001 100000.0 1.82570e-05 0.645492612

Table 4.1: Results from grid 1: As predicted by the theory, the inf-sup
constants for ()35 — P; is bounded (unlike those for Q2 — Py).

but in the range p € [0,0.15], we can perfectly see the superiority (in terms of
anisotropic stability) of the Q3 o — P pair over the Q2 — Py pair. A graphical
version of the numerical results are located in Figure 4.5 and Figure 4.6. They
give a better aspect of the general behavior of the inf-sup constants. Finally,
this test 1 shows that the increase of the velocity first polynomial degree is
necessary in the anisotropic case, i.e. we never can expect an unconditional
anisotropic stability for the @ — P, pair.

4.3.2 Test 2

In this test, we want to analyze again the corner mesh that we have considered
in the pair (Q2 — Q. It is recalled in Figure 4.7. We test it with the Q11 —
P,._; pair. The mesh tends to be anisotropic when the value of the positive
constant a tends to zero. The results in the interval a € [0,0.5] can be seen
in Table 4.2.

It is very well seen that the dependence of the inf-sup constant on the aspect
ratio is unavoidable for grid 2. Because the problem has a certain symmetry
at p and at 1 — p, the complete results (i.e. a € [0,1]), which is plotted in
Figure 4.8 is already expected.
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Figure 4.5: Results from grid 1: This graphs confirms our theoretical results
about Qp41,/Pr—1 stability on stripped meshes.
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Figure 4.6: Results from Grid 1: This graphs shows the degradation of the
Q> — P; pair on a high aspect ratio mesh.
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0 a 1

Figure 4.7: Grid 2: the investigated mesh for test 2.

a aspect ratio INF-SUP
0.5 1.000000 0.53554
0.4 1.500000 0.52764
0.3 2.333333 0.50975
0.2 4.000000 0.48835
0.15 5.666666 0.46562
0.1 9.000000 0.41889
0.05 19.00000 0.33467
0.0001 9999.000 0.01760

0.000001  999999.0 0.00176

Table 4.2: Results from grid 2: Unfortunately for the corner mesh even
Q)32 — P is unstable.
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Figure 4.8: Results from grid 2.



Chapter 5

Stabilizations and application

to 1 — Q1

5.1 Abstract stabilization procedure

A stabilization method is generally used in order to be able to use a pair which
is known to be unstable. Effectively, it is often applied when the velocity and
the pressure discrete spaces are the same. For example @); — Q1 or P, — P;.
People also use a stabilization method in order to give some remedy to pairs
which are practically easy to implement but which are unstable. An example
of such a pair is the Q1 — Q)y. In this chapter, we are not going to deal with
all the interesting pairs which can be stabilized; but rather, we are giving
some abstract theory which can be applied in practical problems and then
we are applying it to the pair (1 — @);. Like in the previous discussions, we
will be more interested in anisotropic grids.

5.1.1 Correction terms

The philosophy of stabilization is to modify the discrete variational formula-
tion with a correction term so that the originally unstable pair will become
suitable for the modified equation. Let V}, and (), be finite dimensional sub-
spaces of the continuous velocity and pressure spaces. We will analyze the
following modified stabilized discrete equation:

(Vuh, VVh)— (ph,diVVh) = (f, Vh) Vvh - Vh
(divug,qn)+  c(pn, @) =0 Van € Q.

73
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First of all, we will see some assumption under which the stabilized discrete
equation (5.1) is uniquely solvable because it does not look like the usual
equations that were discussed in the previous chapters. But first, let us see
the following topic which gives a generalization of Lax Milgram’s lemma.

5.1.2 Generalized Lax-Milgram’s lemma

Lemma 13 Let U be a Hilbert space. Let a(-,-) be a bilinear form defined
in U which satisfies the following assumptions:

(A1) There exists a positive constant C' for which:
la(u, v)| < Cllull.llo]| Vu,ve U.
(A2) There exists a positive constant « for which:

sup a(u, v) > allul| YueU.
ozver |0

(A3) For every v € U \ {0}, there is u € U with:

a(u,v) #0 .
Then, for each f € U*, the following problem has a unique solution:

Search foru € U with
a(u,v) =< f,o > Yo eU.

Proof

With the help of the a(-,-), we can define a linear operator A : U — U*. For
an element u of U, Au is defined by:

< Au,v >:= a(u,v) Yu,veU.

Because of the assumption (A1), the operator A is continuous. We can
deduce from (A2) that A is a 1-to-1 mapping. Indeed, (A2) gives us:

| Au

v- = allull;



5.1. ABSTRACT STABILIZATION PROCEDURE 75

therefore ker (A) = {0}.
That implies the evidence that A is bijective from U onto Ran (A).

Besides, (A2) implies also in particular that A has a continuous inverse.
Consequently, A(U) is a closed set. According to the closed range theorem,
A(U) = (ker (A*))° (polar of the nullspace of the adjoint of A).

On the other hand, according to the assumption (A3), we have:
ker (A*) ={v e U: a(u,v) =0Vu € U} ={0}.

As a result, (ker (A*))? = U* which implies that A is bijective from U onto
U-.

Remark 12 The Lax Milgram’s theorem is a particular case of the preceed-
ing lemma because coercivity implies surely the assumption (A2).

5.1.3 Unique solvability theorem

Now we would like to prove the unique solvability of the stabilized problem

(5.1). The previous lemma will be of so much use for the proof of the next
theorem. We need however the following equivalent problem:

Definition 5 Let us first define the product space R, := V},, X Q. We can
therefore introduce the following bilinear form B : R;, x R, — R with:

B ((un,pn); (Vi qn)) == (Vug, Vvy) = (div vy, py) — (divug, gn) — c(pr, qn)-
(5.2)

Then the stabilized problem (5.1) is equivalent to the following one: search
for (up,pn) € Ry, with

B ((an,pn); (Vi an)) = F((Va, @)  V(vh, an) € Ra,
where F((vy,qn)) =< f,vp >.

