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Abstract. We focus on molecular cavities which are represented in the form of

Solvent Excluded Surfaces. They are featured by having smooth toroidal and spherical

surface blendings between the constituting atoms. The only inputs are the nuclear

coordinates, the van der Waals radii and the probe radius. From those information, our

purpose is to generate a patch representation of the resulting Connolly surface. We aim

at a tessellation which is conforming. The patches are represented as NURBS which

are globally continuous. The resulting patches are nicely shaped and neighboring

patches have comparable surface areas. An automatic way to make all normal vectors

outwardly oriented is provided. We present several practical results obtained from

real PDB files. We examine also the influence of different parameters to the number

of patches.

1. Introduction

Generating molecular surface cavities is not only an interesting geometric task but it has

a real important application in quantum chemistry, molecular docking and synthetic

drug design. In this document, we address the problem of modeling cavities for later

use in PCM simulation. Hierarchical methods such as multigrid, multilevel, multiscale

and wavelets are theoretically known to perform very efficiently. Still, their practical

implementation is not yet mature especially in the domain of hierarchical BEM for

chemical computation. That is mainly caused by the geometric difficulty of generating

hierarchical spaces. To solve such a difficulty, we want to advance the availability of

geometric methods in the perspective of chemical simulation. That is, we intend to

generate a patch representation of chemical Connolly surfaces [4, 10]. Implementing

a program for generating an SES surface beginning from a set of nuclear coordinates

is not straightforward because a lot of geometric tasks come into play. It is a long

process to start from those coordinates till obtaining the control points of the splines.

In this paper, we will not describe all the necessary steps in full detail. Although the

geometric tasks which are presented here are mainly for the purpose of subsequent

Wavelet simulations, we believe that it can be very helpful for the implementations of

other simulation techniques.

Key words and phrases. Connolly, cavity generation, patches, PCM.
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Before going into details, a short survey of related past works is in order. Brunnett

and Randrianarivony have proposed [13] a splitting method for CAD surfaces. They

have also invested a lot to implement their methods by using the IGES format [19].

Additionally, they have proved methods for checking regularity of Coons maps. But

they did not treat the global continuity of the resulting patches. The main task in

[15] is the correlation between the Coons interpolation which resides in an individual

patch and the global continuity. While approximations are required to obtain global

continuity in [15] for CAD objects, it can be achieved exactly for molecular surfaces

in [8, 14]. That is due to the fact that both circular arcs and spherical patches can be

exactly represented as rational Bézier entities. Harbrecht and Randrianarivony [7, 8]

have successfully applied Wavelet methods on CAD as well as molecular models in form

of the van der Waals setting. As inputs, they accept a CAD file in an IGES format or

a molecular model in a PDB format. Furthermore, a real chemical simulation by using

wavelet BEM is described by Weijo et al in [20] for the PCM computation.

This paper is structured as follows. In the next section, we begin by introducing the

notion of Connolly surface of a given molecule in a solute-solvent interaction. We recall

there also the notion of NURBS entities and their treatment by means of the homoge-

neous coordinates. In Section 3, we show the parametrization of the trimmed surfaces

which constitute a Connolly surface. The decomposition of a Connolly surface into

four-sided domains will be the purpose of Section 4. Afterwards, we describe in Section

5 the representation of the patches in terms of NURBS functions which are globally

continuous. In addition, we want that all normal vectors of the patches are pointing

consistently outward. Finally, we present some practical results of our implementation

where the molecules come from real PDB files.

2. Definitions and problem formulation

2.1. Connolly surface. We address the problem of Connolly representation of a cav-

ity [1] which is the surface separating the solvent from the solute. The solvent is

represented by a constant dielectric medium while the solute is located inside the

cavity. The cavity comes from the boundary of a molecule where each constituting

atom is represented as an imaginary sphere whose center mk corresponds to the nu-

clear coordinates and whose radius rk to the van der Waals radius of the atom [21]

or to a multiple of it. That is, by denoting the sphere of center m and radius r by

B(m, r) :=
{
x ∈ R

3 : ‖m − x‖ ≤ r
}

where ‖ · ‖ denotes the Euclidean norm, the

molecule is represented as the union of N spheres

Ω =

N⋃

k=1

B(mk, rk).
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Figure 1. (a)Inadmissible self-intersection: the two arcs of radii ρ which

are tangent to the two circles have intersections, (b)Inadmissible discon-

nected adjacency graph.

Apart from the initial molecule, we need also a probe atom which is required for

the generation of the Connolly surface. Before formulating the problem setting, let us

specify the assumptions concerning the positions of the nuclei mi and the properties of

the radii ri with respect to the probe radius ρ. For every two arbitrary atoms B(mi, ri)

and B(mj , rj), we assume that one of the following two conditions holds.

(C1) Either the two enlarged spheres B(mi, ri + ρ) and B(mj , rj + ρ) by the probe

radius ρ are completely disjoint such as ‖mi −mj‖ > ri + rj + 2ρ,

(C2) or we have Dij := ‖mi − mj‖ ≤ ri + rj + 2ρ and additionally

2Dijr
2
i + 4Dijρ − D2

ij − (ri + ρ)2 + (rj + ρ)2 > 0.

As a consequence, those two assumptions exclude the situation in Fig. 1(a) where

the blending torus which is tangent to both B(mi, ri) and B(mj , rj) admits a self-

intersection. In addition, we define the adjacency graph as follows. The nodes of the

graph correspond to the nuclear coordinates. An edge is defined between two graph

nodes if the distance between the corresponding two nuclei mi and mj is smaller than

ri + rj + 2ρ. Our next assumption is that the adjacency graph has only one connected

component. As a consequence, the situation illustrated in Fig. 1(b) is excluded.

If assumptions (C1) and (C2) are not fulfilled but one still wants to treat the molecule,

one can insert some dummy atoms [12] between every two atoms mi and mj for which

there is a toroidal self-intersection. Note that such an insertion might lead to a further

conflict with a third atom mk. Some careful strategy is essential for the determination

of the size and the positions of the dummy atoms whose number should be minimized

while keeping the shape of the initial molecule.

The SES model (Surface Excluded Surface), which is also known as Connolly surface,

is the surface Γ traced by the probe atom when it is rolled over (see Fig. 2(a)) the
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(a) (b)

Figure 2. (a)Rolling a probe atom on the molecular surface

(b)Connolly surface: composition of trimmed toroidal and spherical sur-

faces

whole surface

(2.1) S := ∂Ω = ∂
[ N⋃

k=1

B(mk, rk)
]
.

The Connolly surface Γ is partly from S and partly from the blending surfaces traced

by the probe atom. The blending surfaces are composed of surfaces of two types. The

first type of blending surfaces are toroidal surfaces while the second one is trimmed

spherical surfaces. In fact, depending on the position of the atoms, several cases may

happen. First, the probe atom is incident upon two atoms between which it can roll.

Note that the probe atom can connect two atoms which are completely disjoint. Second,

the probe atom is adjacent to more than two atoms where it is fixed. In the first cases,

toroidal surfaces are traced by the probe atom. For the second case, spherical surfaces

are traced. An illustration of a Connolly surface is depicted in Fig. 2(b). Note that the

size of the probe atom can really affect the topology of the whole molecular surface.

