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Abstract: We need to decompose the boundary of a solid into four-sided
patches Fi such that there is a regular mapping γi from the unit square to
each Fi. In this paper, we focus on the analysis of the global continuity of
the mappings γi over the whole surface. Since we use Coons functions to
generate the mappings γi, we demonstrate theoretically that if all curves
are parametrized in arc length then the functions γi match well at surface
joints. That result is valid for any blending functions of the Coons patches.
We will describe a reparametrization technique whose goal is to keep the
shape of the initial curves while achieving arc length parametrization. The
reparametrization process is done by using cubic Bézier spline approximation
whose accuracy is estimated in L∞ norm. For a rational Bézier curve with
bounded weights, we develop an algorithm for length computation with an
accuracy of O(2−n). The generalization of that result for other types of
curves will be discussed. Numerical results are provided to support the
theoretical studies. Furthermore, the decomposition techniques are applied
to real CAD data which come from IGES files.

1 Introduction

The Wavelet-Galerkin method [21, 3, 25] is a very efficient numerical ap-
proach for solving engineering problems. That is shown by its ability to
produce arbitrary accuracy with low computational cost [7] by means of
adaptivity [5, 23]. The rate between cost and accuracy has been demon-
strated to be optimal [6] as specified by N -term approximation. While its
theoretical advantages have been completely proved [6, 7, 31], its implemen-
tation has not been successfully applied to real CAD data in comparison to
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Figure 1: (a)Input geometric model (b)Decomposition and mapping.

mesh-based approaches like FEM so far. That is caused by the complexity
of surface structure that the Wavelet Galerkin scheme requires as specified
in [31]. Some wavelet experts [4] refer to such geometric imperfections as
curse of geometry. If we see yet this situation from another perspective,
geometric specification in Wavelet-Galerkin scheme is an advantage because
it is possible to treat mesh-free problems. In particular, it is obvious that
a lot of geometric accuracies are lost by using a mesh or a piecewise linear
approximation of the initial geometry. This paper addresses the problem
of preparing geometric data so that they can be efficiently used as input in
Wavelet-Galerkin methods. In fact, this is a continuation of the geomet-
ric splitting method in [26] where nothing about global continuity has been
treated at all. Our main contribution in this paper is about global continuity
of the mappings in the four-sided patches. In particular, we will comment
about the correlation between the Coons patch which resides in an individ-
ual patch and the global continuity. On the other hand, we need to show the
independence of the global continuity on the chosen blending function. Note
that no knowledge of Wavelet-Galerkin scheme is necessary to understand
this paper because we only develop geometric algorithms. Although we deal
with Wavelet-Galerkin scheme, we believe that the geometric structure here
can be used for other schemes like panel-clustering [17, 18] because we have
mappings starting from the 2D unit square which can serve as generation of
hierarchical structure from 2D to 3D.

In the next section, we will describe more accurately the representation of
the geometry that is required in Wavelet-Galerkin scheme. Afterwards, we
will summarize the method [26] of splitting a given closed surface which
bounds a solid into four-sided patches. The main results of this paper can
be found in section 4 where theoretical background and practical realization
of global continuity are examined. Since it is not practical to reparametrize
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the curves exactly, we have to use approximated reparametrizations. We
will rigorously analyze the accuracy of that approximation which makes
use of cubic Bézier splines. We show how to manage the error of the length
approximation in order not to deteriorate the accuracy of O(h4) of the cubic
spline interpolation. Since we have to compute lengths repeatedly, we show
in section 5 how to efficiently evaluate the length values. We will concentrate
first on rational Bézier curves which we subdivide recursively. An accuracy of
O(2−n) can be achieved after n subdivisions. The results for rational Bézier
curves can be generalized for other types of curves like B-spline or NURBS.
At the end of the paper, we will supplement our theoretical description by
numerical results. Since we have implemented our method with real CAD
data, we will also report on our results about decomposition of surfaces
coming from IGES files.

2 Problem setting

Let us consider a closed surface S ⊂ R3 given as a collection of M trimmed
[2] parametric surfaces S1, · · ·, SM defined on the domains D1, · · ·, DM

which are multiply connected regions in R2. The external and internal
(when relevant) boundary curves of each domain Di are supposed to be
composite curves. That is, there are univariate smooth functions κj

i defined

on [eji , f
j
i ] such that

∂Di =
⋃

j

Im(κj
i ). (1)

We suppose further that the parametric functions defining Si

ψi : Di −→ Si (2)

are regular in the sense that they are bijective, smooth and that their Jaco-
bian matrices have maximal rank. A graphical illustration of this formula-
tion can be found in Fig. 2. Furthermore, we need that the bounding curves
are regular, smooth and without zero angles. More precisely, we must have
the following conditions for each Di:

(B1) For all j, we have κ̇j
i (τ) 6= 0.

(B2) Each κj
i is Crcontinuously differentiable for sufficiently large r.