Theorem 18 Let us suppose that we have for all p;, € Qy:

pp, divv
sup AL + v/ c®n; pr) = Yllpnllo (5.3)

otviev2  IVvallo
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then we have for all (u, ps) € Ry:

B .
sup ((uh,Ph), (Vha Qh))
wian)ern  I1VVallo + llarllo

> C(|[Vunllo + |lpnllo)- (5.4)

Proof

The proof is somewhat long and it will be divided into three parts.
Let us consider an arbitrary but fixed (uy, pr) € Ry,

Part 1:

According to (5.3), we have:

(ph, divvy)
sup  —o—— > Y||pullo — \/c(pn; r)- (5.5)
ozvaevz  [IVvallo

Let us denote by wj, € V2 the function where this supremum is attained.
We can scale wy, in order to obtain ||Vwy|lo = ||pn|lo. We have now:

B ((uhaph); (_Wha 0)) = _(VUh, th) + (le Whaph)
> = [IVullolVwrllo + Yllpallz = llpalloy/c(on, o)
= —[IVullollpnllo +Yllpllz = llpalloy/c(on, pr)-

Let us now choose any € € (0,7). We have simply the following two inequal-
ities:

Vu < LIVuy,||2 + £ 2
{ IVuglollpallo < 5:[IVurlls + 5llpallo (5.6)

1Pnlloy/c(Pr: Pr) < §1IPall5 + 3¢y Ph)-

We can then deduce that:
1 5 € 5 5 € o 1
B ((un, pn); (=wn, 0)) 2 = [IVusllg=llpallo+vllpnllo— 5 llpnllo— 5 c(pn, pr)

1 1
> — IVl + (3 = )l = -l ).

It follows then:

B ((an, pr); (—wp, 0)) > =Cs||Vuy|l§ + Csllpnllz — Cre(pr, pr)- (5.7)

And that result closes the first part.
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Part 2:

B ((up, pn); (up, —pn)) = [Vupllg — (divug, pr) + (divuy, pr) + c(pr, br)-

That means that we have:

B ((un, pn); (un, =pn)) = [Vunll§ + c(pn, pn)- (5.8)
Part 3:
The third part of the proof consists of combining the results from the first and
the second part. In fact, we are going to denote by (vp, qn) := (up— pwn, —pp)
where 1 > 0 will be specified later. Due to the relations (5.7) and (5.8), we
have:

B ((an, pr); (Vas an)) = B ((un, pn); (wp, —pn)) + pB ((Wn, pr); (—ws, 0))
> ([ Vullg + c(pn, pr) + 1 [_C5||Vuh||§ + Collpalls — C7C(ph,ph)]
= (1= pCs)|[Vusllg + uCllpalls + (1 — uCr)c(pn, pa).

Now if we choose 0 < 1 < min(Cs*, C; '), then:

B ((an, pn); (Vi an)) 2 C (||V11h||g + ||ph||§) : (5.9)
On the other hand, we have:

IVVallo + llanllo IVuslo + ul[Vwallo + [l2llo

<
< Vuallo + (T + w)llpallo
< T(IVuanllo + [lpallo)-

If we combine therefore this last relation with inequality (5.9), then we obtain:

B ((uh,ph); (Vh> qh))
IVVrllo + [lgnllo

> C(|IVunllo + llpallo)-

That implies certainly that:
B .
sup ((an, pn); (Vas an))
via)eRs  1VVallo + llanllo

which is the desired result.

> C(||Vullo + llpallo),

Remark 13 The unique solvability of the stabilized equation (5.1) can then
be deduced by applying Theorem 18 and the generalized Lax Milgram’s the-
orem that we have discussed in Lemma 13.
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5.2 Theoretical Results about ()1 — ()1

We will consider here the pair (); — Q1. This is appreciated by some prac-
titioners because it has similar space for the velocity and the pressure. We
have in fact:

Vi {ue Hy(Q)?:ulr € Q1(T) VT € Tp}
Qn = {PeLi() :plr € Qu(T) VT € Tn}.

(5.10)

If we use this pair in the ordinary way then we will not have stability. Two
stabilization procedures are known to be good in isotropic grids. For them the
following stabilization terms are respectively added to the original equation:

c(p,q) = > meas(T)(gradp,gradq)r

T
co(p,q) = ) diam(T)*(grad p,gradq)r .
T

These stabilizations are however proved to lose accuracy as the mesh has
high aspect ratio. For that discussion, see [Har91]. In the next discussion,
we would like to analyze a stabilization which is good even in high aspect
ratio meshes. It is precisely:

c(p,q) =06 Y {ha(T)*(0up, 0a@)r + hy(T)* (0, Dya)r } ,

TET,

where h,(T) and h,(T) are respectively the widths of the rectangular element
T along the z and the y axes and ¢ is a prescribed positive constant in (0, 1].

We will introduce the following assumption about the mesh. The sizes of
the elements are supposed to vary slowly in the sense that two neighboring
elements do not have a very large difference in size. More precisely, if we
denote by N (T) the set of all neighboring elements to 7', then we assume
the existence of a positive number £ with:

1

EhT(L) < h(T)<&h (L) VLeN(T), r=uz,y. (5.11)
Note however that the aspect ratio of the mesh can be as large as needed. An
example of such a mesh can be found in Figure(5.1) which may still become

anisotropic. In this chapter, we always assume that (5.11) is valid.

The discussion of the following theorem can be found in [Bec95a] and [BR94].
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Figure 5.1: Mesh with slow change in sizes of elements.

Theorem 19 For the pair Vj, Q),, we have the following generalized LBB
condition:

I
<2
>N
v
2

[\V]
\%
=
—~
ot

—
N

inf

su
0#pr€Qn b

ozvrevy IVVallglpells — llpalld

{ (IDiudiVVh)2 + C(Ph,ph)}

where v depends neither on h nor on the aspect ratio.

Proof (Sketch only)

It will take more than ten pages to prove this theorem, so we will only give
the main steps of the proof and readers who are interested in seeing the proof
in full detail should read [Bec95al:

For each given p, € @, we can take its Lo-projection p, into the space of
piecewise constant space. We can prove that we have:

||ph - ph” S Z {hx(T)2(a:cpa a:cq)T + hy(T)z(aypa ayq)T} .
TeTh

With this piecewise constant function pj, one uses macroelement decompo-
sition approach to prove the existence of v, € V}, with:

(P, divva) _ co(pn, pn)"?
IVVrllollPrllo — [|Pnlo

I

where

co(p, q) := Zh%/r[p]r[Q]rds,
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in which h{ stands for the mean of the widths (in the direction orthogonal
to I') of all elements which are adjacent to the edge T'.