In chemical applications, the radius of the probe atom is usually chosen between 1.0Å

and 3.0Å but for our method it can be any positive number. When the probe radius

becomes very large, some of the initial atoms might be completely buried inside the

whole surface as in Fig. 7(d). When the probe radius approaches zero, then the SES

surface practically coincides with the van der Waals surface. As a consequence, the

presented method here can be used as an alternative to treat van der Waals surfaces

as in Fig.7(a).
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2.2. NURBS, Bézier and homogeneous coordinates. Since we intend to use

NURBS as representation of the Connolly surface, let us introduce the B-spline ba-

sis of piecewise polynomials. Consider any constant integer k ≥ 2 which specifies the

smoothness of the spline and a knot sequence ζ0 ≤ ζ1 ≤ · · · ≤ ζn+k such that ζi+k 6= ζi.

The B-spline basis [9] functions with respect to the knot sequence (ζi)i verify the fol-

lowing recurrence relation

N1
i (t) :=

{
1 if t ∈ [ζi, ζi+1),

0 otherwise,
(2.2)

Nk
i (t) :=

(
t − ζi

ζi+k−1 − ζi

)
Nk−1

i (t) +

(
ζi+k − t

ζi+k − ζi+1

)
Nk−1

i+1 (t).(2.3)

To ensure that the B-spline functions are open, we assume that the knot sequence is

clampled. That is, the initial and the final entries of the knot sequence are provided as

follows:

ζ0 = · · · = ζk−1,(2.4)

ζn+1 = · · · = ζn+k.(2.5)

A NURBS (Non-Uniform Rational B-Spline) curve [9, 11] having control points di ∈ R

and weights wi ∈ R
+ with respect to the above knot sequence is a parametric curve of

the form

(2.6) X(t) =

∑n

i=0 widiN
k
i (t)∑n

i=0 wiNk
i (t)

∀ t ∈ [ζ0, ζn+k].

The above two assumptions (2.4) and (2.5) ensure that the initial and final control

points d0 and dn are interpolated. An illustration can be found in Fig. 3(a) where the

curve diverges away from a control point di as the corresponding weight wi becomes

smaller.

Similarly, for a NURBS surface we need two clamped knot sequences ζ1
i and ζ2

i . A

NURBS surface is defined as

(2.7) X(u, v) =

∑n

i=0

∑m

j=0 wijdijN
k1

i (u)Nk2

j (v)
∑n

i=0

∑m

j=0 wijN
k1

i (u)Nk2

j (v)
∀(u, v) ∈ [ζ1

0 , ζ
1
n+k1

] × [ζ2
0 , ζ

2
m+k2

].

Rational Bézier curves and surfaces are defined similarly with the only exception that

one uses the Bernstein basis Bn
i (t) :=

(
n

i

)
ti(1− t)n−i instead of piecewise polynomials.

That is, a rational Bézier curve with weights wi and control points di = (xi, yi, zi) is

(2.8) X(t) =

∑n

i=0 widiB
n
i (t)∑n

i=0 wiBn
i (t)

∀ t ∈ [0, 1].

A rational Bézier surface is

(2.9) X(u, v) =

∑n

i=0

∑m

j=0 wijdijB
n
i (u)Bm

j (v)
∑n

i=0

∑m

j=0 wijBn
i (u)Bm

j (v)
∀ (u, v) ∈ [0, 1]2.
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Figure 3. (a) NURBS curve with n = 7, k = 4, knot se-

quence ζ = (0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1) and weights

W = (1.4, 0.5, 1.6, 1.8, 0.7, 1.9, 1.5, 0.9), (b) The homogeneous co-

ordinates [ω : x : y : z] represent the Cartesian point (x/ω, y/ω, z/ω)

Using homogeneous coordinates considerably simplifies theoretical formulations be-

cause rational quantities become polynomial ones which make problems linear instead

of nonlinear. An element of the projective space E
3 will be denoted as a column vec-

tor with four coordinates or as row vector whose elements are separated by colons.

A point with homogeneous coordinates [ω : x : y : z] corresponds to the Cartesian

coordinates (x/ω, y/ω, z/ω). Notice that the homogeneous coordinates [ω : x : y : z]

and [λω : λx : λy : λz] represent for any λ 6= 0 the same point in Cartesian coordinates.

The above definitions and properties are illustrated in Fig. 3(b).

A NURBS curve corresponds to a B-spline curve having the homogeneous coordinates

[ωi : ωixi : ωiyi : ωizi] in the projective space. Thus, in homogeneous coordinates the

above Bézier curve is represented as

X(t) =

n∑

i=0

[ωi : ωixi : ωiyi : ωizi]N
k
i (t)

which is a linear combination of the B-spline basis functions Nk
i (t). Vice versa, the

homogeneous B-spline curve X(t) =
∑n

i=0[αi : βi : γi : δi]N
k
i (t) corresponds uniquely

(except for scaling of enumerator and denominator) to a NURBS curve (2.6) with

ωi := αi and di := (βi/αi, γi/αi, δi/αi). Likewise, a NURBS surface X(·, ·) which

has the control points dij = (xij , yij, zij) and the weights ωij (for i = 0, 1, . . . , n and

j = 0, 1, . . . , m) can be represented in homogeneous coordinates as

X(u, v) =

n∑

i=0

m∑

j=0

[ωij : ωijxij : ωijyij : ωijzij ]N
k1

i (u)Nk2

j (v).
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(a) (b)

Figure 4. Connolly surface of a quinine molecule with probe radius

ρ = 1.2: (a)Trimmed surfaces from a cloud of nuclear coordinates

(b)Decomposition and globally continuous NURBS parametrization.

2.3. Problem setting. The main objective of the current cavity generation is to find

a set of globally continuous NURBS surfaces that approximate the SES surface. For

each NURBS patch as in (2.7), we will assume that [ζ1
0 , ζ

1
n+k] × [ζ2

0 , ζ
2
n+k] is the unit

square � := [0, 1]2. That is, the Connolly surface Γ ⊂ R
3 will be decomposed into a

finite number of patches

(2.10) Γ =

M⋃

i=1

Γi, Γi = γi(�), i = 1, 2, . . . , M,

such that each γi : � → Γi is described by a bivariate NURBS function. The intersec-

tion of two different patches Γi1 and Γi2 is supposed to be either ∅, or a common edge

or vertex.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit square

into 4j cubes Cj,k ⊆ �, where k = (k1, k2) with 0 ≤ k1, k2 < 2j. This generates 4jM

elements (or elementary domains) Γi,j,k := γ i(Cj,k) ⊆ Γi, i = 1, . . . , M .

In order to ensure that the collection of elements {Γi,j,k} on the level j forms a regular

mesh on Γ, the parametric representation is subjected to the following matching con-

dition: a bijective, affine mapping Ξ : � → � exists such that for all x = γi(s) on a

common edge of Γi1 and Γi2 it holds that

(2.11) γi1
(s) = (γi2

◦ Ξ)(s).
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In other words, the NURBS functions γi1
and γ i2

coincide pointwise at common edges

up to some reorientation.

