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Abstract—We want to estimate the chord lengthΛ of a given
rational Bézier curve efficiently. Since rational Bézierare nonlinear
function, it is generally impossible to evaluate its lengthexactly. We
approximate the length by using subdivision and we investigate the
accuracy of the approximationΛn. In order to improve the efficiency,
we use adaptivity with some length estimator. Additionally, we will
give a rigorous theoretical analysis of the rate of convergence ofΛn

to Λ. We analyze also the required number of subdivisions in order
to attain a prescribed accuracy. At the end, we briefly describe an
application in CAD surface parametrization.
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I. I NTRODUCTION

In geometric modeling, rational Bézier curves are important
CAGD entities because they can represent both the free-form
setting and the algebraic one. Thus, they can exactly describe
circular arcs and most interesting conic sections. On the other
hand, free-form Bézier curves are special case of them. Our
main contribution in this paper is as follows:

• Algorithm for length estimation of such curves,
• Theoretical investigation using subdivisions and bounds,
• Exponential convergence speedO(2−n),
• Practical computer implementation of the theory.

Related works are as follows. Roulier has proposed a length
estimation algorithm but only for Bézier curves [11]. Walter et
al. did not really evaluate lengths but they have approximated
the arc length parametrization which is a very closely related
task. A similar approach was proposed by Floater who used
cubic spline for the approximation [5]. Subdivision technique
was used by Hain who proposed some approach to stop
the subdivision recursion [6]. In this paper, we use also
subdivision but for the rational case. The structure of thispaper
is as follows. We will start by formulating the problem more
accurately in the next section. The main result of this paper
is found in section III where we introduce the approximation
method and we analyze the error. We will see in section IV
a possible improvment of the method by using adaptivity.
Section V will be devoted to a brief application in CAD
parametrizations. Finally, we show some numerical resultsat
the end of the paper.

II. PROBLEM FORMULATION

Our objective is to design an algorithm for estimating the
length of a curvex inside an interval[a, b]. That is, we want
to evaluate

Λ :=

∫ b

a

‖x′(t)‖dt. (1)
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Without loss of generality, we suppose that the curve is defined
on [0, 1] and we compute the whole length i.e.a = 0, b = 1.
The general case where[a, b] 6= [0, 1] can be treated in a very
similar way.

We suppose that the curve is a rational Bézier curve

x(t) :=

∑m

i=0 ωibiB
m
i (t)

∑m

i=0 ωiBm
i (t)

, (2)

whereBm
i denotes the Bernstein polynomial [3], [2] andbi =

[bi,1, bi,2, bi,3] ∈ R3 are the control points. Additionally, we
assume that the weightsωi are uniformly bounded. That is,
there exist two positive constantsR1, R2 such that

R1 <

∣
∣
∣
∣
∣

m∑

i=0

ωiB
m
i (t)

∣
∣
∣
∣
∣
< R2 ∀ t ∈ [0, 1]. (3)

Let us denote bỹx(t) = [x̃1(t), x̃2(t), x̃3(t)] andω(t) the
numerator and the denominator of the above formula where
x(t) = [x1(t), x2(t), x3(t)]. The numerator̃x is a Bézier curve
where its control points are given bỹbi := ωibi.

Since the formula in (2) contains rational quotient and the
one in (1) has square root and derivatives such as

Λ =

∫ 1

0

√

x′1(t)
2 + x′2(t)

2 + x′3(t)
2 dt, (4)

it is very difficult to compute the integral exactly. In fact,the
integrand is given by

1

ω(t)2

√
√
√
√

3∑

j=1

[
x̃′j(t)ω(t) − ω′(t)x̃j(t)

]2
. (5)

For the same reason, traditional methods using polynomial
approximation of the integrand would require too high poly-
nomial degree. Hence, we will use geometric methods for the
approximation.