After showing that:

co(Bnn) < D {ha(T)?(0sp, 0a)r + by (T)*(3yp, 0y0)7 }

TET;,

one can prove the conclusion of the theorem.

Remark 14 In matrix-vector language, the equation (5.1) takes the form:

AE—BT(
B : C r

Let us note by M the mass matrix related to the pressure basis functions that
is we have: ||p|lo = p" Mp. Then, we have the following characterization of
the generalized LBB condition (5.12).

ks IS
~———
I
—
SIS
~—

Theorem 20 The generalized LBB condition (5.12) is related to the smallest
eigenvalue of the following generalized eigenvalue problem:

(BA™'BT + C)p = AMp. (5.13)

Proof

In matrix-vector notation, the generalized LBB (5.12) gives:

. (p” Bu)* +12T01_?
27 WTAw) (p"Mp) T pTMp |

If we make Cholesky factorizations A = LLT, M = GG then it is equal

to:
. { (p” Bu)? TCp }
inf = )

pLp
" (T (ITW)[(GTp)T(GTp)] * (GTp)T(GTp)

+

After putting w = LTu and q= GT]_), we obtain:

inf{ — su
¢ | ¢"q wp wTw qTq

{ 1 (MTLleTGfTQV N QTG’lCGTg} B
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. 1 B B B "G 'CGTq
inf{ — (L 'BTGT¢)"(L'BTGTg) + =——————=
) {ng( 2" ( a) 7q

inf {iqTG—l(BA—lBT + O)G—Tq} = Amin [G—l(BA—lBT + O)G—T]
¢ \¢a B

And the eigenvalues of this last matrix are the generalized eigenvalues of
(5.13) because: [G’l(BA’lBT + C’)G’T] ¢ = Ag implies:

(BA'B" + C)p=XGG"p=AMp ,

where p = G Tq.

Theorem 21 Let (u,p) be the solution of the continuous problem (1.15)
and let (up, py) be the solution of the stabilized discrete problem (5.1). If we
suppose that (u,p) € (Hy(Q) N H2(Q))? x (LZ(Q) N HY()), then we have:

lu = wlls + llp = pallo < Ch(l[ull2 + [Ipll1)-

Proof see [Bec95b).

5.3 Numerical results

Figure 5.2: The investigated mesh for the stabilized )1 — @1 pair.
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For the following numerical results, we take the rectangular domain Q =
[0,1] x [0, 1]. The z-interval [0, 1] is first discretized into subintervals of num-
ber n, and we do the same with the y-interval [0, 1] into n,, subintervals. The
considered mesh for € is then the tensor product of those two discretizations.
In Figure 5.2, we can find a graphical view of the mesh in which the number
of z-intervals is n, = 3 and that of the y-intervals is n, = 9. The mesh
dimensions h,(T") = 1/n, and hy(T) = 1/n, remain then the same for all
elements T so we will only write h, and h,. We will call aspect ratio the
quantity:

Aspect Ratio = max { oy hy} )

he' hy
Ny aspect ratio  (INF-SUP)?2
5 2.5 0.737652
10 5 0.433470
20 10 0.359642
50 25 0.339127
70 35 0.337216
100 20 0.336202
250 125 0.335383
500 250 0.335266
700 350 0.335247

Table 5.1: As predicted by the theory, we have an anisotropic stability for
the stabilized @)1 — Q1.

5.3.1 Test 1: behavior of the inf-sup constants for var-
ious aspect ratio

In the first test, we fix the number of y-subintervals to be n, = 2 and we
vary the number of the z-subintervals n,. We should note that the mesh
becomes more and more anisotropic as n, becomes larger. In these results,
we have taken the value of the fixed parameter 6 to be 1. The results have
been tabulated in Table 5.1. As it is clearly seen, the (inf-sup)? constants
tend to a positive limit which is approximately equal to lim ~ 0.335247 as
the aspect ratio becomes high. It is to be noted that between the values
n, = b until n, = 20, the inf-sup constants decrease quickly, but from there
on, it is already close to the limit case.
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Figure 5.3: Numerical results confirms our theory. Here we see the inf-sup
constants in function of n, for different ¢.
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5.3.2 Test 2: Similar behavior for other values of §

In the second test, we still take the mesh in test 1, but we investigate three
different values of the parameter . They are 6 = 0.1, then 6 = 0.5 and finally
0 = 1. The outputs are gathered graphically in Figure 5.3. We can see that
all of these three delta’s give a stability which is good anisotropically. The
limiting cases are displayed the following data:

§=01 .o, (inf-sup®) = 0.300742
§=05 . (inf-sup?) ~ 0.331883
§=1.0 .o, (inf-sup®) = 0.335247 .

5.3.3 Test 3: investigation of the influence of the pa-
rameter ¢

As we have seen in the previous numerical tests, any prescribed fixed value
of § € (0,1] seems to give an anisotropic stability. The purpose of the third
test is to analyze which value of ¢ is the best choice. To that end, we consider
two meshes: a mesh with a low aspect ratio and a mesh with a high one. In
the document [Har91], the author took a certain exact solution and made a
simulation, and then he has shown that the interval [0.1,1] is a good choice
for 6. We want to investigate as well the interval domain ¢ € [0.1,1]. In our
numerical test, the mesh with low aspect ratio has n, = 5 and n, = 5 in
which the aspect ratio is equal to 1 and the stabilization terms c¢;(p, ¢) and
c(p, q) are the same, up to a constant factor. As for the high aspect ratio
mesh, we have taken: n, = 100 and n, = 2 where the aspect ratio is 50. The
numerical results are displayed in the next tables (see Figure 5.4 and Figure
5.5).

We can affirm from those data that in both cases, the choice § = 1 is the
best. The second conclusion is that the changes in inf-sup values are more
accentuated in the low aspect ratio mesh than in the high aspect ratio mesh.
In the high aspect ratio grid we have always (inf-sup)? ~ 0.3.... Even from
the curves in Figure5.3, we already can draw that conclusion.