(B3) Suppose that the terminating point of κj
i and the starting point of κk

i

coincide. We must have

lim
t→(fj

i
)
−

κ̇j1
i (t) 6= −λ lim

t→(ek
i )

+
κ̇j2

i (t) ∀λ > 0. (3)
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The objective of this paper is to prepare CAD objects so that they can be
used in Wavelet-Galerkin scheme. That means, we will tessellate the surface
S into m four-sided domains Fi

S =

m⋃

i=1

Fi, (4)

where the splitting is conforming. That is to say, every two different nondis-
joint patches Fi and Fj share either a complete edge or a single corner. We
need also some regular functions γi such that

Fi = γi([0, 1]
2). (5)

Additionally, we require global continuity which means that for two adjacent
patches Fi and Fj , there is a bijective mapping A such that

γi(s) = γj(A(s)) ∀s ∈ ∂[0, 1]2. (6)

The whole geometric operation can be graphically summarized in Fig. 1
where the grids represent the images by γi of a uniform grid on the unit
square. For real CAD data, we are not able to achieve the exact global con-
tinuity (6). As a consequence, we will have only matching condition with
certain accuracy ε > 0 such that

dist[γi(s), γj(A(s))] < ε ∀s ∈ ∂[0, 1]2. (7)

3 Summary of the decomposition procedure

It is beyond the scope of this paper to provide a detailed description of de-
composing a 3D-model. We are summarizing only the main steps and point
out the principal difficulties [26] which have to be confronted in practice.
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Figure 2: The boundary of Di ⊂ R2 is the image of several curves κj
i . Apply

ψi to have the trimmed surface Si.
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(a) (b)

Figure 3: (a)Given 3D model (b)Polygonal approximation.

3.1 Four-sided splitting

As a starting step of the decomposition, we approximate the curved bound-
aries of {Si} by straight line segments separated by nodes {Xk} ⊂ R3 as
in Fig. 3. In order to achieve that approximation while having conform-
ing splitting in mind, we create planar polygonalizations of {Di}i∈Λ which
amount to doing the following. For each trimmed surface Si, we generate a

polygon P (i) whose nodes x
(i)
k are taken from the curved boundary of the 2D

domain Di. We have to make sure that for two adjacent different surfaces

Si and Sj sharing a curve C, if ψi(x
(i)
k ) ∈ C, then there must exist a vertex

x
(j)
l ∈ P (j) such that

ψi(x
(i)
k ) = ψj(x

(j)
l ). (8)

Let us note that if we take too few vertices, the resulting polygon P (i) may
have artifacts such that its edges do not form an admissible polygon as
illustrated in Fig. 4(a). But if the polygonal approximation is too fine, then
it results in overly many four-sided surfaces. As a consequence, one has
to split the curved edges adaptively while trying to maintain relation (8)
which involves some preimage computations. Let us emphasize that only
polygons having an even number of boundary vertices can be decomposed
into quadrilaterals. It is not straightforward to convert odd faces into even
ones inside a closed surface with arbitrary genus. One should assemble
the adjacency graph which is used in the Dijkstra algorithm to search for
the shortest path joining two odd polygons in order that the number of
additional nodes to be inserted are not too many. We could theoretically
prove that the number of odd faces must be even for a closed model and
that the odd faces can be converted to even ones pairwise.

Our main approach to achieve (4) consists in splitting the 2D regions Di

into four-sided regions Qk,i such that Di =
⋃

kQk,i. The foursided patches
Fk are therefore the images by ψi of the 2D domains Qk,i

Fk = ψi(Qk,i). (9)

As for the decomposition into Qk,i, we consider the polygon P (i) which we
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Figure 4: (a)Artifacts in polygonal approximation (b)Four-sided region.
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Figure 5: Convertion of a quadrangulation {qk} into subregions having
curved sides {Qk}.

decompose into a set of convex quadrilaterals qk,i. The four-sided domains
Qk,i are obtained from qk,i by replacing the straight boundary edges of qk,i

by the corresponding curve portion of Di as illustrated in Fig. 5. In the
decomposition of a polygon P (i) into quadrilaterals qk,i, we use only the
preimages ψ−1

i (Xk) of the nodes {Xk} as boundary vertices. That is, we do
not use any additional boundary nodes in the course of the quadrangulation
process. We have developed in [26] an approach that decomposes a polygon
with n boundary vertices into O(n) convex quadrilaterals. There are two
main difficulties in that process. First, converting nonconvex quadrilaterals
into convex ones requires many cases to be handled individually. Second,
finding cuts connecting an internal boundary and the exterior boundary of
a multiply connected polygon is complicated.

The process of replacing a boundary edge with the corresponding curve can
generate three serious problems. First, it is possible that the curve inter-
sects an internal edge causing a boundary interference. The second problem
is that some corners in a four-sided region Qk,i might be smoothened out.
Third, it is possible that the corresponding Coons patch is not a diffeomor-
phism. In those cases, we have to make a polygonal refinement. We have
developed a method for making only a small local repairment while keeping
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the large part of the quadrangulation. The things about which one has to
be careful is that it is not easy to detect those three problems and we have
to guarantee relation (8) when we insert new nodes.

