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Abstract—We want to estimate the chord length of a given Without loss of generality, we suppose that the curve is ddfin
rational Béezier curve efficiently. Since rational Bézare nonlinear on [0, 1] and we compute the whole length ie= 0, b = 1.

function, it is generally impossible to evaluate its lengttactly. We 1, neral wh 1 n r in a ver
approximate the length by using subdivision and we invagtighe e general case whefe, b] # [0, 1] can be treated in a very

accuracy of the approximatiah,,. In order to improve the efficiency, similar way. . . L.

we use adaptivity with some length estimator. Additionaile will We suppose that the curve is a rational Bézier curve
give a rigorous theoretical analysis of the rate of convergeof A, SO wib; BM(t)

to A. We analyze also the required number of subdivisions inrorde x(t) = &5 , (2)
to attain a prescribed accuracy. At the end, we briefly diescan Zi:() w; By (t)

application in CAD surface parametrization. whereB™ denotes the Bernstein polynomial [3], [2] abgl=

Keywords—Rational Bézier, Length, Parametrization, Adaptivity. [b; 1, b; 2, b; 3] € R* are the control points. Additionally, we
assume that the weights; are uniformly bounded. That is,
I. INTRODUCTION there exist two positive constani®;, R, such that
In geometric modeling, rational Bézier curves are impurta
CAGD entities because they can represent both the free-form R < ZwiB;-’”(t)
setting and the algebraic one. Thus, they can exactly dscri i=0
circular arcs and most interesting conic sections. On therot [ et us denote byk(t) = [Z1(t), Z2(t), Z3(t)] andw(t) the
hand, free-form Bézier curves are special case of them. Qiilmerator and the denominator of the above formula where

m

< Ry vVt e [0,1]. (©)]

main contribution in this paper is as follows: x(t) = [1(t), z2(t), z3(t)]. The numeratok is a Bézier curve
« Algorithm for length estimation of such curves, where its control points are given By; := w;b;.
« Theoretical investigation using subdivisions and bounds, Since the formula in (2) contains rational quotient and the
» Exponential convergence speéd2~"), one in (1) has square root and derivatives such as
« Practical computer implementation of the theory. 1
Related works are as follows. Roulier has proposed a length A= / \/m’l(zﬁ)Q + 25 (t)? + 25 (¢)? dt, (4)
0

estimation algorithm but only for Bézier curves [11]. Vealet . _
al. did not really evaluate lengths but they have approximatéids very difficult to compute the integral exactly. In fathe
the arc length parametrization which is a very closely eelat integrand is given by

task. A similar approach was proposed by Floater who used 3
cubic spline for the approximation [5]. Subdivision tedun N Z [ (tw(t) — o' (1) (t)]Q. )
was used by Hain who proposed some approach to stop w(t)? = !

the subdivision recursion [6]. In this paper, we use al . : :
L . . or the same reason, traditional methods using polynomial
subdivision but for the rational case. The structure of plaiger L . . :
approximation of the integrand would require too high poly-

is as follows. We will start by formulating the problem more ™" . . .

; . . . nhomial degree. Hence, we will use geometric methods for the
accurately in the next section. The main result of this paper LS
. . . . -~ mapproximation.
is found in section Il where we introduce the approximation
method and we analyze the error. We will see in section IV
a possible improvment of the method by using adaptivit
Section V will be devoted to a brief application in CAD
parametrizations. Finally, we show some numerical restlts

the end of the paper.

IIl. APPROXIMATION AND ITS ACCURACY

Yh this section, we are going to approximate the exact length
A by a sequenca,, and we analyze the errpk — A,,|. Before
going into the technical details, let us give a short moibrat
about our approach. We computg by finding a lower bound

II. PROBLEM FORMULATION L, and an upper bound,, such that
Our objective is to design an algorithm for estimating the L, <A<U,. (6)
length of a curvex inside an intervala, b]. That is, we want

to evaluate If those bounds have the property that their differefite —

b U, | converges to zero, then a good choice for the approxima-
A= / Il ()l (1) tion is the average\,, := 0.5(L,, + U,,) or any other convex
¢ combination:
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and the new control points are