5.3. NUMERICAL RESULTS

‘ 0 ‘ inf-sup” ‘ ‘ ) ‘ inf-sup” ‘
0.1 | 0.31445926 0.1 | 0.3008277
0.2 | 0.40698448 0.2 ] 0.3212331
0.3 | 0.47028211 0.3 | 0.3274751
0.4 | 0.52197184 0.4 | 0.3305198
0.5 | 0.56975413 0.5 | 0.3323456
0.6 | 0.61539042 0.6 | 0.3335788
0.7 | 0.65972945 0.7 | 0.3344797
0.8 | 0.70322738 0.8 | 0.3351754
0.9 | 0.74615009 0.9 | 0.3357358

1 | 0.78866258 1 | 0.3362022

Figure 5.4: Low aspect ratio. Figure 5.5: High aspect ratio.
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Chapter 6

Nonconforming anisotropic
pairs

6.1 The Crouzeix-Raviart/P, pair

The Crouzeix-Raviart element is the most famous finite element which uses
a nonconforming discrete velocity space. The investigation of its behavior in
anisotropic meshes has been completely detailed in [ANS00] and [ANS99] on
which the following theory is based. Before giving any theorem and result,
we need to define and introduce different notations.

6.1.1 The discrete spaces

Let us consider a mesh 7, composed of tetrahedral elements. We do not
require any uniformity condition to the mesh. That means that all elements
of T, are allowed to have an arbitrary aspect ratio. We want to analyze in
this section that the aspect ratio of the mesh does not influence at all the
stability result. We will denote by 07, the set of all faces of elements in
the mesh 7,. We approximate the velocity and the pressure in the following
discrete spaces:

Vi = {vh € L*(Q)3: vulr € (P)*VYT € Ty, and /F[vh] =0VF € (9771} ,
Qn = {n€L}Q): alreP YT eT},

where [v;,] stands for the jump of v;, across the face F' if F' is an internal
face. And it is equal to vy, itself if I is a boundary face.

87
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Remark 15 We are effectively in disposition of nonconforming finite ele-
ments because the discrete velocity space is not a subspace of its continuous
counterpart. In other words, we have:

Vi & Hy()°.

6.1.2 Modification of the discrete variational equation

As a consequence to the nonconformity, we need also to modify the discrete
variational problem into: search for (uy,p) € Vi, X @ such that

an(Vi,up) +by(va,pn) = (£, vn) Vv, €V}
by (ap, qn) = 0 Van € Qn

with:

ap(u, Z Z/graduj gradv; and by(v,q) Z /quVV

TeT, j=1 TeTh

We are going to define as well the following mesh dependent norm which is
defined elementwise:
= Z |v|iT .

TETs

vl

6.1.3 Main result

Now, we are able to tell our main result which is summarized in the next
theorem. The proof of Theorem 22 is concise and elegant, so we are repeating
it here. It can be found in [ANS00].

Theorem 22 In any anisotropic grid 7, (see subsection 6.1.1), there exists
a positive constant v which does not depend on h and the aspect ratio of the
mesh such that

by,
inf sup M>7,

Proof



6.2. THE Q. — Py PAIRS 89

We need to introduce the Crouzeix-Raviart interpolant I, : HE(Q)® — Vj,
which is defined by:

/u:/Ihu VY Fface of T YT € Ty (6.1)
F F

Let g, be an arbitrary element of Q),. According to the continuous inf-sup
condition, there exists (see Remark 1.4. of [GR86]) v € H;(Q2)? such that:

lo,a - (6.2)

With the help of (6.1) and partial integrations, we deduce:

b(Inv,an) = — Y. /thdiv]hv=— > qh/Tdithv

divv=—g, and |v|i o <Clg

TeT, TeT
= _ZQhZ/IhVZ_thZ/V
TeT, Fcor’F TeT;, Fcor’F
= - th/divv:— Z /qhdivv.
Ter, T ret;, ' T

If we combine this last relation with (6.2) then we have:
bn(Inv, an) = llanllog - (6.3)
Lemma 3.1 of [ANS99] gives
Iyl < Cilv]ir . (6.4)

The use of (6.3), (6.4) and (6.2) gives then:

bh(IhV, Qh) > ’Y||IhV| 1,h| qn |0,ﬂ )

which implies the desired stability (The aspect ratio of the mesh is nowhere
involved).

6.2 The Q, — P, pairs

In this section, we will consider mainly the variants of Q1 — P,. Those pairs
of elements have been investigated by Rannacher and Turek in [RT92]. The
FEATFLOW solver uses also these kinds of elements (see [Tur99]). There
are two versions, the parametric rotated Q; — Py and the nonparametric one.
We will be more interested in the nonparametric version but we need to recall
the parametric version first. Some numerical results will be also provided in
order to confirm the theory.
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6.2.1 Brief recall about the parametric version of Q; —
Ry

Let us discretize 2 C R? by the mesh 7, which is composed of quadrilaterals.
We will denote by 97, the set of all edges of 7, and by 0,7, the set of all
edges which are on the boundary of €. We consider the reference element T =
[0,1]?. For each quadrilateral T', we introduce the one-to-one transformation
Yr T — T which is given by:

wT T _ o1 + ﬁl.f} + ’)/1:0 —+ (51.’1\3?3 (6 5)
] ag + Bof + Vo + 02287 | '

We note that the transformation 7 becomes affine only in the case that T’
is a parallelogram. With the help of this transformation, we can define, for
each quadrilateral 7', the set:

Qu(T) = {gov": q€span(l,4,7,3* — §°) } . (6.6)
We can choose between the following two spaces for the discrete velocity
space:

Vh(a) = {v € L2(Q) :v|p € Q1(T) VT € Ty, and/[v] = (0 Ve € 02 and

/v:oveeaosz},or

Vh(b) = {v € L*(Q) :v|lp € Q1(T) VT € T, and F,(v) =0 Ve € 9Q and
v(me) = 0 Ve € 0p2}.

In the above definition, we denoted by m,. the midpoint of the edge e and by
F,(v) the jump at the midpoint m, for two elements which are separated by
e.

The first choice means that we demand that the integrals of the function over
an edge of two adjacent elements are the same, whereas the second choice
means that the values at the midpoints are the same.

The discrete pressure space is very simple, it is the piecewise constant space:

Q= {p € L3(Q) : plr is constant VT € ﬁ} :
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Figure 6.1: Two adjacent quadrilaterals, the common edge and its midpoint.