3.2 Transfinite interpolation using Coons maps

This section will be occupied by the description of the mapping from the
unit square to each of the four-sided domains Q := Qk,i ⊂ R2 from relation
(9). Since our method of generating that map is based on transfinite inter-
polation, we briefly recall some basic facts about this technique [14, 15, 32].
Suppose that Q is delineated by four curves α, β, γ, δ : [0, 1] −→ R2 that
fulfill the compatibility conditions at the corners:

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (10)

We assume that besides the common points in (10), there are no further in-
tersection points as in Fig. 4(b). We are interested in generating a parametric
surface x(u, v) defined on the unit square [0, 1]2 such that the boundary of
the image of x coincides with the given four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(11)

This transfinite interpolation problem can be solved by a first order Coons
patch x which can be defined in matrix form as

x(u, v) = −





−1
F0(u)
F1(u)





T 



0 x(u, 0) x(u, 1)
x(0, v) x(0, 0) x(0, 1)
x(1, v) x(1, 0) x(1, 1)









−1
F0(v)
F1(v)



 . (12)

The blending functions F0 and F1 denote two arbitrary smooth functions
satisfying [16, 33]:

Fi(j) = δij i, j = 0, 1 and F0(t) + F1(t) = 1 ∀ t ∈ [0, 1]. (13)

In practical cases, the blending functions are chosen as in the next table.

Type F0(t) F1(t)

Linear 1 − t t
Cubic B3

0(t) +B3
1(t) B3

2(t) +B3
3(t)

Trigonometric cos2(0.5πt) sin2(0.5πt)

In order to check whether a planar Coons map is a diffeomorphism, we have
developed in [27] some efficient criteria which are easy to verify in practice.
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The mapping γi of relation (5) from the unit square to the foursided patch
Fi ⊂ R3 is the composition of the function ψi and the Coons map. On
account of the decomposition algorithm of the former section, we note that
the boundaries α, β, γ, δ of the Coons maps are either straight edges or
restrictions of the images of the curves κj

i .

4 Global continuity

If the boundary curves κj
i from (1) are parametrized arbitrarily, there is no

guarantee that the global continuity in (6) is fulfilled. On the other hand,
we cannot modify the base surfaces ψi because they are given as input in the
initial CAD storage. Therefore, our objective is to replace the 2D curves κj

i

by κ̃j
i so that they have the same shapes (Im(κj

i ) = Im(κ̃j
i )) but they have

different parametrizations. Let us denote by ρj
i the composition ψi ◦ κj

i and
let us introduce the length function

χj
i (t) :=

∫ t

e
j
i

∥
∥
∥
∥
∥

dρj
i

dt
(θ)

∥
∥
∥
∥
∥
dθ. (14)

This function is defined from [eji , f
j
i ] to [0, L] where L is the total length

of the curve ρj
i . On account of the properties of κj

i and ψi that we met in
section 2, let us observe that

dχj
i

dt
(t) =

∥
∥
∥
∥
∥

dρj
i

dt
(t)

∥
∥
∥
∥
∥
6= 0 ∀t. (15)

Hence, there is an inverse function φj
i := (χj

i )
−1 and our objective is to

replace the function κj
i by κ̃j

i := κj
i ◦ φ

j
i .

4.1 Chord length vs. Coons patch

In this section we want to demonstrate that if we use the chord length
parametrization φj

i then two adjacent Coons patches verify matching con-
ditions at the interface curve. Additionally, we will show that that result
holds irrespective of the chosen blending functions F0 and F1. To that end,
let us consider two adjacent trimmed surfaces Si and Sj. In order to facili-
tate the presentation, we may suppose that they are S1 and S2 and we omit
the superscripts. Further, we denote by [e1, f1] and [e2, f2] the intervals of
definition of ψ1 ◦ κ1 and ψ2 ◦ κ2 which have coinciding images:

(ψ1 ◦ κ1)([e1, f1]) = (ψ2 ◦ κ2)([e2, f2]) =: C. (16)
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Figure 6: (a)Involved functions for adjacent Coons maps (b)Two Coons
maps match well at interface curve C for chord length parametrization.

In the following, we denote two Coons maps by x1 and x2 which are respec-
tively incident upon κ1 and κ2. In addition, we will assume that we have co-
incidence of the images but we do not necessarily have pointwise agreement.
That is, one of the following relations hold for some u1, u2, v1, v2 ∈ {0, 1}

Im(ψ1[x1(u1, ·)]) = Im(ψ2[x2(u2, ·)])
Im(ψ1[x1(u1, ·)]) = Im(ψ2[x2(·, v2)])
Im(ψ1[x1(·, v1)]) = Im(ψ2[x2(u2, ·)])
Im(ψ1[x1(·, v1)]) = Im(ψ2[x2(·, v2)]).