An instance of such a geometric processing for the quinine molecule is shown in Fig. 4

where the curves are the images of u-isolines and v-isolines from the unit square �.

Observe that some patches are allowed to be supported by several atoms. That is, one

can merge some parts from different trimmed surfaces in order to form one patch. As

a consequence, the size and the shape of the patches are in general very nice. That is

a geometric advantage of the Connolly surfaces over the usual van der Waals surfaces

where each patch must belong to one atom. That is caused by the fact the transition

between two atoms is not smooth in the case of van der Waals surfaces [8].

3. Trimmed surfaces from nuclear coordinates

In this section, we consider the generation of the different constituents of the B-Rep

of the SES surfaces. For that, our starting position is a cloud of points {mi} together

with the radii ri. Note that the whole B-rep model is composed of two types of surfaces:

spherical and toroidal trimmed surfaces while there is only one type of curves: circular

arcs.

3.1. Weighted space tessellation. First, let us introduce some nomenclatures. For

two spheres B1 := B(m1, r1) and B2 := B(m2, r2), we define their power distance as

(3.12) D(B1,B2) := ‖m1 − m2‖2 − r2
1 − r2

2.

That distance coincides to the usual Euclidean distance if points are supposed to be

spheres of zero radii. Two spheres are called orthogonal if we have

(3.13) D(B1,B2) = 0.

Consider any simplex ∆ ⊂ R
3 which is a segment (resp. triangle, tetrahedron) if it is of

dimension d = 1 (resp. d = 2, d = 3). Suppose that the vertices of ∆ are Bi = B(mi, ri)

where i = 0, ..., d. The orthosphere of ∆ is defined to be the smallest sphere b such that

one has the orthogonality relations

(3.14) D(Bi, b) = 0, i = 0, · · · , d.

The center and the radius of an orthosphere are termed orthocenter and orthoradius.

Consider a set of spheres Bi where i = 1, ..., N . The i-th Laguerre cell is composed of

points which are closer to Bi than to any other Bj (j 6= i) with respect to the power

distance:

(3.15) Ci :=
{
x ∈ R

3 : D
(
B(x, 0),Bi

)
≤ D

(
B(x, 0),Bj

)
∀ j 6= i

}
.
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Figure 5. The plane P is a face from the Laguerre decomposition: (a)

the spheres Bi and Bj are overlapping, (b) they are disjoint but the

blending torus has no self-intersection (c) inadmissible toroidal self-

intersection.

A Laguerre decomposition of R
3 with respect to the spheres Bi is

(3.16) R
3 =

N⋃

i=1

Ci.

If all radii are equal, then the Laguerre decomposition coincides with the usual Voronoi

decomposition as illustrated in Fig.6(c). For two spheres Bi and Bj , the radical axis is

the set of points which are equidistant to Bi and Bj with respect to the power distance.

Such a set is a plane given by

(3.17) R(Bi,Bj) =
{
x ∈ R

3 : 2〈x,mi − mj〉 = ‖mi‖2 − ‖mj‖2 + r2
j − r2

i

}
.

A Laguerre cell is a convex polyhedron which has faces from the radical axes and

which could be bounded or unbounded. It is impractical to generate the radical axes

and compute their intersections to find the Laguerre decomposition because that leads

to plane-plane intersections which give an unstable algorithm because not all R(Bi,Bj)

for i 6= j are present in the decomposition (3.16). Instead, to obtain the Laguerre

decomposition, one considers the uplifting function for mi = (xi, yi, zi)

(3.18) m̃i :=
(
xi, yi, zi, x

2
i + y2

i + z2
i + r2

i

)
∈ R

4.

One generates the convex hull H of the set of four dimensional points {m̃i}. The projec-

tion of the lower face of H on the space R
3 generates a weighted Delaunay tetrahedral

decomposition [6] having apices mi. Each apex of the Laguerre cell is the orthocenter of

such a tetrahedron of the weighted Delaunay. The Laguerre decomposition is obtained

as the dual of the weighted Delaunay.
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Figure 6. (a)Circular arcs traced on atoms to form closed curves

(b)Stereographic projection σ from S
2 to P, (c)Space decomposition for

the 2D situation in the case where all radii are equal.

With the Laguerre decomposition at our disposal, let us summarize the way of gener-

ating the parts of the Connolly surface which are obtained from the surface S seen in

relation (2.1). That is, for each atom Bk, we describe the way of obtaining its spheri-

cal trimmed surfaces by considering its cell Ck defined in (3.15) and (3.16). For each

neighboring cell Cj, consider the face Pkj which separates the spheres B(mk, rk) and

B(mj , rj) as illustrated in Fig. 5. One generates two offset planes pk and pj by orthog-

onally shifting Pkj by dk := Dkjρ/(rk + ρ) and dj := Dkjρ/(rj + ρ) toward those two

spheres respectively. Two circles ck and cj are traced on those spheres by those two

planes. On the sphere Bk, we collect all such circles c1
k,...,c

M
k . The mutual intersections

of those circles c
q

k generate some points which decompose those circles into circular

arcs. We discard the circular arcs on Bk which are either included inside an atom other

than Bk or beyond a plane pi. By organizing the remaining circular arcs as illustrated

in Fig. 6(a), we obtain several closed curves K1,...,KR on the sphere B(mk, rk). We

need then to trim off the spherical parts which are not relevant: the parts of B(mk, rk)

which are split by K1,...,KR and which are away from mk as illustrated in Fig. 8(b). Af-

terwards, we obtain on the sphere B(mk, rk) one or several spherical trimmed surfaces.

Each one of them could be simply or multiply connected.

Now, let us summarize the process of obtaining the blending surfaces which come in

two types. The first case happens when the probe atom exactly touches two atoms.

Each face Pkj of the Laguerre decomposition gives rise to one torus Tkj which could

never be a horn torus or a spindle one because of assumption (C1) and(C2). It is a ring

torus of small radius ρ. The torus Tkj is tangent upon Bk and Bj where the touch-curves

are the circles ck and cj as defined above. Slicing the torus Tkj along the curves ck

and cj gives rise to two toroidal components. To obtain the toroidal surface T , trim
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off toroidal component which is away from the main axis of Tkj. As for the second

case, the probe atom touches at least three atoms. It generally touches exactly three

atoms but it can be arbitrarily many. The center of the blending sphere of radius ρ

which is adjacent to at least three different spheres B(mi, ri), B(mj , rj) and B(mk, rk)

is uniquely determined. Thus, the boundary of the each spherical blend is composed of

the circular arcs which are intersections of the toroidal surfaces T and those blending

spheres. Those circular arcs need to be organized to form complete closed curves on

the blending spheres.

The main difficulty in the implementation of the above method consists of the stability.

Depending on the position and the distribution of the atoms, it is possible that some

circular arcs as illustrated in Fig.6(a) are so tiny that forming closed curves from them

could lead to instability. That could lead also to very long and tight toroidal blend

surfaces. A wrong orientation of the direction of the circular arcs could lead to a surface

folding. It is impossible to expect that there is no gap at all between the circular arcs

caused by all the geometric intersections. Controlling the size of the gaps and the size

of the tiny arcs could lead to non-robust algorithm because carelessly discarding arcs

which are small enough could lead to topological errors such as non-closed manifold.