6.2.2 The nonparametric version

For the nonparametric version of the rotated Q; — P, we do not need to
introduce the parameterization (6.5). For each quadrilateral element 7' € Ty,
we introduce:

Q1(T) = span(1,w, z, w? — 2?), (6.7)

where (w, z) is the local coordinate system obtained by the direction con-
necting the midpoints of opposite edges of 7. A graphical illustration can be
seen in Figure 6.2.

Figure 6.2: The local coordinates of 7.

With the help of the nonparametric Q;(T') which is defined in the relation
(6.7), we can define the velocity spaces in a similar fashion as in the para-
metric counterpart. The pressure space remains unchanged.
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Our first remark is to note that we are really dealing with a nonconforming
FEM in our case because the discrete velocity space is not a subspace of its
continuous counterpart, i.e. we have:

Vi) ¢ HY(Q)  i=a,b.

Due to this fact, we need to modify our discrete variational formulation. It
will be defined piecewise: we have to search for (u,pp) € V2 X Q) with:

an(Va,up) —bp(vh,pn) = (f,vp) Vvy, € V2
by (un, qn) = 0 Van € Qn

with:

ap(v,u) = Y (Vv,Vu)r and by(p,v)= > (p,divv)y.
TeTy, TeT

We introduce also the mesh dependent norm: ||v||, = as (v, v)'/2

Before we state our main result that had been discussed in [BR94], let us
mention the following very simple lemma

Lemma 14 Let T' be any rectangle. For the nonparametric version, a poly-
nomial v € Q1(T) is completely determined if we know the four integrals at
its boundaries:

/ v, i=0,1,23.

%

Proof
The coefficients a, 3,7, 0 of

v=a+pz+yy+ 0+ %)
will be the solution of a linear system whose 4 x 4 matrix will be regular.

Remark 16 In the next theorem, we will be more interested in the integral
version, i.e. we take the space V,, = Vh(“). It should be remarked that,
we do not have generally stability for the midpoint oriented version, i.e.
for the space Vh(b). For the midpoint oriented version, we require a certain
condition on the mesh in order to ensure stability. More precisely, shapes of
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elements must not be very far from parallelogram. In Figure 6.3, the mesh of
a rectangular domain is composed of two quadrilaterals. Both elements of the
mesh may be distorted to be far from parallelogram shape if the parameter
a tends to zero. We can see [RT92] for such a discussion. We report here the
proof of Theorem 23 which can be seen in [BR94].

Figure 6.3: Elements which may be distorted far from parallelogram shape.

Theorem 23 (Main result) The nonparametric version of the rotated Q; —
P, pair gives a stable pair on any rectangular tensor product mesh, i.e.: there
exists a positive number v such that

b
inf sup 7h(ph’ us) >,

0%2n€ Qn g upe v2 [[Wnllnlloallo

where the constant v depends neither on the mesh aspect ratio nor on the
meshwidth A. It depends uniquely on the domain €.

Proof

Let p, be a function in Q. According to the continuous inf-sup condition,
we can find a function v € Hg(Q)?, such that :

(Pr, divv) = yl[pallofv]s -

According to Lemma 14, we can define v;, € V2 with the following property:
/vhds:/vds Ve € 07}, .

We have therefore by partial integration:

(ph, diVVh)T = (ph, diVV)T VT € 771 .
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Consequently, we have:

ba(Pn,ve) = Y, (P, divvy)r = D (ph, divv)y
TeTh TeTh

= (pn,divv)a = 7llpallolvl - (6.8)

On the other hand, we have for each T € 7:

Vilip = /Vthvhdx
: T
= —/ Avhvhdx+/ vp,Vvy, - nds
T aT
= —/ Avhvdx+/ vVv, -nds . (6.9)
T ar

The last equality is obtained due to the facts that Av, vanishes on T and
Vv, - n is constant on horizontal and vertical edges.

Another application of the partial integration formula to the expression in
(6.9) gives :

Va3 T Z/TVV;,VvdX.

The application of the Cauchy Schwarz inequality with the above expression
then implies:

‘Vhﬁ,:r < |vhizr|valr

We have then the piecewise H!-stability:
‘Vh|1,T S |V|1,T VT € 771 (610)
The combination of (6.8) and (6.10) then gives:

br(Pr, Vi) = Y|P llol|valln -

Remark 17 This theorem seems to still hold for general non-rectangular
meshes. The proof becomes however more intricate because Vvy-n is not any
more necessarily constant on edges which are neither horizontal nor vertical.

Remark 18 This pair of elements seems to be very good in terms of stability.
It should be remarked that it is used in the FEATFLOW flow solver. For
further information about it, we can see [Tur99]. One problem of this pair is
the absence of a posteriori error estimator (for the time being).
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Remark 19 For a rectangular element T', instead of using the space in (6.7),
it is possible to introduce the space:

G(T) =span(1,zs,21,27),

where xg and x;, are the variables corresponding to the short and the long
edges of T respectively. In the case of Figure 6.4, the variable x5 is y and x,
is z.

hSI

hr

Figure 6.4: zg = y and zp = x.

In the document [ANS99], it is shown that this kind of space has also a very
nice property in anisotropic meshes.

6.3 Numerical Results

For the numerical test, we examine again the corner mesh that we have
already taken into consideration in the ()s — () pair in which we did not
have stability (see Figure 6.5).

We would like to analyze the stability in this mesh for the pair Vh(a) — Q.

We vary the value of the parameter a and observe the behavior of the inf-sup
constant. It is clear that the more a approaches the value zero, the more
anisotropic the mesh becomes.

Let us take a look at Table 6.1. We take into consideration the values of
a which are in (0,0.5]. It can be very well seen that the inf-sup constants
are all greater than the minimum value min ~ 0.8451542. This minimum
value is obtained at the point @ = 0.5. The inf-sup becomes greater and
greater as the value of a tends to 0. This numerical result really confirms
our theoretical results which affirms that the inf-sup constants are bounded
away from zero independently of the aspect ratio. The complete result can
be found in Figure 6.6. It is shown that the inf-sup tends in limit to 1.0 as
the aspect ratio tends to infinity.

In the graphical version (see Figure 6.6) of the previous numerical results, it
is perfectly seen that the minimum value is gotten at the point a = 0.5 where
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0 a

Figure 6.5: The examined domain and its grid.