(17)

Our claim in the next theorem is that if we reparametrize into chord length
parametrization, then we have pointwise coincidence. While reading its
proof, we recommend that the reader compare them with Fig. 6.

Theorem 1 Suppose that we use the chord length parametrization κ̃1 =
κ1◦φ1 and κ̃2 = κ2◦φ2 and that one of the relations in (17) is fulfilled. Then,
the images of the Coons maps have sides which agree pointwise irrespective
of the blending functions F0 and F1. That is, one of the following relations
must hold:

ψ1[x̃1(u1, t)] = ψ2[x̃2(u2, t)] ∀ t ∈ [0, 1]
ψ1[x̃1(u1, t)] = ψ2[x̃2(t, v2)] ∀ t ∈ [0, 1]
ψ1[x̃1(t, v1)] = ψ2[x̃2(u2, t)] ∀ t ∈ [0, 1]
ψ1[x̃1(t, v1)] = ψ2[x̃2(t, v2)] ∀ t ∈ [0, 1],

(18)

where u1, u2, v1, v2 ∈ {0, 1}.
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Proof

Since ρ2 is invertible, we may define λ := ρ−1
2 ◦ ρ1. By definition of chord

length parametrization, we have

χ1(t) =

∫ t

e1

∥
∥
∥
∥

dρ1

dt
(θ)

∥
∥
∥
∥
dθ χ2(t) =

∫ t

e2

∥
∥
∥
∥

dρ2

dt
(θ)

∥
∥
∥
∥
dθ. (19)

From the definition of λ we obtain by chain rule

dρ1

dt
(t) =

dρ2

dt
[λ(t)]λ′(t). (20)

As a consequence, we deduce

χ1(t) =

∫ t

e1

∥
∥
∥
∥

dρ1

dt
(θ)

∥
∥
∥
∥
dθ =

∫ t

e1

∥
∥
∥
∥

dρ2

dt
[λ(θ)]

∥
∥
∥
∥
λ′(θ)dθ. (21)

After making the change of variable σ := λ(θ), we obtain:

χ1(t) =

∫ λ(t)

λ(e1)

∥
∥
∥
∥

dρ2

dt
(σ)

∥
∥
∥
∥
dσ =

∫ λ(t)

e2

∥
∥
∥
∥

dρ2

dt
(σ)

∥
∥
∥
∥
dσ = χ2(λ(t)). (22)

Hence
χ−1

2 ◦ χ1 = λ = ρ−1
2 ◦ ρ1. (23)

Therefore, if we denote the total length by L := χ1(f1) = χ2(f2), we have

(ρ2 ◦ φ2)(t) = (ρ1 ◦ φ1)(t) ∀ t ∈ [0, L]. (24)

Let S, T ∈ C be the starting and terminating points of the common side.
That is, there are s1, θ1 ∈ [e1, f1] and s2, θ2 ∈ [e2, f2] such that

S = (ψ1 ◦ κ1)(s1) = (ψ2 ◦ κ2)(s2) (25)

T = (ψ1 ◦ κ1)(θ1) = (ψ2 ◦ κ2)(θ2). (26)

From (24), we deduce

χ1(s1) = χ2(s2) =: s ∈ [0, L] (27)

χ1(θ1) = χ2(θ2) =: θ ∈ [0, L]. (28)

We assume only the first relation of (17) with u1 = 1 and u2 = 0 and we
are proving the first equality of (18) while the other 15 cases can be treated
in a similar manner. That means, let us assume that the sides of the Coons
maps x1 and x2 are β1 and δ2. That is, β1 is the restriction of κ1 on [s1, θ1]
and δ2 is the restriction of κ2 on [s2, θ2]:

β1(t) = κ1[tθ1 + (1 − t)s1] t ∈ [0, 1] (29)

δ2(t) = κ2[tθ2 + (1 − t)s2] t ∈ [0, 1]. (30)
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Hence,
ψ1 ◦ β1 ◦ φ1(t) = (ρ1 ◦ φ1)[tθ + (1 − t)s] t ∈ [0, 1]. (31)

Similarly we have for δ2:

ψ2 ◦ δ2 ◦ φ2(t) = (ρ2 ◦ φ2)[tθ + (1 − t)s] t ∈ [0, 1]. (32)

From relation (24), we obtain:

ψ1 ◦ β1 ◦ φ1(t) = ψ2 ◦ δ2 ◦ φ2(t) ∀ t ∈ [0, 1]. (33)

We denote β̃1 := β1 ◦ φ1 and β̃2 := β2 ◦ φ2. Since we have x̃1(1, v) = β̃1(v)
and x̃2(0, v) = δ̃2(v) independently of the chosen blending functions F0, F1,
we can deduce from (33) that the Coons patches match well as specified in
(18).

�

4.2 Practical realization and error analysis

In order that the reader is not confused, let us note that the reparametriza-
tion steps take place before computing Coons patches. In fact, when we load
the initial geometric information from an IGES input, the first thing that
we should do is to perform reparametrization of the bounding curves κj

i .