Fig. 1. Degree elevation of rational Bézier Wheh{ab(l),bi,bﬁr)l] <

' W ._
L, bl . b =

Cimwi—1bi—1 + (1 — ¢ m)wib;

11
Cimwi—1 + (1 — ¢im)w; (11)

Thus,bﬁl) is a convex combination db;,_; andb, because

Thus, the speed of convergence/of to A depends on that of the weights are positive. Therefore, we have (see Fig. 1)

the difference{L,, — U,,| of the bounds. The main advantage L[bz(-U’bubZ(i)l] < L[bi”,bﬁl]- (12)

of our method is that the bounds, andi/,, can be computed

algorithmically and the rate of convergence is exponential Denote byB(® the initial control polygon and b8® (p >
We will not need to use quadrature rules to estimate tA¢ the next control polygons after repeated degree elewation

integral in (1) because the structure of the functionis Sinceb!" is a convex combination db;_; andb;, we have

known [11], [13]. Our preferred method is to apply subdiorsi 1 1

recursi\[/elj VE/hiI]e using some flatness criterior?FG{, [4] mler L[B] = L[by, bg " b, bg ! b2 b, bl D).

to know if the curve is close to be linear. As a consequence to (12), we haiéB()] < L[B(®)]. By

doing that repeatedly, we have

A. Preliminary results LB <BP Y <...<LBY] <LBY]. (13)

Before we state the main theorem, let us look at th§ince it is well known [3] that the control polygon of the carv

following simple lemma. At first glance the lemma seemgys to the curve itself. we have— LB < L[BO)],
evident because of the famous convex hull property [3]. But N Q.E.D.

a closer look reveals that the convex hull property alone
cannot justify the claim, especially if we take the weight®oi ) i .
consideration. We prove the lemma by using rational degrBe Rational Ezier subdivision

elevation. Note that the degree elevation is not used irtipeac  Let us first recall some notions related to the successive
for that it is exclusively for proving purpose. Before goingubdivision [7] of an arbitrary Bézier function

any further, note that the following bound is not yet the uppe

boundi{,, which we are searching for. C(t) = ZSiBZ”(t)- (14)
Lemma i=0
F ional Bézi f the f 2), the | hi ; . . :
or any rational Bezier curve of the form (2), the lengt IEets@ be the points which are found by using the de Castel-
smaller than - : e UTD () | @)
m—1 jau [3] algorithm att = 0.5, i.e.s; = 0.5(s;”" +8;7)
> b = bisal. (8) ands” :=s,. The functionC®! := 5 can be split into two
i=0 Bézier functionsC:1) and C112 (see Fig. 2) which have re-
Proof spectively the control points""! := s{/ ands!"? = s~
For a finite sequence of 3D poinB = {p;}"_,, we denote and such that
o) vteo,0.5]
n—1 C[(),l] (t) _ { ) B} (15)
[1,2]
L[P] = L[po, .,pu] = 3 IPi — Piall. (9) R vtelos1].
i=0 We can apply that process successively in order to obtain fro

each Bézier functio0?—11 two Bézier functiong[P-2i—1]

The degree elevated of a rational Bézier cuxvis given by : ! g R _
and C'»%, That is, after applying subdivisions times we

S (D0 gy have the curve_éﬂ”vl], CWQ]., s C[”vQ"_] as explained in Fig.
x(t) = == i (10) 2. Each functionC™* coincides withC on the interval
Dicow; B"(t) [px_1, pr] Wherep;, := k/2" and its control points are denoted
where the new weights are by s/" for k =1,..,2" andi = 0,...,m

Now, we want to apply the above subdivision technique to
w,fl) =Cimwi—1+ (1 —¢im)w; with ¢, :=14/(m+1), the numerator and denominator. The functictis) andw(-)



Thus, we have the following Taylor development:

b = PG i) +
m—1i )
> (e - Oi) 5~ POies s Oi) +

Zp
p=1
3 0 0 0 0
Fig. 3. Subdivision of a Bézier curve. Z (pr: = i’k)aTP( iy oo Oie) +

p=m—i+1 p
O(|px — pr—11?).