1

a aspect ratio INF-SUP
0.50 1.0000000  0.8451542
0.45 1.2222222  0.8464723
0.40 1.5000000  0.8504910
0.35 1.8571429  0.8573804
0.30 2.3333333  0.8673588
0.25 3.0000000  0.8806305
0.20 4.0000000 0.8973415
0.15 5.6666666 0.9175699
0.10 9.0000000 0.9413527
0.01 99.000000 0.9934209
0.00001  99999.000 0.9999933

Table 6.1: As predicted by the theory, we have an inf-sup constant which is

bounded away from zero for V.
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Figure 6.6: This graphs compares the Q2 — Q0 pair with the rotated 0.— P,
on the corner mesh. As predicted from the theory, the @Q; — P, is stable

we have four elements of the same size. The symmetry of the graph is also
predictable because of the symmetry of the mesh fora = o anda=1—0. In
the same figure (Figure 6.6), we compare the pair Q2 — @y and the rotated
Q1 — Py in the corner mesh, it is very well seen that the latter pair resists
high aspect ratio mesh as it is stated by the previous theory.

\ 77 rotated Q1-PO
0.98 |\ /

0.96 [ \ /A

094 -\ :
\
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0.92 | \
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infsup

0.88 |

0.86

\\\ —

084 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

a

Figure 6.7: The midpoint version V}? gives also stability in this corner mesh.

All those numerical results were obtained for the integral version, i.e. Vha).
Now we would like to say a few words for the “midpoint” version Vh(b). Al-
though, in the general case, it gives instability, we have stability for this
particular corner mesh. We have in fact a similar result as for its “integral”
counterpart as Figure 6.7 demonstrates.
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Chapter 7

Further results

7.1 The MINI element

7.1.1 Brief facts from the isotropic case

In this section, we will recall the proof(sketch, the detail can be seen in the
book [Bra97]) for the isotropic case, in which the uniformity of the mesh is
used (boundedness of the aspect ratio). Afterward it will be shown with the
help of some numerical test that the dependence of the inf-sup constant on
the aspect ratio of the element is in general unavoidable. First of all we need
to define precisely the discrete pair of spaces. But before doing that, let us
recall the definition of barycentric coordinates.

Definition 6 Let us consider any triangle 7' with vertices a;, as, ag. The
barycentric coordinates of a point x € R? are A\; = A\ (x), A2 = Aa(x),
A3 = A3(x) which are defined by:

A EPy 1=1,2,3 and
)\i(aj) = 5z'j Z,j = 1,2,3.

Two important properties of the barycentric coordinates are:

)\1+)\2+)\3:1,
T={xeR?*: 0< \(x)<1,i=1,23}.

Now, we can define the discrete spaces. The velocity discrete space is:

99
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Vi = Mo Bs?, where
Mt = {ve Hy(Q):v|r € PiforallT € Tp}
By = {’U € CO(Q) : ’U|T € Span{/\l/\g)\g} VT € 771}

And for the pressure we have the following space:

Qp = {pELg(Q) plrePr YT € Tp}.

Theorem 24 Suppose that the mesh 7}, is uniformly regular with parameter
K, i.e.

h<kp(K) VK €T,

Then the MINI element satisfies the inf-sup condition. That is: There exists
a constant 3 = B3(Q, k) >0

i
inf  sup YYD S g
0#p€ Qn 02ve v, |V[1,0llpllo,0

Proof (Sketch)
Consider the following bilinear form which is defined on Hy(2) x Hg():

a(u,v) :=(Vu,Vu)oa+ (u,v)q .

First we would like to define a projection

H]_ : H&(Q) — Ml.

For a given u € Hj(Q), a(u,-) gives a continuous linear functional on M!.
Therefore, Lax Milgram’s theorem ensures the existence of a unique IT;(u)
which satisfies:

a(lly(u),v) = a(u,v) Vv e M'.

We have therefore:

M (@)} = a(MTi(w), Ti(w)) < a(u,u) = [} - (7.1)

And the usual error estimation gives:

1T (u) — ullo < Cahllully - (7.2)
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Now we define a second mapping 1y : Ly(2) — Bs with:
/(Hgv—v)dxzo VI €T, .
T

We have therefore:
[Tz (u){lo < Cslfullo - (7.3)

We are now able to define the following projection:

My := v + [y (v — yv) .

Applying the formula of Green and taking into account the fact that the
gradient of pressure is piecewise constant, we can obtain:

(div (v — IIpv),qn)oa =0 Vgn € Qn -

We are now willing to estimate the projection II, in which we will use the
inverse inequality. It ought to be remarked that the inverse inequality con-
siderably depends on the fact that the mesh presents some uniformity. We
have in fact:

[Mholly ITyv][y + [[Hz(v — M)l
|ITLyv||1 + Ca(k)h ™ [Tl (v — H10)|lo  (inverse inequality)
|lvll1 + Ca(x)h~Cs|lv — II1v]|o  (because of (7.1) and (7.3))

lv|l1 + Ca(k)C3Co|v]1 - (because of (7.2))

VANRVANRVANRVAN

And applying the Fortin’s lemma (see Lemma, 3) gives the desired result. We
can see clearly that the inf-sup constant depends on the uniformity parame-
ter.

7.1.2 Anisotropic instability

Now we will show that in the general case the dependence of the inf-sup on
the uniformity parameter cannot be avoided in the case of the MINI element.
That fact is extremely important in the analysis of anisotropic mesh. Let us
take the domain Q to be the unit square Q = (—1,1)2.

In the triangulation of €2, we have chosen the method as illustrated in Figure
7.1. Let us denote by N + 1 the number of nodes which are located in the
positive y-axis. That means, N + 1 is the number of nodes in the y-segment
(0,1). For instance, in Figure 7.1, the values of N are 2 and 5.
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Figure 7.1: Mesh for N=2 and N=5.

It can be seen that the domain €2 does not depend on N, but as N grows the
mesh becomes more and more anisotropic since the length of elements along
the x axis is always equal to 1, whereas the one along the y axis is ﬁ We
have effectively:

Q = Qy for every mesh widthh .

Our goal is to analyze the inf-sup constants of this mesh in function of N.

The analysis deals with varying the value of N and investigating the behavior
of the inf-sup for each N. After doing some tests, it can be remarked that
the inf-sup of the mesh tends to zero as IV grows. A graphical illustration of
that can be found in the next scheme (Figure 7.2).