III. A PPROXIMATION AND ITS ACCURACY

In this section, we are going to approximate the exact length
Λ by a sequenceΛn and we analyze the error|Λ−Λn|. Before
going into the technical details, let us give a short motivation
about our approach. We computeΛn by finding a lower bound
Ln and an upper boundUn such that

Ln ≤ Λ ≤ Un. (6)

If those bounds have the property that their difference|Ln −
Un| converges to zero, then a good choice for the approxima-
tion is the averageΛn := 0.5(Ln + Un) or any other convex
combination:

Λn := αLn + (1 − α)Un for 0 < α < 1. (7)
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Thus, the speed of convergence ofΛn to Λ depends on that of
the difference|Ln − Un| of the bounds. The main advantage
of our method is that the boundsLn andUn can be computed
algorithmically and the rate of convergence is exponential.

We will not need to use quadrature rules to estimate the
integral in (1) because the structure of the functionx is
known [11], [13]. Our preferred method is to apply subdivision
recursively while using some flatness criterion [6], [4] in order
to know if the curve is close to be linear.

A. Preliminary results

Before we state the main theorem, let us look at the
following simple lemma. At first glance the lemma seems
evident because of the famous convex hull property [3]. But
a closer look reveals that the convex hull property alone
cannot justify the claim, especially if we take the weights into
consideration. We prove the lemma by using rational degree
elevation. Note that the degree elevation is not used in practice
for that it is exclusively for proving purpose. Before going
any further, note that the following bound is not yet the upper
boundUn which we are searching for.
Lemma
For any rational Bézier curve of the form (2), the length is
smaller than

m−1∑

i=0

‖bi − bi+1‖. (8)

Proof
For a finite sequence of 3D pointsP = {pi}

n
i=0, we denote

L[P] = L[p0, ...,pn] :=
n−1∑

i=0

‖pi − pi+1‖. (9)

The degree elevated of a rational Bézier curvex is given by

x(t) =

∑m+1
i=0 ω

(1)
i b

(1)
i Bm

i (t)
∑m

i=0 ω
(1)
i Bm

i (t)
, (10)

where the new weights are

ω
(1)
i := ci,mωi−1 + (1 − ci,m)ωi with ci,m := i/(m+ 1),
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Fig. 2. Recursive subdivisions

and the new control points are

b
(1)
i :=

ci,mωi−1bi−1 + (1 − ci,m)ωibi

ci,mωi−1 + (1 − ci,m)ωi

. (11)

Thus,b(1)
i is a convex combination ofbi−1 andbi because

the weights are positive. Therefore, we have (see Fig. 1)

L[b
(1)
i ,bi,b

(1)
i+1] ≤ L[b

(1)
i ,b

(1)
i+1]. (12)

Denote byB(0) the initial control polygon and byB(p) (p ≥
1) the next control polygons after repeated degree elevations.
Sinceb

(1)
i is a convex combination ofbi−1 andbi, we have

L[B(0)] = L[b0,b
(1)
1 ,b1,b

(1)
2 ,b2, ...,bm−1,b

(1)
m ,bm].

As a consequence to (12), we haveL[B(1)] ≤ L[B(0)]. By
doing that repeatedly, we have

L[B(p)] ≤ L[B(p−1)] ≤ · · · ≤ L[B(1)] ≤ L[B(0)]. (13)

Since it is well known [3] that the control polygon of the curve
tends to the curve itself, we haveΛ = L[B(∞)] ≤ L[B(0)].

Q.E.D.

B. Rational B́ezier subdivision

Let us first recall some notions related to the successive
subdivision [7] of an arbitrary Bézier function

C(t) =

m∑

i=0

siB
m
i (t). (14)

Let s(j)
i be the points which are found by using the de Castel-

jau [3] algorithm att = 0.5, i.e. s
(j+1)
i := 0.5(s

(j)
i + s

(j)
i+1)

ands
(0)
i := si. The functionC [0,1] := S can be split into two

Bézier functionsC [1,1] andC [1,2] (see Fig. 2) which have re-
spectively the control pointss[1,1]

i := s
(i)
0 ands

[1,2]
i := s

(m−i)
i

and such that

C [0,1](t) =

{
C [1,1](t) ∀ t ∈ [0, 0.5],

C [1,2](t) ∀ t ∈ [0.5, 1].
(15)