3.2. Stereographic projection. As seen in the previous section, two instances can

generate trimmed spherical patches. First, the patches which have the atoms as base

surface. Second, the ones having the probe atom as base surface. In both cases, the

boundaries of those spherical patches are circular arcs. We need to obtain a parametriza-

tion of the resulting spherical patches and that is the purpose of this section. We

shall next be concerned with the stereographic projection σ which [6] is illustrated in

Fig. 6(b). To this end, we introduce the plane z = 0

(3.19) P := {[ω : x : y : 0] ∈ E
3 : ω 6= 0} = {(x, y, z) ∈ R

3 : z = 0}

and the unit sphere

S
2 :=

{
[ω : x : y : z] ∈ E

3 : ω 6= 0, x2 + y2 + z2 = ω2} = {x ∈ R
3 : ‖x‖ = 1

}
.

Then, the stereographic projection σ : S
2 → P maps, in Cartesian coordinates, (x, y, z) ∈

S
2 to

σ(x, y, z) =

(
x

1 − z
,

y

1 − z
, 0

)
∈ P,

see [11]. Expressed in homogeneous coordinates, e = [e0 : e1 : e2 : e3] ∈ S
2 is mapped

to

σ(e) = [e0 − e3 : e1 : e2 : 0] ∈ P.
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(a) (b)

(c) (d)

Figure 7. Instance of streptomycin. Effect of enlarging the probe atom:

(a) 0.025 Angstrom (b) 0.65 Angstrom (c) 1.5 Angstrom (d) 3.0

Angstrom.

The inverse τ := σ−1 : P → S
2 is given by

τ(x, y, z) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
∈ S

2

which is in homogeneous coordinates equivalent to

τ(e) =
[
e2
0 + e2

1 + e2
2 : 2e0e1 : 2e0e2 : e2

1 + e2
2 − e2

0

]
∈ S

2.

Suppose that the Bézier curve X ⊂ S
2 is given in homogeneous coordinates by

X(t) =

n∑

i=0

[ωi : ωixi : ωiyi : ωizi]B
n
i (t)
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with zi 6= 1 for all i. Then, the stereographic projection maps X(t) onto

Y(t) = σ
(
X(t)

)
=




∑n

i=0(ωi − ωizi)B
n
i (t)∑n

i=0 ωixiB
n
i (t)∑n

i=0 ωiyiB
n
i (t)

0


 =




∑n

i=0 ω̃iB
n
i (t)∑n

i=0 ω̃ix̃iB
n
i (t)∑n

i=0 ω̃iỹiB
n
i (t)

0


 ∈ P

where ω̃i := ωi(1−zi) and b̃i := (x̃i, ỹi, 0) :=
(
xi/(1−zi), yi/(1−zi), 0

)
. In other words,

the preimage with respect to τ of the curve of X ⊂ S
2 is the rational Bézier curve

(3.20) Y(t) =

∑n

i=0 ω̃ib̃iB
n
i (t)∑n

i=0 ω̃iBn
i (t)

∈ P.

3.3. Parametrizing the trimmed surfaces. As described in Section 3.1, incident

circular arcs split the sphere Bk into pk subsurfaces S
(k)
i ⊂ Bk where i = 1, . . . , pk. Each

subsurface Si = S
(k)
i is bounded by some circular arcs Cj . That is, there exists an index

set Ii such that

∂Si =
⋃

j∈Ii

Cj for all i = 1, . . . , pk.

We shall exploit the stereographic projection σ to represent a surface Si as a parametric

trimmed surface defined on some planar domain. To this end, let us denote by σk the

analogue of the stereographic projection σ with respect to an arbitrary sphere Bk.

According to Subsection 3.2, setting τk := σ−1
k , we can compute the curves Ej =

τk(Cj) ⊂ P for each circular arc Cj ⊂ Bk with j ∈ Ii. Denoting by D
(k)
i the planar

trimmed domain bounded by ∂D
(k)
i =

⋃
j∈Ik

Ej we thus have constructed the trimmed

surface [3, 9]

(3.21) τk : D
(k)
i → Bk with S

(k)
i = τk(D

(k)
i ) for all i = 1, . . . , pk.

Note that the preimage by τk of a 3D circular arc is a 2D circular arc as illustrated in

Fig. 8(a) and Fig. 8(b).

The parametrization of the toroidal blending surfaces consists of a surface of revolution

where the directrix is a circular arc. In particular, that can be represented as a rational

Bézier surface.

4. Decomposition into four-sided domains

In this section, we describe the decomposition of a Connolly surface into large four-sided

subsurfaces. It is very difficult (if possible at all) to directly decompose the Connolly

surface from its raw representation. We need to generate a discretization of the whole

surface first. The easiest way of representing a discretization while keeping the topology

is to use a triangular mesh as an intermediate step.
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(a) (b)

Qk

q
(k)
1

q
(k)
2

q
(k)
3

q
(k)
i

(c)

Figure 8. (a) Spherical patch with composite circular arc as boundary,

(b) Spherical trimmed surface, (c) Imperfections in polygonal approxi-

mation.

We summarize the meshing of a single [17] parametric function Sk specified by (3.21).

To simplify the notation, we will drop the index k in the sequel. The approach in

triangulating S is processed in two steps. First, a 2D mesh on the parameter domain

D is generated according to the first fundamental form. Afterwards, the resulting 2D

mesh is lifted to the parametric surface S by computing its image by τk from (3.21). For

that purpose, one starts from a coarse 2D mesh of D and a generalized two dimensional

Delaunay refinement is used as summarized below. We will call an edge of a mesh in

the parameter domain a 2D edge and an edge in the lifted mesh a 3D edge. Similarly

to the planar case, we introduce an edge size function ρ which is defined now on the

parametric surface ρ : S −→ R+. By composing ρ with the parameterization τk of S,

we have another function ρ̃ := ρ ◦ τk which we will call henceforth ”parameter edge

size function” because it is defined for all u = (u, v) in the parameter domain. Let us

consider a 2D edge [a,b] ⊂ D and let us denote the first fundamental forms at a and b

by Ia and Ib respectively. Further, we introduce the following average distance between

a and b

(4.22) dRiem(a,b) :=

√
−→
abT T

−→
ab T := 0.5(Ia + Ib).

The 2D edge [a,b] is split if this average distance exceeds the value of the parameter

edge size function ρ̃ at the midnode of [a,b]. Note that no new boundary nodes are

introduced during that refinement because only internal edges are allowed to be split.

Consider now a 2D edge [a, c] is shared by two triangles which form a convex quadri-

lateral [a, b, c, d]. Denote by T the average values of the first fundamental forms Ia, Ib,

Ic and Id at those nodes. The edge [a, c] is flipped into [b,d] if the next generalized
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(a) (b)

Figure 9. Quadrangulation simplification with NND nodes, NEL

quadrilaterals and NED edges: (a)NND=484, NEL=482, NND=964

(b)NND=251, NEL=249, NND=498.

Delaunay angle criterion is met

(4.23) ‖−→bc ×−→
ba‖(−→daT T

−→
dc) < ‖−→da ×−→

dc‖(−→cbT T
−→
ba).