Unfortunately we are not able to solve the problem of global continuity ex-
actly and we cannot find in the literature any method which can do that.
As a consequence, we will only show how to solve that problem numerically
without too much computational cost. What we should avoid in practice
is to pick 3D samples in the image curve C and to compute the preimages
numerically (say with Newton iteration method). That approach has three
major drawbacks. First, that is computationally expensive because we need
many inverse operations. Second, the involved functions are generally non-
linear. Furthermore, that is not very stable when there is CAD flaw which
is a large gap between two input surfaces.

In the next discussion, we show how to approximate the reparametrization
function φ = χ−1 which we met in (15). Additionally, we will examine
the accuracy of the approximation in terms of the size of the samples. In
the description of the method, we suppose that we have a fast method of
evaluating the arc length L(x,y) between two points x, y belonging to the
curve C.

Let {si}i=0,...,n ⊂ [e, f ] be some samples such that si < si+1 and s0 = e and
sn = f . Let {xi}i=0,...,n be their images by ψ◦κ and define Li := L(xi,xi+1)
for i = 0, ..., n − 1. We introduce now ti :=

∑i
k=0 Lk ∈ [0, L] where L is the
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length of the whole curve. Afterwards, we consider the samples {(ti, si), i =
0, ..., n} and we interpolate them by a composite cubic Bézier curve φh:

φh(ti) = si ∀ i = 0, ..., n, (34)

φh(t) =
3∑

j=0

b3i+jB
3
j (t) ∀t ∈ [ti, ti+1]. (35)

Since the use of cubic spline interpolation is very well understood [1], we
use that standard interpolation method. In particular, we have the following
well known accuracy result.

Lemma 1 [13, 8, 20] Let fh be the cubic spline interpolating the sam-
ples [ti, f(ti)] which are obtained from a function f . By defining h :=
max |ti − ti+1|, we have the following accuracy of the approximation

‖f − fh‖∞ ≤ Ch4. (36)

In practice, it is generally infeasible to compute the lengths exactly. There-
fore, we want to examine the influence of the length error to the function
approximation. More precisely, on account of length evaluation inexactness,
let us suppose that we have evaluated {τi} instead of {ti}. Let φ̃h be the
cubic spline which is computed with the help of {τi}. The accuracy result
for ‖φ− φ̃h‖∞ still holds true on condition that the length computation has
certain accuracy.

Theorem 2 Suppose that the error in length computation is

max
i=0,...,n

|ti − τi| = O(hα), (37)

where α ≥ 1 is some fixed integer where h := max |ti − ti+1|. Then, we have
the following approximation accuracy

‖φ− φ̃h‖∞ = O(hmin{4,α}). (38)

Proof

On the one hand, we have the following accuracy of the cubic spline approx-
imation φh by using exact lengths due to the previous lemma:

‖φ− φh‖∞ = O(h4). (39)

We introduce now the piecewise polynomial interpolant σ of degree seven
satisfying the following boundary conditions (use for example higher order
Hermite interpolants [9, 22]):

σ(τi) = ti, σ′(τi) = 1, σ(k)(τi) = 0 k = 2, 3. (40)
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A Taylor development reveals that for τ ∈ [τi, τi+1], we have:

σ(τ)− τ = σ(τi)− τi +
3∑

k=1

(τ − τi)
k

k!
(σ(k)(τi)− δ1,k) +O(|τi − τi+1|4). (41)

On account of the relations (37) and (40), we obtain

σ(τ) − τ = O(hα) + O(|τi − τi+1|4). (42)

Additionally, since α ≥ 1, we note that

|τi+1 − τi| ≤ |τi+1 − σ(τi+1)| + |τi − σ(τi)| + |ti − ti+1| = O(h). (43)

As a consequence,
σ(τ) − τ = O(hmin{4,α}). (44)

On the other hand, by applying the Taylor development for the second time,
we have

φ(t) = φ(σ(t)) + (t− σ(t))φ′(σ(t)) + O((σ(t) − t)2). (45)

Since φ′ is uniformly bounded, we deduce from the last two relations:

|(φ ◦ σ)(t) − φ(t)| = O(hmin{4,α}). (46)

Since φ̃h is the cubic interpolant which transform τi into si, we have the
following estimation due to the former lemma

‖φh ◦ σ − φ̃h‖∞ = O(h4). (47)

By combining the two last estimations, we obtain

‖φ ◦ σ − φ̃h‖∞ = O(hmin{4,α}). (48)

Finally, from (39) and (48), we deduce ‖φ− φ̃h‖∞ = O(hmin{4,α}).