In the graphical illustration of these data, please note that the y-axis has a
logarithmic scaling; the curve declines much more quickly in reality.

7.2 Taylor Hood Element

This is one of the most famous elements which are used in the Stokes prob-
lem. A convergence result about it was already detailed by Bercovier and
Pironneau in [BP79]. In 1984, Verfiirth has given the stability proof of this
pair of elements in [Ver84]. In this section we want to analyze the stability
of this pair in the anisotropic case. First, it is better to recall the definition
of this pair precisely:
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INF-SUP FOR ANISOTROPIC MINI ELEMENT
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Figure 7.2: Squared of the Inf-Sup constants.
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Vi, = {’U € H&(Q) : 1)|T € PQ(T) VT € 771}
Qn = {velliQ):vlreP(T) VYT €Th} .

Figure 7.3: Grid 1.

Test 1:

A simple grid composed of three elements like in Figure 7.3 was implemented.
The parameter a can vary and the behavior of the inf-sup constants in func-
tion of a was investigated. In the following table (Table 7.1), one can find
the results. The aspect ratio of the mesh is tending to infinity as the value
of the parameter a approaches zero. It is seen that the Taylor Hood element
does not have anisotropic stability in general because the inf-sup quantity
tends to zero with the value of a. We will see however in the next discussion
that under some hypothesis on the mesh, we can have stability even on high
aspect ratio meshes.

Test 2:

A further numerical test was done with the mesh in Figure 7.5 in which
we have first a mesh composed of rectangle then each rectangle is divided
into two triangles. This mesh was already used to test the MINI element.
The curve in Figure 7.6 indicates that we have stability independently of the
aspect ratio. We can deduce that in some sense the Taylor Hood element
behaves better than the MINT element.

Test 3:

An idea which might come suddenly is that if we have any rectangular tensor
product mesh, and then if each rectangle is halved in order to have two
triangles, then we can expect anisotropic stability. But that idea does not
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| values of a | aspect ratio | (INF-SUP)? |

0.1 10 0.02665448567
0.01 100 0.00360538266
0.001 1000 0.00037350553
0.0001 104 0.00003748500
0.00001 10° 0.00000374985
0.000001 106 0.00000037499
0.0000001 107 0.00000003749
0.00000001 108 0.00000000375

Table 7.1: Numerical results of Taylor Hood wit Grid 1.

01 L L L
"P2Pl.dat" ——

0.01 1 ,/

0.001 A
0.0001 A
le-05 -
1le-06 -
le-07 A

1le-08 -

19'09 T T T T T T T
le-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Figure 7.4: Graphical Version for the result from Grid 1.
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N=2

Figure 7.5: Grid 2.
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Figure 7.6: Numerical result for Grid 2 using Taylor Hood pair.
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generally lead to an anisotropic stability as the simple mesh in Figure 7.7
shows. For the grid number 3, we have first a rectangular tensor product
mesh composed of four rectangles, then each of the four is divided into two
similar triangles to have the final grid 3. The mesh parameter s controls
our aspect ratio. We investigate this mesh for the Taylor Hood element in
which the parameter s ranges in the interval (0,0.5]. We are again in the case
where the mesh aspect ratio tends to infinity when the parameter s tends to
zero. The outcomes have been plotted in Figure 7.8. The dependence of the
inf-sup on the aspect ratio is in fact unavoidable in this case.

Yy

1

Figure 7.7: Grid 3.

No theoretical proof about the anisotropic stability of the Taylor Hood pair
is known yet (as far as I know). Yet, many steps of the proof in ([BP79]) can
still be kept for meshes like grid 2 (see Figure 7.5). The real hardship is the
absence of something like global inverse inequality in the anisotropic case. It
is to be remarked anyway that there is a proof of the Taylor Hood stability
in the isotropic case which uses only local inverse inequalities. That means
an inverse inequality which only considered piecewise. The problem in the
generalization of that proof is the fact that the uniformity of the mesh is used
repeatedly. And that fact does not seem to be avoidable. We can conclude
that the Taylor Hood pair is a pair which is almost anisotropically stable
because in some meshes it demonstrates itself to be stable independently of
the aspect ratio. In the next section we will consider some way to make this
stable even in a mesh like grid 1 and grid 3.

7.3 The P; — P, pair

An usual way to stabilize an almost stable pair is to integrate a bubble
function to the discrete velocity space. That way, the velocity space has more
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Figure 7.8: Numerical results for Grid 3 using Taylor Hood pair.

dimension and it makes the inf-sup constant behave better. In this section,
the velocity will be approximated with the help of quadratic polynomials
enriched with bubbles and the pressure is approximated with piecewise linear
polynomials. The Py — P; is an improvement of the Taylor Hood pair. We
will see in this section that all the meshes, in which the Taylor Hood pair
was anisotropically unstable, will still give stability for this improved pair.
Now, we are going to define in a precise way the discrete spaces. The discrete
space for the velocity is:

Vi == [M?@& B;]*  in which
M? = {ve Hj(Q):vlr € PyforallT € Ty}
B3 = {1) € CO(Q) : ’U|T € Span{)\l)\g)\g} VT € 7;1,},

where A1, Ao, and A3 are the barycentric coordinates.

And for the pressure we have the following discrete space:

Qn = {pel2(V):plreP VT € Tp}.

The grid 2 has not any more been implemented because it was stable for the
Taylor Hood equation, so logically, it must still be stable for the Py — P,
pair. We will be more interested in the grid 1 and grid 3.