As in the planar case, ones starts from a very coarse triangulation and one recursively

refines or flips edges according to the ideal mesh size function ρ.

We would like now to describe the procedure of splitting P into a coarse triangulation.

Suppose we have a 2D domain P which may contain some holes and which has polygonal

boundaries. First, the initial polygon is split into a few simply connected polygons

P =
⋃N

i=1 P(i). Afterwards, we do the following for every simply connected polygon

P(i). One initializes its set of triangles as empty set T (i)
h = ∅. Then, one finds a triangle

T which can be chopped off from P(i). We can repeat that by updating P (i) := P (i) \T

and T (i)
h = T (i)

h ∪ T . Finally, the triangulation of P is the union of all triangulations:

Th := ∪iT (i)
h .

Let us consider a parametric surface S and a differentiable function F : S −→ R. The

Laplace-Beltrami operator is defined by

(4.24) ∆SF = − 1√
g

∂

∂uj

(√
ggij

∂F

∂ui

)

in which we use Einstein notation in indexing and g is the determinant of I which is

the first fundamental form. The function F is said to be harmonic if ∆SF = 0. The

edge size function ρ should be harmonic. In the next description, the mesh of the entire

surface Γ from (3.21) will be denoted by M.
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(a) (b)

Figure 10. Pattern 1 of quadrangulation simplification.

The process of generating the patches starts from finding the underlying structure of

a coarse quadrangulation Qcoarse as illustrated in Fig. 9. That is, we need to know the

vertices Pi of the coarse quadrangulation Qcoarse. We need to know every two vertices

Pi and Pj that need to be connected to form an edge. Finally, we need to find the

four vertices to form the apices of each patch. To find such a structure, we start from

a fine quadrangulation Qfine which is obtained by subdividing each triangular element

of M into three quadrilaterals. More precisely, a new node is inserted at the center

of gravity of each triangle and three new nodes at the middle of its three edges. The

resulting quadrangulation Qfine is not directly useful for patch representation because it

is too fine. As a consequence, we need to coarsen that fine quadrangulation repeatedly

in which we initialize Q0 := Qfine. Each coarsening step from Qk to Qk+1 consists in

amalgamating a few neighboring quadrilaterals in the quadrangulation Qk to form a

coarser local quadrangulation in Qk+1. Each quadrilateral amalgamation is most easily

described by graphically using 2D patterns. For instance, in Fig. 10, Fig. 11 and Fig. 12,

we see such patterns. On the left sides, one sees the finer quadrangulation Qk and on

the right sides the simplified one in Qk+1. Note that in each pattern, the initial local

quadrangulation and the simplified one admit exactly the same boundary. In those fig-

ures, we present only a few simplification patterns. It is beyond the scope of this paper

to describe all possible simplification patterns. Implementing this algorithm is a devel-

opmental process and most of the patterns are obtained from practical observations.

That method could become stuck if one implements only very few patterns because it

is possible that none of the available patterns can be detected in the old quadrangula-

tions Qk. As more patterns are implemented, the simplification algorithm becomes also

more robust. More than fifty patterns seem to be enough in the implementations. Note

that those depicted patterns are drawn for quadrangulations on the plane to simplify

the description. But, many complications are encountered in practice because we need

to apply those patterns to quadrangulations which are embedded in the space. Some

additional geometric conflict might occur in the practical application of those patterns.

For instance, a manifold folding might result in the application of those operations in

3D. In addition, the notion of convexity is lost for a quadrilateral in the space. In the
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(a) (b)

Figure 11. Pattern 2 of quadrangulation simplification.

2D patterns, to verify if a quadrilateral is nicely shaped, you need only to verify its

convexity. For quadrilaterals in the space, the simplest method of checking good shape

property is to consider the Coons map of the four straight boundary curves. Thus,

prior to the application of those geometric operations, tests must be done in order

to avoid foldings or irregular mappings. Many tests about edge degeneration, angular

quality are needed to be applied in practice. A lot of programming tasks are required

to efficiently recognize the used patterns and to detect if a coarsening can be applied.

Since the initial finest quadrangulation Qfine is inappropriate to be used as Qcoarse,

we impose a maximal allowed number of quadrilaterals (say NQUAD(Qcoarse)≤ 40

% NQUAD(Qfine)). Likewise, we impose also the minimal number of quadrilaterals of

Qcoarse. For the recursive quadrangulation simplification, we use a coarsening parameter

α ∈ [0, 1] which gauges the density of Qcoarse. A unit value of α corresponds to the finest

allowed quadrilateral decomposition while a value of α approaching zero corresponds

to a very coarse quadrilateral decomposition. As an illustration, for respective values

of α = 0.5 and α = 0.1 of the coarsening parameter, we see in Fig. 9(a) and in Fig. 9(b)

the corresponding quadrangulations Qcoarse for the same Connolly surface of a Quinine

molecule.

When a straight quadrangulation Qcoarse has been assembled, we need to connect every

two nodes Pi and Pj on the endpoints of every edge by a curve on the manifold M.

That curve is described by means of a geodesic which is the shortest curve on M
joining Pi to Pj. The search for the geodesic is done in two steps. First, we need a

curve which traverses only the nodes and the edges of M. Afterwards, we improve that

curve by allowing it to traverse the internal parts of the triangles of M. For the first

step, finding geodesics might at first sight be easy because of the existence of algorithms

like Dijkstra [2]. But assembling the complete node-edge graph of the whole mesh M
is very memory consuming. Searching for shortest paths becomes very cumbersome for

such a large discrete manifold. Even for small molecules having a dozen atoms, some

efficient data structure to accelerate the search is necessary in the implementation. As
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(a) (b)

Figure 12. Pattern 3 of quadrangulation simplification.

for the second step, we improve the discrete geodesic which traverses only the edges

of the manifold M because it is usually of very bad quality unless the manifold M is

extremely fine. To that end, when that initial geodesic is found, one searches for the

triangles in its neighborhood and generate the geodesic which traverses the interior of

those triangles. That is done by using local refinements and by applying local Dijkstra

algorithms.

In many decomposition techniques, cleanup is the process of generating a tessellation by

improving an available one according to some quality criteria. We are going to keep the

numbers of nodes and edges unchanged but we change the position of nodes and edges in

order to enhance the quadrangulation quality. Before describing the cleanup operations,

let us review the way qualities of a quadrilateral, a node or an edge can be evaluated. We

consider a technique of assessing the quality of a quadrilateral [A, B, C, D]. It requires

the introduction of the following distortion coefficient of any triangle [a, b, c]:

(4.25) α := 2
√

3
‖−→ca ×−→

cb‖
‖−→ca‖2 + ‖−→ab‖2 + ‖−→bc‖2

∈ [0, 1].

We can easily see that the triangular distortion α is unity if the triangle [a, b, c] is equi-

lateral. From a convex quadrilateral [A, B, C, D], we may derive four triangles [A, B, C],

[A, C, D], [A, B, D] and [D, B, C]. Let us denote by αi the triangular distortions of those

four triangles such that α1 ≥ α2 ≥ α3 ≥ α4. We define the first quality measurement

of the quadrilateral [A, B, C, D] to be

(4.26) β := (α3α4)/(α1α2) ∈ [0, 1].