�

In practice, we convert the piecewise Bézier φ̃ into a B-spline curve φ̃(t) =
∑n

i=0 diN
n
0 (t). It is known [22] that the problem of sample interpolation by

cubic Bézier and convertion into a B-spline is equivalent to solving a sparse
linear system of the following form








1
α1 β1 γ1

... ... ...
αn−1 βn−1 γn−1

1

















d0

d1

...
dn−1

dn









=









b0
(∆0 + ∆1)x1

...
(∆n−2 + ∆n−1)x1

b3n−1









(49)

where ∆i := τi−τi−1 and the coefficients αi, βi, γi depend exclusively on ∆i.
Note that the above proposed result has three main advantages. First, all
samples {xi} are treated simultaneously. Second, we have a linear problem
instead of a nonlinear one. Finally, it is easy to compute the entries of the
matrix which is banded and diagonal dominant.
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5 Length estimation

Since the formerly developed method invokes many evaluations of the length
function, our next objective is to design an algorithm for estimating the
length of a curve x inside an interval [a, b]

L :=

∫ b

a

‖x′(t)‖dt. (50)

We would like also to investigate the rate of convergence of the approxima-
tion. Without loss of generality, we suppose that the curve is defined on
[0, 1] and we compute the whole length i.e. a = 0, b = 1. The general case
where [a, b] 6= [0, 1] can be treated in a very similar way. We will not need
to use quadrature rules to estimate the integral in (50) because the struc-
ture of the function x is known [30, 36]. Our preferred method is to apply
subdivision recursively while using some flatness criterion [19, 12] in order
to know if the curve is close to be linear. As a starting step, we suppose
that the curve is a rational Bézier curve

x(t) :=

∑m
i=0 ωibiB

m
i (t)

∑m
i=0 ωiB

m
i (t)

, (51)

where we have in mind that m is small (say m ≤ 4). Additionally, we assume
that the weights ωi are uniformly bounded:

∃R1 > 0, R2 > 0 such that R1 <

∣
∣
∣
∣
∣

m∑

i=0

ωiB
m
i (t)

∣
∣
∣
∣
∣
< R2 ∀ t ∈ [0, 1].

(52)
Although we mainly deal with rational Bézier curves, treatments of other
types of curves will be discussed at the end of this section.

5.1 Rational Bézier subdivision

Let us first introduce some notations related to the successive subdivision
of an arbitrary Bézier function

S(t) =

m∑

i=0

siB
m
i (t). (53)

Let s
(j)
i be the points which are found by using the de Casteljau [9] algorithm

at t = 0.5, i.e. s
(j+1)
i := 0.5(s

(j)
i + s

(j)
i+1) and s

(0)
i := si. The function

S[0,0] := S can be split into two Bézier functions S[1,1] and S[1,2] which have

respectively the control points s
[1,1]
i := s

(i)
0 and s

[1,2]
i := s

(m−i)
i and which

are defined on [0, 0.5] and [0.5, 1]. We can apply that process successively
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in order to obtain from each Bézier function S[p−1,i] two Bézier functions
S[p,2i−1] and S[p,2i]. That is, after applying subdivisions n times we have 2n

Bézier curves S[n,k] whose control points are denoted by s
[n,k]
i for k = 1, ..., 2n

and i = 0, ...,m. Each function S[n,k] is defined on the interval [pk−1, pk]
where pk := k/2n.

Now, we want to apply the above subdivision technique to the numerator
x̃(·) and the denominator ω(·) of the function in (51). Let us denote the
control points of x̃ by b̃i := biωi. The functions x̃(·) and ω(·) will be

subdivided into functions x̃[n,k] and ω[n,k] having the control points b̃
[n,k]
i

and ω
[n,k]
i . On each subinterval [pk, pk+1] we introduce the rational Bézier

x[n,k] := x̃[n,k]/ω[n,k]. Thus, by defining b
[n,k]
i := b̃

[n,k]
i /ω

[n,k]
i , we have forall

τ ∈ [pk, pk+1]:

x[n,k](τ) =

∑m
i=0 ω

[n,k]
i b

[n,k]
i Bm

i (s)
∑m

i=0 ω
[n,k]
i Bm

i (s)
where s =

τ − pk

pk+1 − pk

. (54)

Furthermore, we have the restriction property:

x[n,k] = x|[pk−1,pk]
. (55)

By considering the interval [pk−1, pk], we can introduce θi,k := (i/m)pk +
(1− i/m)pk−1 for i = 0, ...,m. We have the following convergence result for
the subdivision of a rational Bézier curve.

Theorem 3 Suppose that the rational Bézier in (51) has been subdivided
n times. Then, we have the following accuracy order for all k = 1, ..., 2n and
i = 0, ...,m:

‖x[n,k](θi,k) − b
[n,k]
i ‖ = O(2−2n). (56)

Proof

Since the function ω is uniformly bounded as specified in (52), there exist
constants K1, K2 such that

∥
∥
∥
∥
∥
x[n,k](θi,k) −

ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥
∥
∥
∥
∥
≤ K1

∥
∥
∥x̃

[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

∥
∥
∥ , (57)

∥
∥
∥
∥
∥
b

[n,k]
i − ω

[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥
∥
∥
∥
∥
≤ K2

∣
∣
∣ω[n,k](θi,k) − ω

[n,k]
i

∣
∣
∣ . (58)

As a consequence, we obtain
∥
∥
∥x

[n,k](θi,k) − b
[n,k]
i

∥
∥
∥ ≤ K1

∥
∥
∥x̃

[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

∥
∥
∥+K2

∣
∣
∣ω[n,k](θi,k) − ω

[n,k]
i

∣
∣
∣ .