will be subdivided into functiong™* andw[™*! having the Since P is symmetric, all partial derivatives in the above
control pomtst" k] andw,[" * on each subintervéby, pr.1] relation are the same. Due to the fact that—:)(pr — 6, 1) +

we introduce the rational Beziex™* = x[nH /K i(pr—1 — 0;k) = 0, we obtainb"" = 7)(91,1@7--391,5) +
Thus, by definingb["™*) = BI"* /w["*), we have for all O(lpx — pi-1I°). As a consequence, we dedubg"" =
T € [Phos Pt : %[k (9; 1) + O(27%"). The same analysis can be repeated

to the blossom of the polynomial in order to obtain

S w bl B (s) T—pr W™ = y(6;4) + O@272"). Therefore, we can deduce from

[n,k] _ i h = F %
X T) = wnere s = . 3
") Y ow [" k]Bm( ) Pe+1 — Pr (22) that||x[™*] (Giyk)—bg’“k]ﬂ =0(272). Q.E.D.
(16)
Furthermore, we have the restriction property: C. Upper and Lower Bounds
k] _ = 4 ok — 17 At the n-th subdivision, the true length is the sum of the
X=X, e and 0P =0 () jengthsA(k, n) of the subcurves!™*) such as
By considering the intervalpi—1, px], we can introduce for A= Z)‘(k’”)' (24)
1=0,....m
. . . We can now use that approximation result in order to deduce
o e— _ — n
Ok = (i/m)p + (1 —i/m)pe—y with  pp =k/2%. (18) 0 accuracy in length computation.

Suppose that the rational Bézier in (2) has been subdividegfine for allk =0, ...,2" —1
n times. Then, we have the following accuracy order for all k] k]
k=1,...2"andi=0,...,m: U(k,n) = Z x5 (0i) — x5 (Oi16) [, (25)
1=0
IxI"#1(6;) = BIH) = O(272). (19) k] _ ook
b;" bk, 26

b1 oof Z H bl (26)
Due to boundedness (3) and restriction property (17), we ha‘\,(,e claim that for an .

ok - ) ya €]0,1[, the sequence\, :=
Wi H(6)] = w(B)] < Rz. Hence, there exist& such that > oplad(k,n) 4+ (1 —a)u(k,n)) converges to the exact length

i o) - wl[n,k]bgn,k] B k(9 1) — wz[n,k]bgn,k] A in dyadic order:
PR IR (6, ) Wl H (0, 1) A — A, =0@2™). (27)
, Proof
<K Hi[”’k] (ix) — wl[”’k]bgn’k] , (20) Consider the length\(k,n) of the curvex!™*. We have
(k][] where the second inequality is due to the preceding Lemma
plH _ %l - b; < K, ‘w[n,k] (0:.1) — wz[mk}‘ . (21) and the first one is obvious. On the other hand, the difference
wbnH (0;1) D(k,n) := |u(k,n)—I(k,n)| of those bounds can be estimated
; as follows
As a consequence, we obtain . k] k]
.5 ppH ol [l D(kn) =Xz b = byl =
[0 k) — [H ; K H Oi) —wi b, H + x™H (0 ) — <M (Gi10) |
K2 ‘W[n’k] (ez,k‘) ‘ < Z’rn 1 H[ n k X[n,k] (917]9)] o
(22) kbl g
On the other hand, let us consider the blossom funckoof [bifri —x" 0 (0 +k1 K]+
the polynomialx[™*. We have the relation with the control X (0 1) — %M (B0 0)) —
points [12]; Hx[” H ) - x0H (0:11) |
~ m—1 n
B = Pty it P ep). (23) <TG BT = (0] +
——— ——

[n k n
moi : [I[bsy X[ M (01,0)]])-



By using the previous theorem with the last inequality, we
deduce

95 ="4

%
.
X

<2 K

D(k,n) = u(k,n) — (k,n)] = O2">").  (29)
As a consequence, we obtdim(k,n) — A(k,n)| = O(272")
and|l(k,n) — A(k,n)| = O(272"). Hence, the accuracy of the
length estimation is given as

on

[A—A, = Z A(k,n) —[ad(k,n) + (1 — a)u(k,n)]
k=0
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> la(Ak,n) = 1(k,n)) +

k=0

(1= a)(A(k,n) — u(k,n))|

= 2"0(27*) =02™"). Q.E.D.