Effectively, the value of β is unity for rectangles and it approaches zero as a quadrilateral

becomes triangular shaped. In the following discussion, we will denote by µ(q) a quality

measure of a quadrilateral q.

We would like to consider quality measurements of a node and an edge inside a quad-

rangulation. To that end, let us consider an internal node ω which is shared by the
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ω

(a) (b)

Figure 13. Cleanup: (a) Shifting a node ω(b) Flipping an edge

quadrilaterals qi i ∈ J . We may now evaluate the quality of the node ω by

(4.27) µ(ω) :=
1

card(J )

∑

i∈J

µ(qi).

Similarly, for an internal edge e upon which two quadrilaterals q1 and q2 are incident,

its quality can be measured by

(4.28) µ(e) :=
1

2
[µ(q1) + µ(q2)].

We will treat two types of cleanup operations: node repositioning and edge flipping. The

first one consists in shifting an internal node to another position in order to improve

the quality of the neighboring quadrilaterals. In the course of node shifting, we have

to make sure that all incident quadrilaterals remain convex. The second operation

modifies the endpoints of an internal edge.

Let us first show how to find the region inside which a node ω can be shifted. The node

repositioning consists in moving ω inside the interior of R in order to minimize µ(ω).

Let us denote by Eω the set of edges which emanate from the node ω. Then we take

the shortest edge ẽ from among Eω and consider a circle centered at the node ω and

having radius ρ := λ · length(ẽ) where λ is a user defined parameter (say λ=0.25) from

]0, 1[. The new position of ω is then sought inside this circle. The practical realization

of such a shifting is to pick p (say p = 5) positions qi inside the circle. For every qi, we

test if by replacing ω by qi, we would still have incident nicely shaped quadrilaterals.

We replace then ω by qi which gives new incident quadrilaterals and which minimizes

µ(qi). If none of the qi fulfils those desirable properties, then we keep ω in its current

position.

The second operation consists in flipping an edge in order to improve the qualities of the

neighboring quadrilaterals. In the best case, there are two possibilities for flipping an
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edge by considering the union of the incident quadrilaterals as explained in Fig. 13(b).

We flip an internal edge e to a position which keeps the two incident quadrilaterals

nicely shaped and which improves the value of µ(e).

There is no exact rule about where to start but the method that many people use

in such a retouching technique is to start from the worst entities. That means, one

measures the qualities µ(ωi) of all internal nodes. One searches for the m (say m = 5

or m is the number of all internal nodes) nodes having the largest µ values. Then

one applies the cleanup operations to those nodes. One can repeat that operation a

few number of times. One can do also the same thing for edges. It is also possible to

alternate the edge and node quality improvements.

5. Globally continuous spline representation

In this section, we would like to determine the splines with the main objective of

obtaining global continuity. In addition, we would like to provide a method to specify

the orientations of all the normal vectors. We are given four boundary NURBS curves

(5.29) Kh
1 (t) =

∑nu

i=0 ah
i w

h
a,iN

k
i (t)∑nu

i=0 wh
a,iN

k
i (t)

, Kh
2 (t) =

∑nu

i=0 bh
i w

h
b,iN

k
i (t)

∑nu

i=0 wh
b,iN

k
i (t)

,

(5.30) Kv
1 (t) =

∑nv

i=0 av
i w

v
a,iN

k
i (t)∑nv

i=0 wv
a,iN

k
i (t)

, Kv
2 (t) =

∑nv

i=0 bv
i w

v
b,iN

k
i (t)

∑nv

i=0 wv
b,iN

k
i (t)

.

We assume that all four curves are defined on the interval [0, 1] and that the knot

sequences of the opposite curves Kp
1 and Kp

2 for p = h, v are the same. Otherwise,

we need to apply a preprocessing step of knot insertions by using discrete B-splines.

Additionally, we have compatibility conditions (see Fig. 14(a)) related to the control

points and weights at the corners:

(5.31)
ah

nv
= bh

0 , av
0 = ah

0 , ah
nu

= bv
0, bh

nu
= bv

nv
,

ωh
a,nv

= ωh
b,0, ωv

a,0 = ωh
a,0, ωh

a,nu
= ωv

b,0, ωh
b,nu

= ωv
b,nv

.

Suppose we are given a set of samples (ui, vi) ∈ [0, 1]2 and Pi ∈ R
3 for i = 0, ..., M . To

approximate those samples, we seek a NURBS surface of the form

(5.32) γ =

(
x1(u, v)

ω(u, v)
,
x2(u, v)

ω(u, v)
,
x3(u, v)

ω(u, v)

)
where

xq(u, v) =
nu∑

i=0

nv∑

j=0

wi,jd
q
i,jN

ku

i (u)Nkv

j (v),(5.33)

ω(u, v) =

nu∑

i=0

nv∑

j=0

wi,jN
ku

i (u)Nkv

j (v)(5.34)
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in which q = 1, 2, 3 and di,j := (d1
i,j, d

2
i,j, d

3
i,j) ∈ R

3. That surface is equivalent to the

following in homogeneous case

(5.35) γ(u, v) =
[
ω(u, v) : x1(u, v) : x2(u, v) : x3(u, v)

]
.

A point P = (p1, p2, p3) will be identified to the following in the projective space

(5.36)

P =
[
β : βp1 : βp2 : βp3

]
where β(P) := 1/

√
1 + P = 1/(1 + p2

1 + p2
2 + p2

3).

The following lexicographic ordering of the surface information for i = 0, .., nu, j =

0, ..., nv are used for the NURBS patch

w̃i(nv+1)+j := wi,j, d̃i(nv+1)+j := di,j ,

Ñi(nv+1)+j(u, v) := Nku

i (u)Nkv

j (v) ∀ (u, v) ∈ [0, 1]2.

Note that the new expressions w̃s, d̃s, Ñs(u, v) have only one index s = 0, ..., n where

n := nu(nv +1)+nv whereas the old ones wi,j, di,j and Nku

i (u)Nkv

j (v) have two indices

i = 0, ..., nu and j = 0, ..., nv. With the help of the new notations, the definitions in

(5.33) and (5.34) are equivalent to

(5.37) xq(u, v) =
n∑

s=0

w̃sd̃
q
sÑs(u, v), ω(u, v) =

n∑

s=0

w̃sÑs(u, v).

Introduce the distance functional [5] of the above surface to the point P

(5.38) Q
[
γ(u, v),P

]
:= γ(u, v)2 −

(
γ(u, v) ·P

)
.

By applying that distance functional to γ(u, v) and P, we obtain

(5.39) Q
[
γ(u, v),P

]
= ω(u, v)2 +

3∑

q=1

xq(u, v)2 − β
[
ω(u, v) +

3∑

q=1

pqxq(u, v)
]2

.