We can apply that process successively in order to obtain from
each Bézier functionC [p−1,i] two Bézier functionsC [p,2i−1]

andC [p,2i]. That is, after applying subdivisionsn times we
have the curvesC [n,1], C[n,2], ..., C[n,2n] as explained in Fig.
2. Each functionC [n,k] coincides withC on the interval
[pk−1, pk] wherepk := k/2n and its control points are denoted
by s

[n,k]
i for k = 1, ..., 2n and i = 0, ...,m

Now, we want to apply the above subdivision technique to
the numerator and denominator. The functionsx̃(·) andω(·)
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Fig. 3. Subdivision of a Bézier curve.

will be subdivided into functions̃x[n,k] andω[n,k] having the
control pointsb̃[n,k]

i andω[n,k]
i . On each subinterval[pk, pk+1]

we introduce the rational Bézierx[n,k] := x̃[n,k]/ω[n,k].
Thus, by definingb[n,k]

i := b̃
[n,k]
i /ω

[n,k]
i , we have for all

τ ∈ [pk, pk+1]:

x[n,k](τ) =

∑m

i=0 ω
[n,k]
i b

[n,k]
i Bm

i (s)
∑m

i=0 ω
[n,k]
i Bm

i (s)
where s =

τ − pk

pk+1 − pk

.

(16)
Furthermore, we have the restriction property:

x̃[n,k] = x̃|[pk−1,pk]
, and ω[n,k] = ω|[pk−1,pk]

(17)

By considering the interval[pk−1, pk], we can introduce for
i = 0, ...,m

θi,k := (i/m)pk + (1− i/m)pk−1 with pk = k/2n. (18)

Theorem
Suppose that the rational Bézier in (2) has been subdivided
n times. Then, we have the following accuracy order for all
k = 1, ..., 2n and i = 0, ...,m:

‖x[n,k](θi,k) − b
[n,k]
i ‖ = O(2−2n). (19)

Proof
Due to boundedness (3) and restriction property (17), we have
|ω[n,k](t)| = |ω(t)| < R2. Hence, there existsK1 such that
∥
∥
∥
∥
∥
x[n,k](θi,k) −

ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

x̃[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥
∥
∥
∥
∥

≤ K1

∥
∥
∥x̃

[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

∥
∥
∥ , (20)

Similarly,
∥
∥
∥
∥
∥
b

[n,k]
i −

ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥
∥
∥
∥
∥
≤ K2

∣
∣
∣ω[n,k](θi,k) − ω

[n,k]
i

∣
∣
∣ . (21)

As a consequence, we obtain

‖x[n,k](θi,k) − b
[n,k]
i ‖ ≤ K1

∥
∥
∥x̃[n,k](θi,k) − ω

[n,k]
i b

[n,k]
i

∥
∥
∥ +

K2

∣
∣
∣ω[n,k](θi,k) − ω

[n,k]
i

∣
∣
∣ .

(22)
On the other hand, let us consider the blossom functionP of
the polynomialx̃[n,k]. We have the relation with the control
points [12]:

b̃
[n,k]
i = P(pk−1, ..., pk−1

︸ ︷︷ ︸

m−i

, pk, ..., pk
︸ ︷︷ ︸

i

). (23)

Thus, we have the following Taylor development:

b̃
[n,k]
i = P(θi,k, ..., θi,k) +

m−i∑

p=1

(pk−1 − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) +

m∑

p=m−i+1

(pk − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) +

O(|pk − pk−1|
2).

Since P is symmetric, all partial derivatives in the above
relation are the same. Due to the fact that(m− i)(pk−θi,k)+

i(pk−1 − θi,k) = 0, we obtain b̃
[n,k]
i = P(θi,k, ..., θi,k) +

O(|pk − pk−1|
2). As a consequence, we deduceb̃

[n,k]
i =

x̃[n,k](θi,k) + O(2−2n). The same analysis can be repeated
to the blossom of the polynomialω in order to obtain
ω

[n,k]
i = ω(θi,k) + O(2−2n). Therefore, we can deduce from

(22) that‖x[n,k](θi,k)−b
[n,k]
i ‖ = O(2−2n). Q.E.D.