Test 1:

For the grid 1, we have again investigated the interval a € (0, 0.5]. We clearly
see in Table 7.2 that in this interval, the inf-sup is bounded away from zero by
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‘ values of a ‘ aspect ratio ‘ INF-SUP ‘

0.50 2.000000 | 0.56413486
0.40 2.500000 | 0.55957379
0.30 3.333333 | 0.55350091
0.25 4.000000 | 0.55234160
0.20 5.000000 | 0.55339623
0.14 7.142857 | 0.55888988
0.10 10.00000 | 0.56631249
0.01 100.0000 | 0.61072136
0.001 1000.000 | 0.62629093
0.0001 10000.00 | 0.63062465
0.00001 100000.0 | 0.63189003
0.000001 10000000 | 0.63227810

Table 7.2: Numerical results of Py — P; with Grid 1.

some minimum value which is approximately min &~ 0.55234160. This value
is obtained for the value of a equal to 0.25. The inf-sup declines first in the
domain from a = 0.000 to 0.25, then it increases permanently in the domain
0.25 to 0.5. When the mesh is very anisotropic, that is a tends to zero or
1, then the inf-sup is tending to some positive limit which is approximately
equal to lim = 0.63227810. In Table 7.2, we have only given the value for
a € (0,0.5]. In the interval a € [0.5,1), we have symmetrical results. The
plot of the whole numerical result can be seen in the next curve (Figure 7.9)
where a ranges in the whole interval (0,1). As a conclusion, we can say that
we have still anisotropic stability in for the pair Py~ — P; from the grid 1.

Test 2:

We have also implemented the grid number 3 for this pair Py —P;. And the
result is positive. That means, we have stability independent of the aspect
ratio. The numerical result can be clearly seen in the next figure(Figure
7.10). Remark that the curve has a symmetry about the line s = 0.5. That
fact is clearly already expected. The minimum value is obtained at about
s~ 0.24 and at s &~ 0.76 where the value is about (inf-sup)? ~ 0.26968961.
That shows that adding bubble really makes the Taylor Hood element stable
(At least in this mesh). When the mesh is very anisotropic (that is the value
of s approaches 0 or 1), then the (inf-sup)? tends to a finite limit which is
approximately equal to lim ~ 0.27610469 whereas it tends to zero for the
Taylor Hood pair. This approach of stabilization using bubble was already
used frequently in isotropic cases (see for example [GR86] and [BF91]), and
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Figure 7.9: Numerical results for Grid 1 using Py — P;.

here it seems also that it is still a good method.
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Figure 7.10: Numerical results for Grid 3 using Py — P;.

Last word about PJ” — P;:

Those numerical tests shows perfectly well that the incorporation of bubble
functions to the velocity space really improves stability. We can say that the
P — Py is anisotropically a good pair (At least for grid 1, grid 2 and grid 3).
Those computational results are very promising in the sense that this pair
will probably be stable on all meshes. Anyway we cannot affirm that this
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pair is generally anisotropically stable unless some theoretical proof is found.
But so far, such a proof remains unknown.
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Chapter 8

Summary and open problems

The Stokes problem is a good application of the general abstract saddle point
problem. The efficiency of an element pair can be quantified by the LBB-
condition:

y
inf  sup AVURP) o (8.1)

0#Pr€ Qh 0£up eV, |Uh 1,0Q |ph”0,Q o

The desired property of an element pair is the the fact that the inf-sup
constant has a positive lower bound. For anisotropic meshes, we want that
the inf-sup constants do not tend to zero when the aspect ratios become
large.

The macroelement techniques deal with grouping some neighboring elements.
These techniques demonstrate themselves to be very useful in the theoretical
proofs of LBB conditions. And they have been applied to the pairs Qs — Qg
and Q41,5 — Pr—1. We have seen in particular that those pairs have reference
stability in any stripped mesh. Counterexamples demonstrated however the
corner problem to which some remedies have been given, namely the use of
geometric tensor product meshes and adjusting the corner domain size in
accordance to the mesh aspect ratio.

A stabilization procedure has been used to adapt the (1 —(@Q pair in anisotropic
meshes. Numerical as well as analytical results have shown that adding the
correction term

C(p, Q) =0 Z {hm(T)2(axpa aa:Q)T + hy<T)2<aypa 8yQ)T}

TET;

really makes this pair good on high aspect ratio discretizations.
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All the meshes that were discussed here require some little conditions on
the mesh in order to be stable in anisotropic meshes except the Crouzeix-
Raviart/ Py pair and the nonparametric rotated Q1 — P, pair. They provide
nonconforming finite elements. The former is stable in any mesh composed
of tetrahedral elements and the latter in any rectangular mesh.

We cannot generally expect stability from the MINI element in anisotropic
grids, as a numerical counterexample has shown. The Taylor-Hood element
behaves better than the MINI element. Still, it demonstrates itself to lose
stability in some stretched grids. The use of bubble functions can improve
the stability of a pair. The numerical evidence from the examination of the
P;t — Py pair shows that fact more clearly.

Open problems:

The future works that we still intend to perform are multiple. First, we
would like to analyze the three dimensional extensions of the results which
were investigated in 2D in this document. Furthermore, we propose to keep
on finding (numerically or not) pairs which are stable in anisotropic meshes.
Besides, we will strive for searching some theoretical proofs to numerically
good pairs like Py~ — P, which has been investigated in this material. Some
of the pairs that we have seen here are perfect in terms of stability, but
they suffer from the absence of a-posteriori error estimators; for example the
rotated Q1 — Qp pair. We want therefore to investigate that problem more
deeply.
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THESES

. Macroelement techniques are precious analytical tools for the investi-

gations of LBB conditions especially in anisotropic meshes. They allow
in particular the reduction of the initial problem into smaller problems
which are easier to analyze.

. The Q2 — Qo and the Qx41, — Pr—1 pairs possess reference stability in

any stripped mesh independently of the aspect ratio. A numerical test
shows that a certain corner macroelement leads however to instability.
The remedies to the corner instability are the use of geometric tensor
product meshes or p-version on a special varying corner domain.

Stabilization techniques consist of altering the discrete variational equa-
tion with the help of some correction terms in order that some initially
unstable pair gets appropriate for the corrected equation. Thanks to
this method, the ()1 — Q1 pair can behave satisfactorily in anisotropic
meshes as analytical and numerical investigations show.

. The nonconforming Crouzeix-Raviart/ Py pair is unconditionally stable

in any mesh composed of tetrahedral elements. The same hold for the
integral version of the nonparametric ¢); — Py pair in any rectangular
mesh. Numerical experiences confirm that fact.

. The MINI element is good in isotropic meshes but a counterexample

demonstrates that it is not generally stable in anisotropic discretiza-
tions. The Taylor-Hood element presents stability in some anisotropic
meshes. Yet, it becomes unstable in other ones. The Py — P, pair
which is the Taylor-Hood pair enriched with bubbles, is numerically
satisfactory in terms of stability.