The problem is then reduced to solving the minimization F :=
∑M

i=0 Q[γ(ui, vi), P i]

where the unknowns are the control points di,j and the weights wi,j. Since that formu-

lation could generate a NURBS function having negative or zero weights, it is corrected

by a regularizing term

(5.40)
M∑

i=0

Q
[
γ(ui, vi), P i

]
+ λR

[
γ(ui, vi)

]

where R[γ(ui, vi)] = [w(ui, vi) − 1]2. As the value of the parameter λ becomes large,

the weights are likely to be positive. Thus, that value is a trade-off between the ap-

proximation and the regularity. In practice, the value of λ starts from a small one and

it is incremented gradually.
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For the purpose of global continuity, the control points and weights on the boundary

are interpolated while the internal ones need to be determined. Thus, the boundary

entities verify

di,0 := ah
i , ωi,0 := ωh

a,i, di,nv
:= bh

i , ωi,nv
:= wh

b,i, for i = 0, ..., nu,

d0,j := av
j , ω0,j := wv

a,j , dnu,j := bv
j , ωnu,j := wv

b,j, for j = 0, ..., nv.

Let us denote by J the set of indices s = 0, 1, ..., n such that the corresponding control

points di,j = d̃s are internal ones. Likewise, the set of indices for the boundary control

points are denoted by B. As for the coordinates, we define Z(J ) := {1, 2, 3}×J while

the set Z(B) is defined analogously. The coordinates of the internal control points are

d̃q
s for (q, s) ∈ Z(J ). For the mixed values, we denote αi(s1, s2) := Ñs1

(ui, vi)Ñs2
(ui, vi)

for all s1, s2 = 0, 1, ..., n and i = 0, 1, ..., M . For any q0 = 1, 2, 3 and s0 = 0, 1, ..., n such

that (q0, s0) ∈ Z(J ), the partial derivative of F with respect to d̃q0

s0
is where βi := β(Pi)

(5.41)
M∑

i=0

[ n∑

s=0

d̃q0

s αi(s, s0) − βi

( n∑

s=0

ω̃spq0,iαi(s, s0) +
3∑

q=1

n∑

s=0

pq,ipq0,id̃
q0

s αi(s, s0)
)]

and the contribution of the regularizing term with respect to d̃q0

s0
is zero. The one for

F with respect to ω̃s0
is

(5.42)
M∑

i=0

[
− βi

3∑

q=1

n∑

s=0

pq,id̃
q
sαi(s, s0) +

n∑

s=0

(1 − βi)ω̃sαi(s, s0)
]
.

The one for regularizing term with respect to ω̃s0
is

(5.43)
n∑

s=0

[ M∑

i=0

αi(s, s0)
]
ω̃s −

M∑

i=0

Ñs0
(ui, vi).

After collecting the terms in (5.41), one obtains

(5.44)

3∑

q=1

n∑

s=0

[ M∑

i=0

(
δq,q0

−βipq,ipq0,i

)
αi(s, s0)

]
d̃q

s +

n∑

s=0

( M∑

i=0

−βipq0,iαi(s, s0)
)
ω̃s = 0.

Similarly, a combination of the expressions in (5.42) and (5.43) yields

(5.45)
3∑

q=1

n∑

s=0

[ M∑

i=0

−βipq,iαi(s, s0)
]
d̃q

s +

n∑

s=0

[ M∑

i=0

(1 + λ − βi)αi(s, s0)
]
ω̃s = λ

M∑

i=0

Ñs0
(ui, vi).
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av
0 = ah

0 ah
1 ah

nu
= bv

0

av
nv

= bh
0 bh

nu
= bv

nv

bh
1

av
1 bv

1

(a)

∆J (stepsize=1/2J )

(b)

Figure 14. (a)Compatibility condition of the control points of the

bounding curves (b)Grid-points for dyadic stepsize at level J .

By considering the boundary condition in virtue of the global continuity, we obtain

∑

(q,s)∈Z(J )

[ M∑

i=0

(
δq,q0

− βipq,ipq0,i

)
αi(s, s0)

]
d̃q

s −
∑

s∈J

[ M∑

i=0

βipq0,iαi(s, s0)
]
ω̃s = G(5.46)

∑

(q,s)∈Z(J )

[ M∑

i=0

−βipq,iαi(s, s0)
]
d̃q

s +
∑

s∈J

[ M∑

i=0

(1 + λ − βi)αi(s, s0)
]
ω̃s = H(5.47)

where

G :=
∑

(q,s)∈Z(B)

[ M∑

i=0

(
βipq,ipq0,i − δq,q0

)
αi(s, s0)

]
d̃q

s +
∑

s∈B

( M∑

i=0

βipq0,iαi(s, s0)
)
ω̃s.

H :=
∑

(q,s)∈Z(B)

[ M∑

i=0

βipq,iαi(s, s0)
]
d̃q

s +
∑

s∈B

[ M∑

i=0

(βi − 1 − λ)αi(s, s0)
]
ω̃s +

+λ

M∑

i=0

Ñs0
(ui, vi).

The equations in (5.46) are of number card(Z(J )) = 3 card(J ) and those in (5.47) of

number card(J ). A combination of them yields a linear system of 4 card(J ) equations

with 4 card(J ) unknowns. By solving that system, the values of d̃q
s and ω̃q

s for (q, s) ∈
Z(J ) are found.

The above process can of course be applied to the determination of a NURBS curve

from a set of points. The determination of all NURBS patches is then done as follows.

First, find all separating curves Ci such that for each curve the two boundary nodes are

exactly interpolated. For each patch, select from among Ci the four NURBS curves Kh
1 ,

Kh
2 , Kv

1 , Kv
2 on its sides. Those four curves should fulfil the compatibility conditions

in (5.31). Afterward, determine the NURBS surface interpolating those four curves as

described in (5.46) and (5.47).
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Before showing some practical results, let us briefly consider the orientations of the

normal vectors. It is usually necessary for the subsequent numerical solvers such as the

wavelet BEM that the directions of the normal vectors are consistent and outwardly

oriented. The automatic fast check if the normal vector is pointing outward needs only

to be done on one patch Γseed which we call seed patch. Consider an infinite line L
having any unitary directional vector v which can be supposed to be (1, 0, 0). The seed

patch will be the patch having the largest projection value of γi(0.5, 0.5) on the line L.

We consider now the plane P tangent to the normal ~nseed at γseed(0.5, 0.5). The plane P
splits the space into two half-spaces. If all other patches Γi are on the same half-space

which is not pointed by ~nseed then the normal orientation is outward. Otherwise, we

need to flip the direction of ~nseed. Flipping the normal orientation of a NURBS patch

consists in applying di,j := dj,i to its control points and wi,j := wj,i to its weights. Two

adjacent patches Γp and Γq admit the same normal orientation if their common edge

is traversed from both sides in opposite directions. As a consequence, we initialize a

set of patches as Z := {Γseed} and we consider R the set of patches adjacent upon Z.

If a patch Γq of R has an opposite normal as an element of Z, we flip the normal ~nq.

Afterwards, we update Z := Z ∪R and we repeat the same process. Provided that the

molecular surface is an orientable manifold (i.e. not like Möbius strip), that process

should terminate after each patch has been visited once.