C. Upper and Lower Bounds

At the n-th subdivision, the true lengthΛ is the sum of the
lengthsλ(k, n) of the subcurvesx[n,k] such as

Λ =
∑

k

λ(k, n). (24)

We can now use that approximation result in order to deduce
the accuracy in length computation.
Theorem
Define for allk = 0, ..., 2n − 1

l(k, n) :=

m−1∑

i=0

‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖, (25)

u(k, n) :=

m−1∑

i=0

‖b
[n,k]
i − b

[n,k]
i+1 ‖. (26)

We claim that for anyα ∈]0, 1[, the sequenceΛn :=
∑

k(αl(k, n) + (1 − α)u(k, n)) converges to the exact length
Λ in dyadic order:

|Λ − Λn| = O(2−n). (27)

Proof
Consider the lengthλ(k, n) of the curvex[n,k]. We have

l(k, n) ≤ λ(k, n) ≤ u(k, n), (28)

where the second inequality is due to the preceding Lemma
and the first one is obvious. On the other hand, the difference
D(k, n) := |u(k, n)−l(k, n)| of those bounds can be estimated
as follows

D(k, n) =
∑m−1

i=0 ‖b
[n,k]
i − b

[n,k]
i+1 ‖ −

‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖

≤
∑m−1

i=0 ‖[b
[n,k]
i − x[n,k] (θi,k)] −

[b
[n,k]
i+1 − x[n,k] (θi+1,k)] +

[x[n,k] (θi,k) − x[n,k] (θi+1,k)]‖ −

‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖

≤
∑m−1

i=0 ‖[b
[n,k]
i − x[n,k] (θi,k)]‖ +

‖[b
[n,k]
i+1 − x[n,k] (θi+1,k)]‖.



By using the previous theorem with the last inequality, we
deduce

D(k, n) = |u(k, n) − l(k, n)| = O(2−2n). (29)

As a consequence, we obtain|u(k, n) − λ(k, n)| = O(2−2n)
and|l(k, n)−λ(k, n)| = O(2−2n). Hence, the accuracy of the
length estimation is given as

|Λ − Λn| =

∣
∣
∣
∣
∣

2n

∑

k=0

λ(k, n) − [αl(k, n) + (1 − α)u(k, n)]

∣
∣
∣
∣
∣

≤

2n

∑

k=0

|α(λ(k, n) − l(k, n)) +

(1 − α)(λ(k, n) − u(k, n))|

= 2nO(2−2n) = O(2−n). Q.E.D.

By using relation (24), the lower and upper boundsLn and
Un that we introduced in the beginning are

Ln :=
∑

k

l(k, n) ≤ Λ ≤ Un :=
∑

k

u(k, n). (30)

Corollary
For any prescribed accuracyε > 0, the expected numbern of
subdivisions to have an accuracy|Λ − Λn| < ε is of order

⌈

log2

1

ε

⌉

, (31)

where⌈x⌉ denotes the smallest integer larger thanx.

IV. I MPROVMENT BY USING ADAPTIVITY

In the preceding section, we have developed a method
which always subdivides each rational Bézier curve into two
everywhere. In this section, we would like to discuss about an
improvement of that approach. In fact, we will show how to
develop adaptive strategy in order to only apply subdivisions
at positions where they are necessary. In practice, when the
rational Bézier curve is almost linear, we do not need to subdi-
vided it any more. Our goal is then to identify positions where
we need further subdivision without deteriorating the accuracy.
As a consequence, we need a certain metric to quantify the
error inside a subcurve. The quantitiesl(k, n) andu(k, n) of
relation (28) are very good values for evaluating the flatness of
the curve. We have proven in (29) that the difference between
l(k, n) andu(k, n) tends to zero. That is, we should only apply
subdivision at positions whereD(k, n) = |l(k, n) − u(k, n)|
is large. One can even devise an adaptive strategy where we
only refine the rational Bézier curves corresponding to

D(k, n) ≥
ε

2n
. (32)

It is because ifD(k, n) < ε/2n, then all subcurves have error
smaller thanε/2n so that refinement is unnecessary. By doing
that, we need only to use subdivisions at subintervals where
the flatness metricD(k, n) indicates that the local upper bound
l(k, n) and lower boundu(k, n) are still very different from
one another.