By using relation (24), the lower and upper boun@s and
U, that we introduced in the beginning are

Ln:=Y l(k,n) <A<Uy:=Y u(k,n). (30)
k
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Fig. 4. Globally continuos mappings on a CAD surface.

Algorithm: Adaptive length computation of
Choose accuracy > 0.
Estimaten by using (31)
Initialize the set of subcurves &:= {x}
fori=1,---,n)
Find allx, € S with ESTIM(x,,) > /2.
Subdividex,, and computé(k, n) andu(k,n).
Ay = Ay, +0.5(U(k,n) +u(k,n)). UpdateS.
end for

Corollary
For any prescribed accuraey> 0, the expected number of
subdivisions to have an accuragy — A, | < ¢ is of order

{ng ﬂ , (32)

where[z] denotes the smallest integer larger than

IV. I MPROVMENT BY USING ADAPTIVITY

In the preceding section, we have developed a method
which always subdivides each rational Bézier curve into tw V- BRIEFAPPLICATION TOCAD PARAMETRIZATION
everywhere. In this section, we would like to discuss about a In our earlier works [8], [9], [10], we were interested
improvement of that approach. In fact, we will show how tin splitting a given model into four-sided patch&s. The
develop adaptive strategy in order to only apply subdivisio generation of the mappings was mainly performed by using
at positions where they are necessary. In practice, when theons maps [3] which are defined on the unit sqUare]>.
rational Bézier curve is almost linear, we do not need talsub We needed some functions
vided it any more. Our goal is then to identify positions wéer 2 .
we need further subdivision without deteriorating the aacy. vilwv) - (wv) €[0,1]7 with P;=TIm(;). (33)
As a consequence, we need a certain metric to quantify t®er main goal was that that mappings are globally continuous
error inside a subcurve. The quantiti€s, n) andu(k,n) of Such a task can be illustrated by Fig. 4. For two incident
relation (28) are very good values for evaluating the flatrafs four-sided patches?; and P;, the image ofu-constant or
the curve. We have proven in (29) that the difference betweerconstant isoline ofy; should matched that of; at the
I(k,n) andu(k, n) tends to zero. That is, we should only applynterface. We have demonstrated that if we use the chordHeng
subdivision at positions wher®(k,n) = |i(k,n) — u(k,n)| reparametrization of the boundary curves then two adjacent
is large. One can even devise an adaptive strategy where @@ons patches verify such matching conditions. That is, we
only refine the rational Bézier curves corresponding to have to reparametrize a boundary curMey < wherex = Koy

D(k,n) > € (32) in which ‘g
g = [ | %

It is because ifD(k,n) < /27, then all subcurves have error dt
smaller thare /2" so that refinement is unnecessary. By doinghere p is a well chosen function. The work presented
that, we need only to use subdivisions at subintervals whefethis paper is important when you want to generate the
the flatness metri® (k, n) indicates that the local upper bouncehord length reparametrization. A complete detail of such a
I(k,n) and lower bound.(k,n) are still very different from reparametrization using curve length could be found in.[10]
one another.
Our method is summarized in the next algorithm. We VI. NUMERICAL RESULTS

update a listS of subcurvesS = {xo,x1,...}. We denote In order to observe the practical efficiency of the former the
by ESTIM(x,) the valueD(k,n) of the subcurvex, € S. ory, we have implemented it in C/C++. We want to numerically

’ 9 (34)
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VIl. CONCLUSION

We have presented a method for estimating the lengths of a
rational Bézier curve. We suppose that the weight funcison
uniformly bounded which is not a very restrictive assumptio
in practice. We have found a lower bound and an upper bound
which are easy to estimate.