6. Practical results

In this section, we would like to present several practical results of the method described

formerly. First, we show some graphical outcomes of our method when applied to real

molecules. We present two results in Fig. 15 and Fig. 16 where we use molecules of a

DNA and a water cluster respectively. Now, we would like to provide some numerical

results along which we display equally the runtimes of the cavity generation. Note that

these are not the final version of the execution time since our software is constantly

under development and improvement. We give only these numbers so that the readers

have a certain idea about the expected time. The running time depends of course on

several factors. First, it depends on the number of atoms in the molecule. Second,

it depends on the atom distributions. Further, it depends on how coarse the patch

decomposition should be. Finally, it depends on the level used in the dyadic points

generations. As a first numerical test, we want to investigate the number of patches in

accordance to the size of the molecule. The results of such a test are gathered in Tab. 6.1.

According to our experience, the interesting practical values of α range between 0.2 and

0.4. A smaller value of α indicates that one has a coarser decomposition. It amounts

also to fewer number of fitting tasks. On the other hand, a single large NURBS surface

area needs many sampling points. It means also that it takes more time to complete
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Figure 15. Patch representation of a DNA with 1905 NURBS
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Figure 16. Patch representation of a water cluster with 1089 NURBS

the NURBS determination. Hence, the running time depends not only on the initial

molecular size but also on the surface area of the cavity. For example, lecithin has more

atoms than DNA but the latter takes almost four times longer than the former. The

surface areas can be reflected from the number of patches.
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Molecules Nb. atoms
Number of patches (Runtime in second)

α = 0.2 α = 0.3 α = 0.4

Benzene 12 84 (13.86 s) 97 (14.06 s) 119 (14.60 s)

Cyclohexane 18 99 (15.27 s) 108 (16.27 s) 127 (16.13 s)

LDS 49 286 (50.36 s) 346 (53.73 s) 409 (52.76 s)

Streptomycin 81 399 (68.69 s) 468 (67.78 s) 564 (74.02 s)

Lecithin 128 687 (118.50 s) 821 (120.68 s) 932 (145.11 s)

PDMPG 225 1102 (219.23 s) 1345 (219.12 s) 1556 (226.34 s)

DNA 116 1610 (461.67 s) 1899 (475.33 s) 2232 (487.38 s)

Table 6.1. Number of patches with respect to the number of atoms

and the coarseness factor α.

The purpose of the second test is the investigation of the size µ(Γi) of each patch Γi.

We would like to compare the areas of the patches in two perspectives: in the vicinity

of each patch and global comparison. For the vicinity test, let Ni denote the set of

neighboring patches which share at least one corner node with a patch Γi. We have

computed

(6.48) M(i) := µ(Γi)
/ 1

mi

∑

j∈Ni

µ(Γj) where mi = Card(Ni).

The results for the average values of M(i) are collected in the third column of Tab. 6.2

where we observe that the sizes of the patches vary slowly because M(i) approximates

averagely the unity. That fact illustrates clearly the advantage of the Connolly surfaces

over the van der Waals surface [8]. Since patches are allowed here to span several

atoms. The size and the shape of the patches are in general very nice. As for the global

comparison, the ideal patch area µideal of a patch is the area of the whole molecular

surface divided by the number of patches. We compute for each patch Γi the ratio

(6.49) R(i) := min
{
µ(Γi)

/
µideal, µideal

/
µ(Γi)

}
∈ [0, 1].

The resulting average values of R(i) are seen in the last column of Tab. 6.2. We observe

that the sizes of the patches are not too different from the ideal size. In fact, we have

that in general µ = ρµideal (or vice versa µideal = ρµ) with a factor ρ ∈ [0.65, 0.75] .

Our third test consists in investigating the quality of the patches. Consider a patch

Γk by using the level L as illustrated in Fig. 14(b). For each i = 0, ..., 2L − 1 and

j = 0, ..., 2L−1, we consider the quadrilateral Qk(i, j) embedded in the space such that

the vertices of Qk(i, j) are ak(i, j) := γk(i/2L, j/2L), ak(i+1, j) := γk((i+1)/2L, j/2L),

ak(i + 1, j + 1) := γk((i + 1)/2L, (j + 1)/2L), ak(i, j + 1) := γk(i/2L, (j + 1)/2L). By

inserting a diagonal [ak(i, j + 1), ak(i + 1, j)] in Qk(i, j), one obtains two triangles T1
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Molecules Number of patches area/(neighb area) area /ideal

Benzene 12 0.960095 0.706800

Cyclohexane 97 0.959639 0.695809

Tamoxifen 410 1.012924 0.665099

Streptomycin 462 0.959130 0.662762

Lecithin 821 0.971143 0.676250

PDMPG 2175 1.015307 0.688102

DNA 3144 0.950066 0.651584

Table 6.2. Investigation of patches area.

and T2. Two other triangles T3 and T4 by inserting the diagonal [ak(i, j), ak(i+1, j+1)].

Let us denote by θ(Tp) the smallest angle in the triangle Tp. In order to quantify the

quality of the quadrilateral Qk(i, j), we introduce the quality metric

(6.50) Ψ
(
Qk(i, j)

)
:= 0.5

[
min

(
θ(T1), θ(T2)

)
+ min

(
θ(T3), θ(T4)

)]
.

The ideal quadrilateral which is a perfect square corresponds to Ψ(Qk(i, j)) = 0.25π.

In general, it is impossible to attain the ideal value Ψideal = 0.25π ≃ 0.785398 because

all patches could not be a scaling of the unit square. A value tending to zero indicates

a bad quad quality. In Tab. 6.3, we gather the results of our tests which consists in

computing the average values of Ψ over the whole patches. We find there also the ratio

between the Ψ-value and the ideal value Ψideal

Ψ-value
Molecules Number of patches

Average Ratio with Ψideal

Benzene 133 0.595737 0.758516

Quinine 358 0.554006 0.705383

Borane 812 0.531560 0.676803

Lecithin 821 0.555027 0.706682

Water cluster 1567 0.571700 0.727911

DNA 3348 0.576848 0.734465

Table 6.3. Quality of the resulting patches.

In virtue of the wavelet Galerkin BEM, we need only the value at the dyadic stepsize

as illustrated in Fig.14(b). That is, at level L for each NURBS patch Γk, we need for

each one the values

(6.51) ak(i, j) = γk(i/2L, j/2L) ∀ i, j = 0, 1, ..., 2L.
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Our next test is the runtime for the punctual evaluations. The results are seen in

Tab. 6.4 where we use two levels L = 3 and L = 5 for seven different molecules.

Molecules Nb. patches
Levels for multiscale

L=3 L=5

Benzene 97 7857 points (0.28 s) 105.64 K-points (2.81 s)

Cyclohexane 108 8748 points (0.30 s) 117.62 K-points (2.54 s)

Streptomycin 399 32.32 K-points (0.97 s) 434.52 K-points (10.12 s)

LDS 438 35.56 K-points (1.00 s) 478.07 K-points (10.36 s)

Lecithin 821 66.51 K-points (2.04 s) 894.07 K-points (25.80 s)

PDMPG 1344 108.87 K-points (3.37 s) 1463.62 K-points (47.81 s)

DNA 1899 153.82 K-points (4.82 s) 2068.02 K-points (71.37 s)

Table 6.4. Generation of the dyadic points on the Connolly surfaces (K=kilo).
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