(59)
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On the other hand, let us consider the blossom function P of the polynomial
x̃[n,k]. We have the relation with the control points [34]:

b̃
[n,k]
i = P(pk−1, ..., pk−1

︸ ︷︷ ︸

m−i

, pk, ..., pk
︸ ︷︷ ︸

i

). (60)

Thus, we have the following Taylor development:

b̃
[n,k]
i = P(θi,k, ..., θi,k) +

m−i∑

p=1

(pk−1 − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) +

m∑

p=m−i+1

(pk − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) + O(|pk − pk−1|2).

Since P is symmetric, all partial derivatives in the above relation are the
same. Due to the fact that (m− i)(pk − θi,k) + i(pk−1 − θi,k) = 0, we obtain

b̃
[n,k]
i = P(θi,k, ..., θi,k) + O(|pk − pk−1|2). As a consequence, we deduce

b̃
[n,k]
i = x̃[n,k](θi,k) + O(2−2n). The same analysis can be repeated to the

blossom of the polynomial ω in order to obtain ω
[n,k]
i = ω(θi,k) + O(2−2n).

Therefore, we can deduce from (59) that ‖x[n,k](θi,k) − b
[n,k]
i ‖ = O(2−2n).

�

We can now use that approximation result in order to deduce the accuracy
in length computation.

Corollary 1 Let L be the length of x. Define

Ak :=

m−1∑

i=0

‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖, and (61)

Bk :=

m−1∑

i=0

‖b[n,k]
i − b

[n,k]
i+1 ‖ ∀ k = 0, ..., 2n − 1. (62)

We claim that Ln :=
∑

k(λAk + (1 − λ)Bk) converges to the true length L
in dyadic order:

|L − Ln| = O(2−n). (63)

Proof

Let lk be the length of the curve x[n,k](τ). Due to the convex hull property
we have

Ak ≤ lk ≤ Bk. (64)
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On the other hand, the difference of the bounds can be estimated as follows

|Bk −Ak| =
m−1∑

i=0

‖b[n,k]
i − b

[n,k]
i+1 ‖ − ‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖

≤
m−1∑

i=0

‖[b[n,k]
i − x[n,k] (θi,k)] − [b

[n,k]
i+1 − x[n,k] (θi+1,k)] +

[x[n,k] (θi,k) − x[n,k] (θi+1,k)]‖ − ‖x[n,k] (θi,k) − x[n,k] (θi+1,k) ‖

≤
m−1∑

i=0

‖[b[n,k]
i − x[n,k] (θi,k)]‖ + ‖[b[n,k]

i+1 − x[n,k] (θi+1,k)]‖.

By using the previous theorem with the last inequality, we deduce |Bk −
Ak| = O(2−2n). As a consequence, we obtain |Bk − lk| = O(2−2n) and
|Ak − lk| = O(2−2n). Hence, the accuracy of the length estimation is given
as

|L − Ln| =

∣
∣
∣
∣
∣

2n
∑

k=0

lk − [λAk + (1 − λ)Bk]

∣
∣
∣
∣
∣

≤
2n
∑

k=0

|λ(lk −Ak) + (1 − λ)(lk −Bk)| = 2nO(2−2n) = O(2−n).

�

5.2 Adaptivity and more general curves

We have developed a method which always subdivides each rational Bézier
curve into two in each iteration. In this section, we would like to discuss
about two possible generalization of that approach. First, we will show how
to develop adaptive strategy in order to only apply subdivisions at positions
where they are necessary. Second, we will discuss about extensions of results
for rational Bézier to curves of other types.

In practice, when the rational Bézier curve is almost linear, we do not need
to subdivided it any more. The quantities Ak and Bk of relation (64) are
very good values for evaluating the flatness of the curve. We have proven
that the difference between Ak and Bk tends to zero. That is, we should
only apply subdivision at positions where εk := |Ak −Bk| is large. One can
even devise an adaptive strategy where we refine the rational Bézier curves
corresponding to the s largest values of εk (say s = 3). By doing that, we
need only to use subdivisions at subintervals where the accuracy is bad.