Our method is summarized in the next algorithm. We
update a listS of subcurvesS = {x0,x1, ...}. We denote
by ESTIM(xp) the valueD(k, n) of the subcurvexp ∈ S.

Fig. 4. Globally continuos mappings on a CAD surface.

Algorithm: Adaptive length computation ofx
1: Choose accuracyǫ > 0.
2: Estimaten by using (31)
3: Initialize the set of subcurves asS := {x}
4: for (i = 1, · · · , n)
5: Find all xp ∈ S with ESTIM(xp) ≥ ε/2n.
6: Subdividexp and computel(k, n) andu(k, n).
7: Λn := Λn + 0.5(l(k, n) + u(k, n)). UpdateS.
8: end for

V. BRIEF APPLICATION TO CAD PARAMETRIZATION

In our earlier works [8], [9], [10], we were interested
in splitting a given model into four-sided patchesPi. The
generation of the mappings was mainly performed by using
Coons maps [3] which are defined on the unit square[0, 1]2.
We needed some functions

ψi(u, v) (u, v) ∈ [0, 1]2 with Pi = Im(ψi). (33)

Our main goal was that that mappings are globally continuous.
Such a task can be illustrated by Fig. 4. For two incident
four-sided patchesPi and Pj , the image ofu-constant or
v-constant isoline ofψi should matched that ofψj at the
interface. We have demonstrated that if we use the chord length
reparametrization of the boundary curves then two adjacent
Coons patches verify such matching conditions. That is, we
have to reparametrize a boundary curveκ by κ̃ whereκ = κ̃◦χ
in which

χ(t) =

∫ t

a

∥
∥
∥
∥

dρ

dt
(θ)

∥
∥
∥
∥
dθ (34)

where ρ is a well chosen function. The work presented
in this paper is important when you want to generate the
chord length reparametrization. A complete detail of such a
reparametrization using curve length could be found in [10].

VI. N UMERICAL RESULTS

In order to observe the practical efficiency of the former the-
ory, we have implemented it in C/C++. We want to numerically
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Fig. 5. Logarithmically scaled error|Λ − Λn| in function of n.

TABLE I
BEHAVIOR OF THE UPPER AND LOWER BOUNDS WITH RESPECT TOn.

n Lower boundLn Upper boundUn Difference |Ln − Un|
0 4.5703476367 8.9798491325 4.4095e+00
2 4.9693082543 5.2046867676 2.3538e-01
4 4.9904688238 5.0045723724 1.4104e-02
5 4.9915226799 4.9950382924 3.5156e-03
7 4.9918519637 4.9920714912 2.1953e-04
9 4.9918725432 4.9918862629 1.3720e-05
10 4.9918735722 4.9918770021 3.4299e-06
11 4.9918738294 4.9918746869 8.5748e-07
13 4.9918739098 4.9918739634 5.3592e-08
15 4.9918739148 4.9918739182 3.3495e-09
16 4.9918739151 4.9918739159 8.3744e-10

investigate the dependence onn of the errorΛ − Λn and the
boundsLn, Un. Thus, let us consider a rational Bézier curve
wherem = 3 and the control points with the corresponding
weights are

b0 = [0.143, 3.021, 2.045], ω0 = 1.2,

b1 = [1.945, 4.192, 2.223], ω1 = 0.9,

b2 = [2.043, 0.012, 2.185], ω2 = 1.5,

b3 = [3.543, 2.078, 2.865], ω3 = 0.6,

where the expected value of the length is4.9918739152. A plot
of the error in terms ofn is depicted in Fig. 5 which confirms
our theory. Note that the vertical axis is logarithmically scaled.
Additionally, the numerical behavior of the difference of the
lower boundLn and upper boundUn is seen in Table I which
is also conform to the theoretical prediction.

VII. C ONCLUSION

We have presented a method for estimating the lengths of a
rational Bézier curve. We suppose that the weight functionis
uniformly bounded which is not a very restrictive assumption
in practice. We have found a lower bound and an upper bound
which are easy to estimate.
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