Note that the requirement in (52) is not a restrictive condition because it can
be replaced by specifying that all weights (which are of finite number) are
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(a) (b)

Figure 7: (a)Before reparametrization (b)After reparametrization: Coons
patches match well with blending functions F0(t) = sin2(0.5πt) and F1(t) =
cos2(0.5πt).

strictly positive. Of course, the former results hold for Bézier curves because
the corresponding weights are unity. As a result, the bounds R1 = R2 = 1
in relation (52) exist. In order to be able to apply the former results to a
B-spline, we have to convert the B-spline first to a piecewise Bézier. That
convertion step can be done very fast as described in [9]. Similarly, a NURBS
curve can be converted into composite rational Bézier. We have specified
in (51) that m is small because we have B-spline or NURBS curves with
smoothness Cp with p = 2 at most in practice.

6 Numerical results

In this section, we want to numerically examine the effect of the parametriza-
tion to the boundary matchings of adjacent Coons maps. As a test example,
let us consider the patches in Fig. 7(a) where we see the images of samples
having uniform stepsize. It can be observed that the samples do not at all
match at the interface. For the description of the boundary curve at the
common side, we use the following five curves κi which have the same image
but which have different parametrizations

κj(t) =
3∑

i=0

biB
3
i (pj(t)) j = 1, ..., 5, (65)

where pj are distortion functions given by p1(t) := t2, p2(t) :=
√
t, p3(t) :=

t3, p4(t) := sin(1
2πt), p5(t) := t6. In the above description, the values of

the control points are b0 := (3.5, 0.0), b1 := (2.5, 1.0), b2 := (4.5, 2.0),
b3 := (3.5, 3.0).

In order to evaluate the nonuniformity of the functions κi, we introduce the
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gauge:

µ :=

n−1∑

j=0

∣
∣
∣
∣
δj −

L

n

∣
∣
∣
∣
, (66)

where δj represents the length of the curve κi between j
n

and j+1
n

while L is
the whole length. Note that when the curve has arc length parametrization,
µ has zero value. A large value of the uniformity gauge µ indicates that
the deviation from being arc-length parametrization is very large. We want
to investigate the accuracy of matching between the neighboring patches
after reparametrization. In Table 1, we collect the maximum errors and the
average errors between the two adjacent Coons patches for the curves κi.
It can be observed that the accuracies after reparametrization are almost

Function Non-uniformity Maximum error Average error

κ1 1.615948 1.812050e-006 2.939276e-007
κ2 1.636991 1.394744e-006 2.046115e-007
κ3 2.469409 1.288736e-006 3.108232e-007
κ4 1.347950 1.560663e-006 1.819363e-007
κ5 3.726542 1.289617e-006 2.936744e-007

Table 1: Errors between the adjacent images of two Coons patches.

the same irrespective of the uniformity of the curves κi. That confirms our
theoretical predictions that the Coons maps are globally continuous if we
use chord length reparametrizations. As graphical illustration, we see in
Fig. 7(b) that the Coons patches match well after reparametrizations.

7 Results for CAD objects

Apart from simulated data, we have equally applied the formerly described
algorithms to real CAD objects [28]. Since we choose IGES to serve as
our exchange format [35], it was necessary to implement routines that read
IGES files. First, we need to assemble routines which can find information
about the components of the stored geometry. Special functions have to be
implemented in order to locate the positions of separators, IGES sections
and IGES records which can be used to identify the values pertaining to
IGES entities. On the other hand, we have to implement a large number
of extraction routines for the different IGES entities. As a consequence, we
must have efficient data structures to organize the components of the stored
geometry. Finally, we have to implement an evaluation routine for each
data structure to provide access to the needed information in the geometric
algorithms.
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The initial CAD models corresponding to the mechanical parts which are
found in Fig.8(a) through Fig.9(b) have been designed with a CAD system.
The resulting IGES files have been used in our algorithms and we have used
the approach in section 3 to decompose the mechanical parts into surface
patches. We need to reparametrize the boundary curves so that they possess
possess arc length parametrizations because the mappings are obtained by
using Coons maps. As for the outputs, we have implemented two methods.
The first one stores the exact mappings γi inside a file as specified in [29]
where we developed some functions for easily accessing and evaluating the
data without knowledge of CAGD. The second method stores the gridpoints
which are the 3D images of dyadic points (i/2L, j/2L) ∈ [0, 1]2 where i, j =
0, ..., 2L. In Table 2, we gather the number of entities corresponding to the
mechanical parts.

Mechanical parts Nb surfaces Nb four-sided patches Nb gridpoints

Fig.7 (a) 16 38 41,382
Fig.7 (b) 58 136 148,104
Fig.7 (c) 26 90 98,010
Fig.7 (d) 28 212 230,868
Fig.7 (e) 40 95 103,455
Fig.7 (f) 32 70 76,230
Fig.8 (a) 243 727 791,703
Fig.8 (b) 593 2081 2,266,209

Table 2: Number of initial surfaces, number of foursided patches and number
of points at level L = 5.

Acknowledgment: The author would like to thank Prof. Reinhold Schnei-
der for helping him to pursue his research work at the Scientific Computing
Group of the Christian-Albrecht University of Kiel.
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(c) (d)
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Figure 8: First set of results.
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(a)

(b)

Figure 9: Second set of results.
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